Sl e iaiesd s svgacl

R E P OR T R E 8 U M E s

ED 016 634 SE 004 214
THE MAN MADE WORLD, TEACHER'S MANUAL. S
CONMISSION ON ENGINEERING EDUC., WASHINGTON, D.C. '

| PUB DATE 67

EDRS PRICE MF-$1.50 HC-$16.04  399PF.

 DESCRIPTORS- #CURRICULUM DEVELOPMENT, *CURRICULUM, *COMPUTERS,

%ENGINEERING, *MATHEMATICS, *PHYSICAL SCIENCES, *SECONDARY
SCHOOL SCIENCE, *TEACHING GUIDES, *TECHNOLOGY,
BIBLIOGRAPHIES, ALGEBRA, EDUCATIONAL OBJECTIVES. SCIENCE
ACTIVITIES,

. THIS TEACHER'S MANUAL FOR THE ENGINEERING CONCEPTS
CURRICULUM PROJECT'S HIGH SCHOOL COURSE, "THE MAN MADE
WORLD," IS THE THIRD DRAFT OF THE EXPERIMENTAL VERSION. THE
MATERIAL WRITTEN BY ENGINEERS, SCIENTISTS, AND EDUCATORS,
EMPHASIZES ENGINEERING--MAN'S APPLICATION OF SCIENTIFIC
PRINCIPLES TO THE CONTROL AND UTILIZATION OF HIS ENVIRONMENT.
TECHNICAL ACCOMPLISHMENTS ARE RELATED TO ALL PHASES OF MAN'S
ENDEAVOR--BIOLOGY, ECONOMICS, SOCIOLOGY, BUSINESS,
COMMUNICATION, PSYCHOLOGY, AND THE ARTS AND HUMANITIES. IN
PART I OF THE COURSE, CHAPTERS DEAL WITH (1) LOGICAL THOUGHT
AND LOGICAL CIRCUITS, (2) BINARY NUMBERS AND LOGIC CIRCUITS,
(3) LOGIC CIRCUITS WITH MEMORY, (4) ORGANIZATION OF A
COMFUTER, AND (5) PROGRAMING. PART Il INCLUDES CHAPTERS ON
(1) MODELS, (2) OPTIMIZATION (OPERATIONS RESEARCH), (3)
MODELING, (4) MODELS AND COMPFUTERS, AND (5) PATTERNS OF
CHANGE (DYNAMIC SYSTEMS). FOR EVERY CHAPTER OF THE MAIN TEXT,
THE MANUAL HAS A CORRESPONDING CHAPTER ORGANIZED INTO EIGHT
PARTS--(1) THE APPROACH, (2) OUTLIME OF CHAFTER, (3)
OBJECTIVES, (4) DEVELOFMENT OF CONCEPTS, (5) SOLUTIONS TO
HOMEWORK PROBLEMS, (6) EVALUATION, TESTS, QUIZZES, (7)
RESOURCE MATERIALS, AND (8) TEACHER REFERENCES AND BACKGROUND
INFORMATION SOURCES. DRAWINGS ARE INCLUDED FROM WHICH
OVER-HEAD PROJECTOR TRANSPARENCIES MAY BE MADE OF THE MAJOR
DIAGRAMS. NOTES FOR THE TEACHER ON THE LABORATORY EXPERIMENTS
AND AN ANNOTATED FILM LIST ARE ALSO INCLUDED. (DH)

o srwata M B



EDO016634

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
] OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGINATING IT; POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRESENT OFFICIAl OFFICE OF EDUCATION
L POSITION OR POLICY.

A high school course / developed by
Engineering Concepts Curriculum Project

A Program of the Commission on
Engineering Education / Washington, D.C.




FOREWORD

The writers of these notes (most of whom have had two years' experience
in teaching the course) debated at some length about the best form in which to cast
them. Should we make them very complete in order to be as helpful as possible to
teachers inexperienced in this course (and thus heap up a collection which might
repel by its mass alone)? Or should we cut down drastically, expecting rather to
trigger the memory than to inform it (and thus leave the beginner to flounder)? In
this dilemma, we agreed on a muitiple attack, and we urge that users of the Manual
comment vigorously during their feedback sessions in order to direct us in the
future.

We adopted as a preliminary guide the following plan of organization:

I. Approach: the relationship between the chapter and its neighbors;
its part in the development of the book as a whole.

II. Outline: section headings of the chapter, with just enough comment
to make the pattern visible.

111. Objectives: what your students should understand and what they should
be able to do after studying the chapter.

IV. Development: a fairly detailed synopsis of the chapter, often with
specific suggestions for introducing one concept or another.

V. Answers to homework problems, with complete solutions in all but
the most obvious cases.

'VI. Evaluation: suggested discussion and quiz questions, and usually a
test on the chapter, all with answers.

VII. Resource materials: library references, especially those suitable
for student use; classroom '"resources' for the teacher.

VIII. Depth materials: bibliography for the teacher, background information,
enrichment.

We expected Sections II, III and IV to'be of value during the preparation of lesson
plans. ‘

Not surprisingly, the writers have had to diverge more or less from the
planned outline. More important as far as feedback from teachers to writers is
concerned, they have varied widely in the degrees of completeness of their offer-
ings. In Part A, for example (where the need to explain basic circuits leaves
little chance, in the first part, to develop a '"'story line''), the early chapters are
quite brief. Where appropriate, however, they are supplemented at some length
by background explanations of Boolean algebra and of the structure of logic. In
Part B, Chapters 1 and 2 are extremely detailed. B-3 and B-4 steer a middle
course, with emphasis on a four-stage ''package! for immediate classroom

T™




reference (Approach, Outline, Objectives, Homework solutions), followed by
additional material to be looked over at his leisure by anyone inclined to do so.

Where experience suggests that they may be helpful, we have provided

master sheets for your convenience in making transparencies for the overhead
projector.

Solutions to homework problems, and suggested quiz or discussion ques-
tions (with their answers), have been printed on yellow stock; the Teacher's
Laboratory Manual is on green, and its sheets are paged consecutively so that it
will be convenient for you to collect them into a single pamphlet at the end of your
copy of the Laboratory Manual itself. Thus both your manuals will be easy to rec-
ognize quickly if they are misplaced. Each page of the Teacher's Manual is im-
printed TM in the lower left corner; the Teacher's Lab Manual is labeled TML.
The students' lab manual is marked simply LM.

L

We have assessed a fair number of films. The order of the list is merely

that in which we happened to view them. See the Introduction to the Film Notes
for more information.

Finally, we repeat our earlier request. Please comment on the format

and the fullness of treatment, either at feedback sessions or by letter to head-
quarters -- or both.

O | Committee on the Teacher's Manual

N. W. Badger

| T. Earnshaw
: J. R. Goldgraben
" R. W. King
A. E. Korn
_ T. Liao
} M. Simpson
f R. A. Went

D. Eisner Student Assistants
R. Nemerson

E. J. Piel

7. 8. Barss]Co-chalrmen

August 1967
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CHAPTER A-1
INTRODUCTION

1. APPROACH

As the title of this chapter indicates, this is an introduction to the course.
It is also an introduction to a way of thinking. Be sure to get the students in-
volved in a discussion of this chapter (see 4).

2. MAJOR IDEAS

A. Language is the key to communication and symbols are basic to lan-
guage.
B. Electronic digital computer is ultimate tool for dealing with symbols.
C. The stored program concept is one of the greatest d1scover1es this

century.
D. The significance of the discovery of the transistor and magnetic core

memory is highly important.
E. The importance of the computer to our society today and the effect of the

computer on the world of tomorrow should be emphasized.
F. The necessity of understandmg computers. in our man-made world is
highly important.

3. OBJECTIVES

To make the student aware of the major concepts listed in (2), especially
C, E, and .

¥

4, DEVELOPMENT

This can best be done by class discussion. In fact, rather lively discussions
can usually be developed concerning E and F . The teacher might want to de-
liberately take the view opposite to that of the students (if for example they all
agree). Another approach is to have the students list some of the engineering
achievements over the last several decades as well as some of the engineering
failures. (The teacher should list these on the board).

An interesting discussion should follow with the teacher pointing out the
particular topics from both lists which will be covered in the course. Inciden-
tally, some of these failures are: Tacoma Narrows Bridge collapse, the Thre=<
sher disaster, the Apollo capsule tragedy.

5. ANSWERS
No questions in this introductory chapter.

6. EVALUATION
None in this chapter.
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7. RESOURCE MATERIALS

= !w.osr?

Adler - The Thinking Machine - Mentor

Fink - Computers and the Human Mind - Science Study Series - Double-
day

Listen to Leaders in Engineering. Chapter by David, E.E. Jr. on

"Computing: An Alliance of Man and Machine. Tupper & Love.

Sluckin - Mind and Machines - Penguin

Thomson - The Foreseeable Future - Cambridge Univ. Press (Chap-
ters E1ght and Nine)

Kinzel - Engineering Civilization and Society - Science, June 9, 1967,
p. 1343, Vol. 156, #3780 (a capsule history of engineering)

8. MATERIALS FOR DEPTH
See 7.




Chapter A-2
LOGICAL THOUGHT AND LOGIC CIRCUITS

L Approach

1. The teacher should attempt to familiarize the student with the basic
ideas of logic, especially pointing out some pitfalls in everyday reasoning situa-
tions. The "AND', "OR' and '"'NOT' relations should be emphasized and explored

in terms of definitions and truth tables. (For additional background in logic, see
VIII).

2. The teacher should emphasize the logic in terms of the basic logic
circuits. The amount of Boolean algebra should be kept minimal. (For a more
extensive explanation of Boolean algebra, refer to VIII).

3. Be sure to emphasize '"make'' and '"break'' contacts and proper symbol -
ism. The river-crossing problem will be interesting to your students. Some may
want to attempt a second solution.

4. The majority and odd parity circuits are highly important. These are
the two essential circuits required to build a binary adder, which is a necessary
component of any computer.

5. In Section 9, the problem involving agent 070, be sure to have the
students .list all possible solutions. (See IV for a development of this. ) '

II. Major Ideas
1. The use of the basic logic connectives "AND'", "OR'" and "NOT".
2. The use of the basic logic circuits for the above.
3. The use of truth tables in establishing the above.
4. The use of "make' and '"break'' contacts in building logic circuits.

5. The ability to build somewhat more complex logic circuits by using
the basic logic circuits as components.

III. Objectives

1. To demonstrate how numbers and logical situations can be represented
by binary elements in circuits.

2. To develop an understanding of contact circuits.

3. To develop an understanding of the use of truth tables in establishing
simple logic situations.
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IV. Development

1. While it is true that an extensive background in logic and Boolean
algebra would be helpful to the student, the teacher must be careful to point out
that only a minimum amount is required for success in this course. If a student
or teacher desires more background than that which is given in the text, see
VIII.

The very simplicity of the basic logic circuits should be emphasized and
demonstrated with the student working with the L. C. B. and verifying this for
himself.,

2. The teacher should arrange to give the students as much time as possible
working with the L. C. B. In fact, the students should probably be working with the
L.C.B. every day. See the laboratory section of this manual for placement of
experiments. In addition tc these, the students should wire the other circuits
explained within the text.

3. The problem involving agent 070 in Section 9 can be approached by
circuits as mentioned in the text. For the two cases (1) agent 070 observes the
garage door closed, (2) agent 070 observes the garage door open, the student should
list the possibilities under the circuit diagram:

43 | <
L . -®
%
b a
Fig. 16(b)

In this first case, the circuit will be closed if the car is in the garage or
if Jones is not at home. In other words, if the car is in the garage it does not™—
matter whether Jones is home or not, the circuit is closed. Therefore, agent 070
cannot tell whether Jones is at home.

] ¢

[] - |
L) | J

‘-—-—Ob ® %
Fig. 16(c)

_ "In the second case, for the circuit to be closed, Jones must be not home

(c is closed) and the car must not be in the garage (a is closed). Notice that this

is the only way for the entire circuit to be closed. Therefore, agent 070 can tell
that Jones is not home and the car is not in the garage.

T™ A-22
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V. Homework problems and answers

Relative difficulty of questions found in Chapter A-2:

EASY MODERATE DIFFICULT
*2. 2 %243 2.1 *2.4 |*2.11 2.14
2.6 2.7 2.5 *2. 8b
2.12 2. 8a 2.9
2.10 *2.13

*Key Problems to be Attempted by all Students

SOLUTIONS:

2-1

components shown below

Ans.:

A door lock is to be operable only when time switch T and
manual switch M are both activated. Draw the circuit from the

O o—4 LOCKp—o
m - +
t m
» “— LOCK
2l
=l
A"Zo 3




2-2 A single house electric bell is to be operated when either the
front or rear door push buttons are operated. Draw the wiring
diagram.

f
Ans, : %

r
—%

2-3 Review the seat ejection problem in Section 2. Complete
the truth table for the circuit in Fig. 4.

Ans. : ~ 1m || CANOPY | __SEAT
CHARGE | EJECTION
0 |O 0 0
0 |1 1 0
1 |]O 1 0
1 |1 1 1
2-4 The figure below shows a circuit which is to be analyzed.
(a) Construct and complete a truth table for the network.
(b) Compare the truth table with that of Problem 1-~4.
[ (c) Which of the following is a correct description of the
F circuit; and; or; odd-parity; even=-parity?
a ]
- +
’_ _f
r b b
% -+
g
|
Ans. : (2) —
8 (1) ? (c) This is an
1 odd -parity
i ? 0 circuit
Part (b) requires no written answer
2-5 Describe one or more situations which might require the

operation of three contacts in series.
Ans,: Control of any device, the activation of which requires a

consensus of three people. Firing of an ICBM by three
D controllers; making a call by dial phone; etc.
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2-6 Describe one or more situations which might require the
operation of three contacts in parallel.

Ans.: Control of door-bell or fire alarm from three positions.

2-7 Construct and complete a truth table for
(a) Fig. 9(a)
(b) Fig. 10(a)
(c) Fig. 10(c) (optional).

Ans.:

o
o

0
1
1

O1Tio]
(a) (b)

o—no—noo:—-n—-ololo‘

-1 o] =i

= = ddolﬂw

(c) The truth table for Fig. 10(c) has 64 lines; the
entries in the table are 1 when, and only when, the
number of 1's in the set of values of a, b, ¢, d, e and
fis odd.

This part is probably more time-consuming than
you will care to demand.

2-8 Define odd-parity as used in contact network analysis. Define
even-parity as used in contact network analysis.

Ans.: An odd-parity contact network is one which is :losed if and
only if an odd number of the associated switches is operated.
(Even-parity is defined in an analogous way.)

2-9 Construct and complete a truth table for the network shown below.

Ans.: Truth table is the same as the one for Prob. 1-7.

™ A-2.5
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2-10 A board of trustees ior the Last National Bank consists of four
voting members. All loans must be approved by at least three
of the board members before it is accepted. The members
wish to vote in secret but wish to know if any three or more
members voted yes. Below you will find a contact network for
this '"at least 3 out of 4'' vote problem.

(2a) What three contacts should be placed in the bottom branch
of this network so that the network is completely specified?

(b) Are any other branches in parallel necessary? If so, why?

(c) Draw two other networks that have fewer contacts and which
will do the same job.

a b ¢
—% H—
S @
- +
L — 2 ﬂL !
? ? ?
¢

Ans.: (a) contacts ''b'", ''c¢'" and "'d".

(b) No
| b
L. a c —¥%-
(c) s B d
| —_— g Yt
; —¥— b d
> ¢ * *
)
b c
- —
onm— -p-b. --E ame—
b c d
% -5 =

2-11 Describe one or more situations where a majority circuit
would be appropriate.

Discussion question.

™ A-2.6
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(a) Complete the truth table for the contact network shown
below.

(b) How many switches must be operated in order to light
only L, ?

(¢) How many switches must be operated in order to light
only L, and L,?

(d) How many swi%ches must be operated in order to light

all three lamps?

(e) Does the order in which the switches are operated
determine which lamps will be lighted?

(f) Can you think of a real-life situation in which this
circuit might be used?

NETWORK
a
—d
-yl (O]
V1R H
b
— *
- +
o= —)
b ¢ ¢ L2
¥
a b c
NN L@3

TRUTH TABLE

abl LJ_ LZlL4
ololo 1o lolo (b) One
oo T 1010 (c) Two
I 1 o (d) Three
o T T 1T 10 (e) No
| | 0 |
T 11

T 1

111 1

(a)

{f) Any counting circuit (up to 3). Any situation
in which the desired outcome is independent of the
sequence of operations, as in the case of the seat
ejection problem.

A-2.7
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2-13 Districts I, II and III combined to form a regional school with
each district having two members on the Board of Education.
Action by the board required a majority vote by district. A
negative vote by one representative of a district acts as a
veto on a positive vote by the other representative, Design
a circuit which will permit secret voting by individuals. Use
a lighted lamp to indicate affirmative action by the board,

Ans, : a b c d
=% — *—
L
.h I-E -ba L
c d e f
——— . -
a b c d
——— —
L
— 3 0
e f
——y=
c d
— W

VI. Quiz and/or Test Questions with Answers

1. Construct a truth table for this circuit.

Ans.: a b Ll
- 0 0 0
g L 0 1 0
' |
- Q
o—¥— _ b —m 1 0 1
qQ
S e 1 1 0

T

p!
C))
o+

c
e >

a) Construct truth table for above circuit.

b) From the truth table write the statement using the connectives
""and'"' and "‘or'' as to which switches must be operated to make
the lamp light.

™ A-2.8




Ans,: a.

A B C L,
O ¢ Oo}fjo
9 0 1Q0
0O 1 0j]0
0O 1 1]1
1 0 oo
1 0 1H1
1 1 01
1 1 1§1

b. The lamp will light if A and B are operated OR
if switches A and C are operated OR
if switches B and C are operated OR
if switches A, B, and C are operated

a b
3, —% :
S @ .
a b
: X

g

a) Ll = | when

b) If contacts a and a were removed from the contact network, what
should happen to L1 ?

c) Give this circuit a name.

Ans, a. A
A

1l and B
Oand B

b. The lamp L, would be lighted
and could not be turned off

c. Two variable odd parity circuit

4, We speak of a switch or relay as being ""cperated' or ''released, ' and
of contacts as being either of the " "or" "
type, respectively.

b Ans.: ""make'' or ""break"

™ A-2.9




5. Of four chemicals A, B, C, and D; if A is mixed with B there will be a
violent explosion. If B is mixed with C or D, poisonous gases are
released. Design a circuit to help you test which combinations of these
chemicals can safely be mixed in pairs. Briefly indicate how this .
circuit would help you. 9

Ans,: Specifications

0 = Chemical is not used

1 = Chemical is to be used

Switch A corresponds to chemical A, B to B, etc.

L. is a warning light which indicates that the proposed
1 combination is dangerous.

® .

- b
o= *—

. _
—_:__T L
e
d
%

6. Draw a diagram to show a majority-vote circuit (which will light a
lamp) for the case where there are four voters.

(%
N 4 v
a el ;'
¥ @ :
c d -0
- ‘H
_
b c d
—% - K

f 7.  Will the following circuit operate to show a majority vote? Explain

briefly.
a ¢
X
S— 3
b b
—

‘Ans.: No: circuit will not supply a path for affirmative votes by A and B.

T™™ A-2.10
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VII. Supplementary Materials

A. Hoernes and Heilweil - Introduction to Boolean Algebra and
Logic Desig_g - McGraw-Hill. :

B. Hollingdale and Tootill - Electric Computers-Pelicon

C. G.E.: You and the Computer - General Electric Co.
{ClassToom quantities available from: Educational
Relations, General Electric Co., Schenectady, N.Y.)

D. Lytel - The ABC of Boolean Algebra - Bobbs-Merrill Co.

VIII. Material for Depth

A. Extension of discussion of formal logic
l. TWO MORE LOGICAL CONNECTIVES

a. "If---then---"

What conclusions can you reach if I tell you "If I smoke cigars then
gorgs can play the cello"? That is, for which of the four possibilities of truth
and falsity of the two components of the statement could you logically conclude that
the statement is true? If I do smoke cigars and gorgs can play the cello you should
believe the statement. Butif I smoke and gorgs cannotf play the cello the state-
ment is false. These conclusions are fairly easy to reach. But what if it is not
true that I smoke cigars? In that case there seems to be no way of deciding ~
whether my statement is true or false. The custom among logicians is to make a
completely arbitrary decision and to rule that the statement "If P then Q" is
logically true unless P is truc and Q is not true. The truth table for the "If----

then----" connective (it is called the conditional connective) is displayed in the
truth table in Fig. 1.

Fig. 1 A truth table for the if---then connective.
P Q "If P then Q"
false false true arbitrarily chosen
false true true to be '"'true'
true false false
true true true

In ordinary conversation we use logical connectives to join ideas which
we think are somehow related. Logicians do this too, but they also join ideas which
seem to bear no causal relationship to each other. This freedom can, on occasion,
as we have seen, produce peculiar and unnatural statements. This is especially
true when we use the "If---then---'" connective. We should keep in mind that a
causal relationship is not necessarily intended between the statement components
so connected. It—i}; quite difficult to imagine any such relationship between "'I smoke
cigars'' and "Gorgs can play the cello".

™™ A-2.11
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When is the statement ''I do not smoke cigars or gorgs can play the
cello' true and when is it false? Recall that statements containing ""or" are false
only when both components are false. Consequently, the statement is false only
when ''I do not smoke cigars' if false (that is, when ''I smoke cigars' is true)
and when ""Gorgs can play the cello'" is false. In our shorthand notation we have
said that the statement '"Not-P or Q" is false only when P is true and Q is false,
and it is true for all other conditions.

The remarkable result, which a clever reader might already have
noticed, is that the conditions for which "If P then Q" and ""Not-P or Q'" are true
or false are the same. The importance of this fact is enormous. ~It means that
one of the statements we use most in logical arguments can be expressed alterna-
tively using only '"'not'" and ""or'. An even more remarkable fact is that '"not" and
""or' can be proved to be sufficient to express all logical statements, however
complex they may be. However, statements using only ''not'" and "or' turn out to
be unnecessarily lengthy and usually quite obscure and difficult to understand.

Customarily, logicians use ""and", '"or'" and ''not' as the fundamental
logical connectives. The convenience of having all three of these available is
illustrated in the next section.

b, '"----if and only if----"

As a final example of a statement about gorgs and my smoking habits
consider "I smoke cigars if and only if gorgs can play the cello'". (The phase "if
and only if'" is called the biconditional connective.) I could just as well have said
"If I smoke cigars then gorgs can play the cello, and if gorgs can play the cello
then I smoke cigars™. These two equivalent statements we shall put into the
simpler forms "P if-and only if Q" and "If P then Q, and if Q then P'". Either one
of these declares that if P is true then Q is true and if P is false then Q is false.
Therefore the statements are true when P and Q have the same truth-value and
are false when they have different values. The truth table in Fig. 2 summarizes
these facts.

Fig. 2 A truth table for the if and only if connective,

P Q "P if and only if Q"
false false true
false true .~ false
true false false
true true true

Another equivalent way of expressing the statement we are studying is
"P and Q, or not-P and not-Q". In expanded form: 'I smoke cigars and gorgs
can play the cello, or I do not smoke cigars and gorgs cannot play the cello'. Still
another form is "P or not-Q, and not-P or Q™. That is, "I smoke cigars or gorgs
cannot play the cello, and I do not smoke cigars or gorgs can play the cello".
This last version is an awkward one which, although equivalent to all the others,
nevertheless sounds quite strange to our ears. It is included in order to

demonstrate that there are always several ways to express a logical statement,




even when we are restricted to using the '"and', ''or" and "'not" connectives. This
flexibility can be important when we are designing the corresponding logic
circuits because it allows us to consider several alternate circuits which will
produce the same logical result. |

2. AN EXAMPLE OF A PROBLEM IN LOGIC

a. Expressing the problem in symbolic form,

Suppose we try to put together a much more complex example, suitable,
say, as a moderately difficult question on an intelligence test.

'""Mr. Jones lives alone in a house which has a garage. Jones fears
car thieves; whenever his car is in the garage the garage door is closed. If
the garage door is closed and the lights are on in the house it is certain that
Jones is at home. If Jones is at home or the lights are off in the house then
the car is always in the garage. All of these habits are well known to his
neighbors, Mr. and Mrs. Nosey, who live next door''. (Mozre about the
Noseys later. )

We shall represent our knowledge of the situation by writing a single
rather complex statement in logic. The following symbols will be used for the
elementary propositions from which this statement is constructed. (Mr. and Mrs.
Nosey will ask questions about only these propositions. )

A: Jones is at home.
B: The car is in the garage.
C: The garage door is closed.
D: The lights are off in the house.
There are only three critical sentences in the problem. Extraneous
ir formation, such as Jones's fear of car thieves, which are not logically inter-

.rvlated to the four propositions, will be ignored. Minor rewording of the sentences
will be made so that we can use the connectives used earlier.

First: "If the car is in the garage then the garage door is closed. "
(If B then C.)

Second: '"If the garage door is closed and the lightsf are not-off in the
house then Jones is at home. " (If C and not-D then A.)

Third: "If Jones is at home or the lights aye off in the house then the
car is in the garage." (If A or D then Bl)

Apparently all of these statements, taken together, are necessary to
describe the relationships among the four elementary propositions. Therefore a
single statement, in which the three parts are connected by '"and's', can be made:

"If B then C, and if C and not-D then A, and if A or D then B." It may
seem almost heartless to reduce the information we have about Jones, his car, his
garage, and the lights in his house to such a stream of symbols. Nevertheless it

T™ ' A-2.13




is just such a process which is necessary to express our problem in a form
acceptable for presentation to a computer.

b. Derivigg the truth table.

The truth table for this statement is another way of showing these data.
Since there are four propositions (A, B, C and D) and since each of these has two
possible truth-values (true or false) the total number of possible combinations™of
these values is 2x 2 x 2 x 2=16. These sixteen combinations are shown in the
table in Fig. 3. In this table we have written "T'" instead of ''"True' and "F"

Fig. 3+ A truth table for the three statements comprising the '"Jones"

problem.
A B C D lst statement 2nd statement 3rd statement
Fr F F F T T T
F FF F T T T F
F FF T F T F T
F FF T T T _T F
F T F F F T T
F T F T F T T
F T T F T F T
F T T T T T T
T F F F T T B2
T F F T T T F -
T F T F T T F
T F T T T T F
T T F F F T T
T T F T F T T
T T T F T T T
T T T T T T B

instead of '"False''. (For the moment you may ignore the three rightmost columns
of the table.)

The first statement was reduced to the symbolic form "If B then C". We
have seen that this statement will be false only if B is true and C is false. Other-
wise, of course, it will be true. In the truth tuole, in the column associated with
the first statement we have therefore put an ""F'" in those rows for which the B-
column has a "T'" and the C-column has an "F" (indgmandent of the values for A
and D). A "T" has been put into each of the other rows.

The second statement, '"'If C and not-D then A', is false only when ''C
and not-D'" is true and A is false. Examining further, we know that ''C and not-D"
is true only when C is true and D is false. It is only for those rows of the truth
table for which A is "F", C is "T" and D is ""F", therefore, that we have put an
"F'" in the column associated with the second statement.

The third staterment, "If A or D then B", is false only when ""A or D" is

true and B is false. Analyzing further, we know that ""A or D" is true when either
A or D (or both) are true. The rows of the truth table into which an "F'' should be
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put for this third statement are those for which either columns A or D (or both)
have a "T'" and column B has an "F'",

Finally, we want to determine what the truth table is for the entire
statement

"If B then C, and if C and not-D then A, and if A or D then B".

We recall that a series of statements connected by '"and's' is true only when all
of its components are true, The truth table for the composite statement is given
in Fig. 4.

Fig. 4 A truth table for the single composite statement

of the ""Jones'' problem.

>
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; A truth table is a way of visualizing all imaginable states of truth or

' falsity of the elementary propositions of a problem. Each of the possible
corrbinations corresponds to just one state in the table. For instance, the state

; in which Jones is at home, and the car is not in the garage, and the garage door

i is not closed, and the lights are off in the house is represented by the tenth row

of the table (the one for which A, B, C and D have the truth-values T, F, F and

? T, respectively). Even though this state is one of the sixteen states we can
imagine before we hear the conditions of the problem, the entry "F'" at the right

of this row tells us that this state is not one which Jones's neighbors, the Noseys,
could ever observe. In fact, for our problem all but four of the sixteen states are
excluded by being inconsistent with the facts we have about Jones. Only these four
are observable.

c. Getting answers from the truth table.

On Tuesday morning Mr. Nosey looks out of his window and sees that
Jones's garage door is open. He tells his wife '""Jones is not home'". Is he correct
in his conclusion? ' '

We have no way of knowing whether or not Mr. Nosey was thinking
logically but we can test his conclusion. In our language he was saying "If the




garage door is not-closed then Jones is not at home'. (How can you prove that
this statement 1s equivalent to "If Jones is home then the garage door is closed"?)
In our shorthand we state "If not-C then not-A''. What Mr. Nosey is really saying
is "For the four observable states shown in the truth table A always has the value
"F'"whenever C has the value "F''. Is he correct? We can tell by examining a
shortened form of the table (see Fig. 5) which lists only the four observable states.

Fig. 5 A listing of the four observable states in the '"Jones"
problem.

~

There is only one observable state for which C has the value "F'" and
for this state it is true (as Mr. Nosey claimed) that A has the value "F'. It is
also true that B and D have the value "F'', Therefore, Mr. Nosey could have
reached an even more detailed conclusion when he saw that Jones's garage
door was not closed. In that case not only is Jones not home, but also the car
is not in the garage and the lights are not off in the house.

By looking at the four observable states listed we should be able to
answer the following quzstion. ''Even though Jones always keeps his car in the
garage when he is at home, is Jones always at home when his car is in the garage?"
That is, for the observable states is ''If B then A'" true? The answer is '""No',
because it is possible that B can have the value ""T" and A can have the value "F',

Another question: "If Jones is at home is the garage door always closed?"
That is, if A is true is C always true (for the observable states)? (Yes.)

And another: '"If the car is in the garage should we expect to find the car
door closed?' That is, is C true whenever B is true? (Yes.)

Before going ‘o bed Tuesday night, Mr. Nosey sees that Jones's garage
doors are closed and comments to his wife '"Jones must be at home'". His wife
replies '"Not necessarily! But I'd agree with you if I could see the lightinhis house!'',
Who is right? (She is.)

3. ANOTHER VARIATION

Suppose the problem had read as follows: Mr. Jones has very definite
habits. Whenever his car is in the garage the garage door is closed, and whenever
his garage door is closed one can be sure that the car is in the garagr. (This is
an "if and only if'' situation.) Also, if Jones is at home, his car is always in the
garage. Agent 070 drives past and notices (1) at one time that the garage door is
open, and (2) at another time that the garage door is closed. What can Agent 070
determine under these two different conditions?
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First we write the complete compound logic-statement describing the
problem: B if and only if C and if A then B; or restating the former we may put
it if B then C and if C then B and if A then B. [It is shorter and simpler with
implication symbols: (B —» C) and (C—eB) and (A —= B)]. Now these state-
ments can be rewritten using only '"and", '"or'" and ''not': (B or C) and (C or B)
and (A or B), from which it 1s easy to derive this switching circuit:

b K 4‘6
| |  § 1 §
[ C— - —
—% —— *—
c b b

Returning to 070 and his two observations: (1) if the garage door is
open (or ¢ closed) the circuit becomes

1o

[ a

L—o o— —%
b

O x

But if the garage door is open (C ¢1pg~d) then the car is not in the garage (b), which
develops the circuit to

b c

4-0

Since_switches B and C are determined, the only way to establish a circuit is to
have a closed. Thus switch A is not operated, and Jones is not home.




(2) If the garage door is closed (c), then

b c

: ‘ ﬁ h 1

xi
b

o

But if the garage door is closed (c), then the car is in the garage (b). Then the
circuit looks like the following. Therefore, one cannot tell whether Jones is home
or not since it doesn't affect the circuit either way.

b c a
}

c b b

This result is hard to accept at first sight. But a rereading of the
conditions shows they do not indicate that Jones and his car must both be home at
once. Indeed, if the episode occurred in a detective story the alert reader might
well ponder briefly and then think that Jones had tried to establish an alibi with
the car-garage bit and had sneaked out the back door, bent on nefarious business.
For our purposes, the important point seems to be that the story and the circuits
demonstrate the usefulness of the logical convention: a statement in the form "if
A, then B'" is regarded as true if B is true, regardless of the truth-value of A.

B. Something on Boolean algebra

There are some relationships which we can express in Boolean algebra
about the contacts on a switch A, which are valid regardless of the state of the
contacts. For example, when we put the contact ''a'' in series with an open path
the result is equivalent to an open path regardless of whether the contact is open
or closed. The equation ''a.0 = 0" is shorthand for this statement.

The following four rules are all valid in Boolean algebra.

a-0=0-a=0 (1)
a-l=1l.a=a : (2)
at0 = 0+a = a (3)
atl = 1+a =1 (4)

The last of these says that ""A closed path in parallel with another path is equivalent
to a closed path, whatever the state of the other path may be.'" One good way of
checking the truth of this statement is to remember that either a=0 or a=1. If a=0
the rule says that "0+l = 140 = 1", which is certainly true. If a = 1 the rule says
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that "'1+1 = 1+1 = 1", which is also true for switch contacts in parallel.
Two other rules which are important are:
ara=a (5)

ata = a (6)

By letting a=0 and by letting a=1 you can check to see that these theorems are
valid. The two diagrams in Fig. 6 illustrate what these rules mean. They show

A A
a a
O —O o-—=_a—0
ond
a a
(- S— O
uo + oll
“a.a"
A

are each '
equivalent to % ° o
. O~

Fig. 6 Demonstration of the theorems "a.a = a'" and "ata = a'.

o

that when two contacts having the same state are placed either in series or in
parallel the resulting circuit is equivalent to a single contact having that state.

Fig. 7 The series (or '"and'") configuration of two contacts. A lamp
controlled by two contacts in series.




Fig. 8 The parallel (or "or'") configuration of two contacts. A lamp
controlled by two contacts in parallel.

1. SOME SIMPLE THEOREMS OF BOOLEAN ALGEBRA

By using contacts controlled by more than one switch it is possible to
get circuits which can be described by more complicated expressions in Boolean
algebra. As a start, notice that the expression which describes the series circuit
in Fig. 7 is "a-b", or simply "ab'". We know that this expression can have the
value "'1" only when both "a'' and ''b" have the value ''1". Whenever either "a'" or
"b" has the value ""0'" the product has the value '"0". The parallel circuit in Fig.
8, on the other hand, is described by "a+b". Whenever either "'a'" or '"b" (or
both) have the value "'1" the sum has the value "'1"". Whenever both ''a'" and ''b"
equal "0'" the sum equals "0'",

The circuit diagrams in Fig. 9 show several contact circuits and the
expressions in Boolean algebra which can be associated with them. (For simplicity
only the contacts themselves have been shown--in a shorthand notation in which
a cross represents a contact.) The first pair of examples is particularly worth
noting.. These are the circuits described by "a(b+c)" and "ab+c". In the first of
these the 'a'' contact is put in series with a parallel circuit consisting of the "'b"
and ''c'"' contacts. In the second circuit the contacts "a'" and ''b'" are put in series
and the resulting series circuit is then put in parallel with ""c¢''. How can we tell
whether to make the parallel connection first and then the series connection--or
whether to make the series connection first and then the parallel connection? In
particular, in the expression '"ab+c", how do we know that the ''b" variable is to
be multiplied first (by "a') rather than added first (to ''c"')?

The rule which tells the answer to questions of this type is that expressions
in Boolean algebra are to be handled in exactly the same way that they are in ordinary
algebra: whenever parentheses are not present, product operations are to take
precedence over summing operations. Parentheses force the operations inside them
to be done belore the ones outside are. As examples, consider '"ab+cd", '"a(b+cd)",
"(ab+c)d" and "a(b+c)d'"'; determine the contact circuit associated with each of them.

One of the purposes of any algebra is to tell us when one expression can
be replaced by another. One of the rules of ordinary algebra is '"a(b+c) = ab+ac"

which shows how to ''expand" a parenthesized expression. Of course we can use this
rule '"backwards''; that is "ab+ac = a(b+c)". In this form it tells us that '"a'" can be

factored from the expression.
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Fig. 9 Some examples of contact networks and the associated
expressions in Boolean-algebra.

By a lucky accident ("'lucky' because the symbols of Boolean algebra do
not mean the same things that they do in ordinary algebra) the factoring rule is also : -
valid in Boolean algebra.

ab+ac = a(b+c) (7)

(This is sometimes called ''the first distributive law'' of Boolean algebra.) The
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proper circuit interpretation of this theorem is given in Fig. 10(a). The two
circuits can be shown to be equivalent by noticing that, in either case, when "a'"

b

a b
% % ‘
is equivalent t0 e— x——g
I e c | c
- *

(a) ab+ac = a(b+c)

Q a a
_ 4“ - _n A
u l_. is equivalent to o_§ L,.
i . b . c . b *c

(b) (a+b)(a+c) = a+be

Fig. 10 The two distributive laws of Boolean algebra.

is open the entire circuit is open, regardless of the states of the other two contacts.
When "a" is closed there is a path through either circuit whenever 'b" or ''c" is
closed.

Another theorem, very much like the preceding one, is
(a+b) (atc) = a+be (8)

This ""'second distributive law'" is like the first one except for the fact that the
operations of multiplication and addition have been interchanged. This theorem
would not be true in ordinary algebra. But in Boolean algebra it notes the equiva-
lence of the two circuits in Fig. 10(b). In each of this pair of circuits the closin

of "a'" guarantees that there is a path through the network regardless of the states

of the other two contacts. When the '"a'" contacts are open there are paths completed
in the circuits only when '"b'" and ''c'" are closed. o

Two more theorems which are very useful in simplifying expressions are
given by

at+ab = a | (9)
a(at+b) = a (10)

These are usually called the "absorption'' theorems. The pairs of circuits which
you should visualize for them are shown in Fig. 11. (Can you give a logical
argument that proves the equivalence of these circuits?)
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(a) ao+ab=a

is equivalent fto 3(0 Y

(b) a(a+b)=a

Fig. 11 The two absorptive laws of Boolean algebra

An example: the majority vote problem.

Three legislators wish to vote on a large number of issues and to have
their votes anonymous. Each one is to control a switch which is labelled '"No'" in
the released position and '"Yés' in the operated position. A lamp indicating that
the majority vote is favorable is to be lighted whenever two or three of the members
vote "Yes''; otherwise the lamp is to be unlighted. One way of stating these require-
ments using the '"and" and '"or'" connectives is '"The lamp is to be on when (and
only when) switches A and B are operated, or when switches A and C are operated,
or when switches B and C are operated.’” (What happens, according to this
descripticn, when all three of the switches are operated? Recall that we are using
the inclusive '"or'.} In Boolean algebra the appropriate expression describing the
desired contact circuit is ""ab+ac+bc'. This circuit is shown in Fig. 12(a). (In
this circuit what happens when all three of the switches are operated?)

There are several other ways to state the requirements of our circuit.
By factoring 'a'" from the first two terms of "ab+ac+be'' we obtain "a(b+c)+be'.
The associated word statement is '"The lamp is to be lighted when A is operated
and B or C is operated, or when B and C are operated." The circuit is given in
Fig. 12(b).

Another, more obscure, but equivalent, form is "The lamp is to be
lighted when A is operated, or B and C are operated; and when B or C is operated. "
The circuit in Fig. 12(c) is a translation of these requirements into physical form.

The expression '"(a+bc) (bt+c)" can be shown to be equivalent to the others
by expanding (''multiplying out'') the two parenthesized terms to get "abt+ac+bcb+bec'.
We know [ from Eq. (5)] that when a pair of identical variables are multiplied
together one of them may be eliminated. The application of this rule gives us
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""abtac+bctbe''. From Eq. (6) we know that when a pair of identical terms are
] added together one may be eliminated. The application of this rule results in
) ""abt+ac+bc!''.

(How many other ways can you think of to design a majority circuit using
only five contacts?)

b b
Xo —5e-
a c a [ ¢ |
—@9—H—X +—o tT 3¢ ¥——0
b c
D 5 © - L—¢——¢
(@) 9btact+be , (b) a(b+c)+be
" 3P
—¢ | *——o

c

b (]
% 03 3¢
D (¢) (at+bc)(bte)

Fig. 12 Three equivalent majority circuits.

2. COMPLEMENTARY VARIABLES.

Definition of complementary variables.

The complementary nature of ''0" and "1'" can be emphasized by writing
explicity that ""not-0 is equivalent to 1'"-and ''not-1 is equivalent to 0''. The bar
notation used to differentiate between the make and break contacts on a switch is
also used to represent the word ''not".

0=1 (11)
T=0 (12)

We can also use the bar over a variable to specify another variable which aiways
has a value complementary to that of the variable which has no bar.

Whenever a=0, a=1. . (13)
Whenever a=1, a=0. (14)
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The following theorems tell us what happens when we connect two
complementary contacts in series and in parallel.

a.a=a.a=0 (series) (15)
ata=ata=1 (parallel) (16)

(Does the first of these remind you of '"a and not-a is never true' and the second
remind you of ""a or not-a is always true'™ They should.) Theorem (15) tells

us that it is never possible to complete a path through a circuit with a pair of
complementary contacts in series. Theorem (16) tells us that whenever a

pair of complementary contacts are connected in parallel it is always possible to
complete a path throuygh the resulting circuit. The reader should practice using
these theorems by writing an algebraic expression for each of the circuits in
Fig. 13 and then simplifying each expression as much as is possible.

(Question: What would be meant by (a) ? What is it equivalent to?)

s s S
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—¢ *—o 13 ¢S
ML
S Xs ,'s'*s

@)
»

oj
wl

—9e P . x31 5—[3—0
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Fig. 13 Circuits with contacts all controlled by the same switch.
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Theorems using complementary variables.

There are many other theorems in Boolean algebra. Some of the most
important of these are given below.

atab = atb (17)
a(a+b) = ab (18) :
abtac = (atc) (at+b) (19)
(at+b) (atc) = actab (20)
abtact+bc = abtac (21)
(at+b) (atc) (b+c) = (a+b) (atc) (22)

The most certain (and often the most tedious) way of proving whether
or not any theorem is valid or not is to list what the theorem says for each possible
combination of values of the variables. As an example of this technique we shall
verify that Theorem (21) is true. We do this by examining the theorem for all
eight combinations of values of '"a'", "b'" and 'c'".

(a:bta-ctb-.c = a-bta- c)

a=0,b=0, c=0: 0:0+1-0+0°0=0°0+1-0
0 0 1l: 0°0+1°140°1 = 0°0+1° 1
0 1 0: 0141 0+1°0=0° 1410
0 1 1l: 0°141° 1411 = 0°1+1-1
1 0 0: 1:0+0°0+0°0 = 1° 0+0°0
1 0 1l: 1:0+40°140°1 = 1° 0+0°1
1 1 0: 1°140°0+1°0=1-140°0
1 1 1l: 1°140°1+41°1 = 1°140°1

Notice that all of the theorems of this section (for exampie, (17) and
(18) and many of the earlier ones can be arranged in pairs. If we replace '-'
by '"+'" and '"+" by '"'." everywhere in the first theorem we get the second theorem
. of a pair. The relationship of the members of a pair is called duality. For any
valid theorem it is always possible to interchange the two operations and obtain
an equally valid dual theorem.

How to take the coleement of an exPression.

Just as it is possible to have a complemented variable with a value
opposite to that of the uncomplemented variable, so also is it possible, for any
expression, to derive an expression complementary to it. The expressions of
such a pair have, for each possible combination of values of their variables,
complementary values. The rules for complementing product expressions and
sum expressions are illustrated by

(a.b.c) = atbic (23)
(atb¥c) = a.b.c (24)
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The reader should verify both of these theorems by noting that they are true for
all eight combinations of values of ithe variables. ,

More complicated expressions may have several "." and '"+'" operations
and several variables (both complemented and uncomplemented). The general
rules for converting an expression to the complementary expression are:

(i) Interchange the operations ".' and "+", and _
(ii) For each variable, x, interchange the variables x and x.

For example, the complement of ""a(btc)+ab" is '"(atbc) (a+b)'". The complement
of "(atbt+c) {de+f)" is "abc+(d+e)f™.

The usefulness of being able to recognize the complement of an entire
expression is that then the theorems can be applied to a far wider set of situations.
This is true because a theorem which is true when its variables represent
individual contacts is also true when several or all of these variables are replaced
by more complex expressions which represent networks of contacts. For example,
Theorem (16) ("at+a=1") tells us that "a(b+c)+ab + (atbc) (a+b) = 1'".

The representation in Boolean algebra of a problem in logic

A good example of the use of the theorems we have listed is in simplifying
the statement by which we described the conditions of the '"Jones' problem in page
A-2.13. In symbolic form that statement was

"If B then C, and if C and not-D then A, and if A or D then B." We recall
(page A-2.12) that "If P then Q" is equivalent to "Not-PE Q'". We cin make
this substitution in the three places possible in the statement.

(i) "I B then C" becomes "Not-B or C"
(ii) ™ C and not-D then A'' becomes '"Not-(C and not-D) or A"

(iii) "I A or D then B becomes "Not-(A or D) or B"

In the form of expressions in Boolean algebra these become

(i) B+C
(ii) (cH) + A or, equivalently, C+ D+ A
(iii) A+ D) + B or, equivalently, AD+ B

The overall statement of the '"Jones' problem included all three components
joined by the logical connective '"and'. Recall that ""and' corresponds to ".". There-
fore the Boolean expression associated with the composite statement of the problem
is

(B+C)(C+D+A)(AD + B)

We shall see that this can be greatly simplified. First, "multiply out" the last
two parenthesized terms. This gives

B+C)(CAD+TB+DAD+DB+AAD+ AB)
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The two underlined terms are always equal to zero (why?) and can be eliminated.
If we multiply out again the result is

(BCAD+BCB+BDB+BAB+CCAD+CCB+CDB+C AB)

Again the underlined terms can be eliminated. The result can be rewritten as
ABCD+BC(A+D)

This expression tells us which combinations of values of the variables
are allowable, just as the original sequence of three logical statements did.

An interesting application of Boolean algebra may be seen in the circuit
of Fig. 11, p. A-13 of the TML. Here the origin of the problem is a somewhat
unusual cubic equation, which gives positive integral values of y (all less than 63)
for integral values of x between 0 and 7. The desired truth table can then be
worked out by evaluating y for each value of x. Next each column of the truth
table is written as a Boolean expression and simplified, and the circuit emerges.
It will observed that any integral value of the constant term between 15 and 42
could be used in the same way as 19; the truth table in each case would be
different, but could readily be reduced to a more or less complicated network.




Chapter A-3
BINARY NUMBERS AND LOGIC CIRCUITS

1. Approach

This chapter is primarily a discussion of the binary number system, its
relation to the decimal system and more importantly its application to elementary
logic circuits, The teacher should give the student facility in converting back and
forth between the two systems. (For many students, this will take them back to
their junior high school mathematics - where they may have had a ''modern math"

program, )

L. The teacher should also teach binary addition (subtraction optional -- since
it is not needed) and show the relationship between truth tables and the binary
digits using elementary logic circuits, (The use of + and + for AND and OR is
optional),

The material in the chapter continues with a discussion of a relay and by
combining a majority circuit and an odd-parity circuit, the design of a binary

adder. As mentioned in A-2, the teacher should have the students spend as much
time as possible with the L, C. B, in class.

II, Major Ideas

A, The binary number system.,

The relationship of the binary number system to the decimal system,

The method of converting from decimal to binary and vice-versa.

The development and use of the '‘tree'' circuit.

MY oW

The development and use of the circuit which compares the absolute
values of two integers.

3

Elementary arithmetic in the binary system.

o

Explanation and use of relays.

&

The use of relays in designing the binary adder,.

=

The combining of the '"majority' circuit and the "odd-parity'' circuit
in building the binary adder.

III, Objectives

A. To have the student be able to convert from decimal to binary (and
vice-versa) and be able to add in binary.

B. To have the student be able to build a '‘tree' éircuit, a circuit which
compares absolute values of two integers, the '"odd-parity' circuit,
the ""majority circuit' and finally the circuit required for the binary
adder.
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C. To give the student a knowledge of the uses of relays in contact
networks,

IV. Development

In the beginning of the chapter, the teacher can include within the explana-
tion of the binary number system itself, the relationship of the binary system with
the decimal system, the method of converting from decimal to binary (and vicee
versa), and simple binary addition. This can be thought of as a binary arithmetic
'""package'' and the teacher should try to teach it as a whole rather than as sub-
topics.

A simple but very effective algorithm for the procedure explained at the
end of Section 2 is as follows:

To convert the decimal number 117 to binary, perform successive divisions
by 2, listing the remainder at the right.

21117 Remainder
58 1
29 0
14 1
0
1
11 1
P

When the last quotient is zero, read the remainder column up from the bottom.,
This is the number in binary — 1110101. :

This algorithm can be done very quickly and is not really a "'gimmick"
approach but rather represents an effective teaching device in terms of the theory
of converting from decimal to binary.

The teacher should be sure the students understand the operation of a relay
and the idea that it can be used as a device for having one contact network control
another contact network. A simple problem to set would be to design a system to
use in a subway car, where a local battery is connected to two or taree lights when-
ever the main power goes off and the regular lights go out.

After a discussion of the binary number system and relays, as much class

time as possible should be spent by the teacher and students in wiring on the L. C. B.
the circuits listed in the chapter.
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v. Homework Problems and Answers

Relative difficulty of questions found in Chapter A-3:

3-3

3-4

3-5

™™

EASY MODERATE DIFFICULT

%], *2 *3, 5 6, 7
*4, 12 *8, *9 15
13 10, 14

*Key Problems to be Attempted by all Students

Convert the following binary numbers to decimal form.

1] =3 10000 — 16
10] =—5 110010 —==50
110 = 6 11010 —» 26
1011 =—a=11 1100100 =+ 100
1010 =—=10 1111101000 ——=1000

Convert the following decimal numbers to binary form.

] ————] 15 = 1111
8§ = 1000 16 = 10000
4 —————up=100 3] ——e11111
2 =10 32 == 100000
9 1001 27 =——=e=11011

Convert the following decimal numbers to binary form. Use
the technique illustrated in Section 2.

73 = 1001001 527 =———1000001111
119 ——+ 1110111 512 =—» 1000000000
237 —11101101 256 ———»100000000

Add the following pairs of numbers. Perform the addition in
binary arithmetic, and express the answer in binary form.

100+ 11 = 111
101+ 11 = 1000
1000 + 1000 = 10000

Perform the following binary addition. Check your work by
converting the numbers to decimal form.

1010 + 110010
1011 + 11010

111100
100101
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3-6 Perform the following binary subtraction. Check your work
as in Problem 3-5 above.

100 - 11 =01
1010 - 101 =101
0

110011 - 1101 11¢01

3-7 Perform the following subtractions, and check your work.

1100100 - 11010 = 1001010
11010 - 110100 = -11010

3-8 Refer to Section 5 and Fig. 4.
(a) What is the meaning of the subscripts on the switch letters
in Fig. 4°?
(b) For the following pairs of numbers, which lamp will
E light? Why?

(1) A =1010
B =111
(2) A =1010
B =1100
(3) A=1010
B =1010
Ans: (a) The subscripts indicate the weight associated with the

corresponding digit of the indicated binary number. For
instance, b,, has a value corresponding to the digit of
weight 4 in "the binary number B.

N

(b)
a8 a, az a, b8 b4 b2 bl Ll L2 L3
i
1 0 1 0O O 1 1 1 1 0 0
1 0 1 0 1 1 0 0 0 0 1
1 0 1 0 1 0 1 0 0 1 0

3.9 Explain the function of
(a) the first left-hand section of the binary adder in Fig.10;
(b) the first right-hand section of Fig.10.

Ans: (a) It is an '""And" circuit which generates the digit C2
carried to the second adder stage.
(b) It is an "'odd parity''circuit which generates the sum
digit Sl for the first adder stage.
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3-10

Ans:

3=-11
Ans:

3-12

Ans:

3-13

Construct and complete [for Fig. 10} a truth table for
(a) the left-hand section of the first stage;
(b) the right-hand section of the first stage.

n

- O = O}l T

- © © oJNO

- - O O]p
o = = O

Name one application of a tree circuit.

As a circuit which connects a common terminal
to one of 2P other terminals under the control
of an n-place binary number.

(This is a good place to point out

to your class that a tree circuit

can be used for coding or addressing
in a computer).

Study Fig. 1. Can you find a closed path between lamps
6 and 8 for any state of the switches? Between any other pair

of lamps?

No. There are no paths between any pairs of
terminals for any state of the switches.

(Question should be discussed
briefly in class).

(2) Complete the truth table for the two networks shown below.
(b) For each determine a simplified network which has the same
truth table.

b
. ¥ a b
&1 N
Tb ¢
: -3 45 45 —3
? c o— . — X ;
¥ )

NETWORK SC NETWORK OC

A-3.5




Ans: (a) a b c SC oC
0 0 0 1 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 . 1 0 1 0
1 1 1 f1 o0
a
(b) ¥ ~
- + - a 9 +
O ——C) o= - 1 —
a- !
[ 1
¥
SC oC
]
L 3-14 A general rule is illustrated in the six networks shown below.

Find the rule by completing the truth tables and use it to get a
- network for column Z of the last truth table. (Hint: Your rule
will need the words ''series'', ''parallel'' and ''not".

In statement of problem, place a period after Z and
delete the words ''of the last truth table''.

Ans. :
a b S T
q 0 0 0 1
5 | 0 1 0 1
"t 1 o [ ° 1 ofl1 o
- 1 1 0 1
NETWORK S NETWORK T
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3-15 Derive a truth table for each of the two networks shown
below. For each determine a less complicated network
which has the same truth table.

a ¢ q b
X ¥ —
<+ - + - +
ﬁ - 07 ) O= - a - . ——
b b [ b C
+ —% - ——
'
1]
NETWORK NO. 1 NETWORK NO. 2
Ans.: a b ¢ No. 1 No. 2
0 0 O 1 0
0 0 1 1 0
0 1 o 0 1
0 1 1 0 1 |
1 0 o 1 0 5
1 o0 1 1 0
1 1 o0 0 1
1 1 1 1 0
NO. 1I: : NO. 2: +
b
PEEEe——— +‘ P
a ¢ ¢
R A ——

™
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VL Quiz and test questions with answers for Chapter A-3,

TEST FOR CHAPTER A-3

l. a) Express 12710 in binary notation.

12710 =

o™

b) Express 10110102 in decimal form.

lOllOlOZ= 10.

Ans, @

l. a, 111111
b. 90

2. Perform the following binary operations:

a) Add: 110110 + 101101 =

b) Subtract: 101101 - 10111 =

Ans, ¢
2. a. 1100011
b. 10110
3. With six lamps on the L. C. B. what is the largest number that can be
represented?
Ans, :
63




4 b 2 B
- ' g@ 3
' . EQ:a
—3¢ -
- ft@ta
_ -
b 314’4
. ' 5645
o— -
b ?QJG

Pf

a) If switch A is operated, switch B is operated and C is not operated,
what light will be turned on?

b) What binz:ry number does this represent?

c) If I want to represent the binary number 101, which switches must
be operated and which not operated?

d) How many contacts are present in the above tree circuit?
e) If I have K controlling switches, what would be the general state-
ment as to the total number of contacts needed to operate the

circuit?

Ans. :
a. #6
b. 110
c. A=1:B=0;C=1
' d. 14

3. No. of contacts = Z[Zk-l] or
its equivalent
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6.

Situation: e J

Consider the following circuit:

{ 1]
= 5
-

Relay R is unoperated and A = 0, then A is set equal to one.

a.

Discuss the sequence of events after A goes to the ! (one) state.

Later A goes to the 0 (zero) state. Discuss the sequence of events
now

What is the purpose of the circuit?

Ans, H

The relay is energized causing the contact ''r'" to close - thus
locking the circuit in the '"on'' position.

There is no change in the state of the relay even though

tr 1

contacts 'a are open.

This is known as a "holding'' circuit. It is a memory circuit.

Construct a truth table for this circuit.

e

P v

e
v;c‘

Ans,

— -0 O
_—o - O
Qo - O O




7. I we wish to design a circuit which will count to 15, how many stages
will be necessary in the counter circuit?

Answer: 2M _ equals 15,
M equals 4.

8. A circuit called a counter furnishes as its output a set of
representing a number.

Answer: Binary digits

9. Which of the following constitutes a feedback circuit?

Answer: (a)
10:  How many relars are there in each stage of a shift register?

Answer: two,.

11,

w1 M

(a) In the above circuit, what occurs to the relay "Q" if Switch "A"
is operated and left in the operable position?

(b) What is this a good example of?

(c) Does it represent stibility or instability?

Answers: (a) Relay will energize, then de-energize in rapid
sequence, i.e., buzz.
() Feedback
(c} Instability

™™ A3, 12




12, Write the decimal number 492 in binary-coded decimal form., (Use four
bits per binary equivalent, )

Ans,: 0100 1001 0010

13. Suppose that Principal Palmer decided to assign a binary code number
to each of the 800 students at his school., How many bits would be needed
in each code number?

Ans.: 800< 2N N =10

14, Is the circuit shown below stable or unstable ?

X~
il
:

4

8
é

o
o
4~ 0l
X
o
+

%
P
Ans, : Unstable

VIL Supplementary Materials

. Lytel, The ABC of Boolean Algebra, Bobbs-Merrill Co,

, The ABC of Computers, Bobbs-Merrill Co.

. Gillie, Binary Arithmetic and Boolean Algebra, McGraw-Hill

O o w »

. Kemeny, Snell and Thompson, Introduction to Finite Mathematics,
Prentice-Hall. e
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VII. Materials for Depth

A,

A discussion of fractional numbers in binary.

In this text we will represent only integers in the computer which is
developed conceptually in Chapter A5,
The reader should realize, however, that fractional numbers can be represented
in the binary number system just as they can be in the decimal system. A
""binary point'' is used in a manner quite similar to t%.e way we use the familiar
'"decimal point", In the decimal system digits to the right of the point have weights

TS 15 dc

is is done for purposes of simplicity.

which are negative powers of 10, For example,

103 = 1000
102 = 100
10! - 10
100 = 1
10! =  1/10
102 = 1/100
102 = 1/1000
104 = 1/10000
In the binar
powers of 2, For example,
2.’.3 = 8
22 - 4
2! = 2
2% -
2<1 =
2% - 1/4
273 - 1/8
2"t =116

™™

system digits to the right of the point have weights which are negative

which equals
which equals
which equals
which equals
which equals
which equals
which equals

which equals

1000. 0000
100, 0000
10. 0000
1. 0000
0. 1000
0.0100
0. 0010
0. 0001

(base-10)
(base-10)
(base-10)
(base-10)
(base-10)
(base-10)
(base-10)
(base-10)

which equals
which equals
which equals
which equals
which equals
which equals
which {équals

which equals

n

A-3,14
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1000. 0000
100, 0000
10. 0000
1. 0000
0.1000
0.0100

0. 0010

0. 0001

(base-2)
(base-2)
(base-2)
(base-2)
(base-2)
(bige-Z)
(base-2)
(base-2)




B. Subtraction of binary numbers

Binary numbers can be subtracted as well as added. The logic of subtrac-
tion is similar to the logic of addition. As in the case of addition, we consider
two positive numbers where the smaller number is to be subtracted from the lar-
ger. In the usual method of subtraction (with decimal numbers) the smaller num-
ber is placed beneath the larger so that the units digits, tens digits etc. of each
number are in the same column, and then the lower is subtracted from the upper
digit, starting with the units column, moving towards the tens, hundreds, etc.
column,

As long as the lower digit (the subtrahend) is smaller than or equal to the
upper digit (the minuend), no problem arises. But when the digit in the subtra-
hend is larger than its corresponding digit in the minuend a special process called
""borrowing'' must be used to determine the digit which represents the difference
-digit. In this process we borrow a '"1" from the minuend digit immediately to the
left and add a ''10" to the minuend digit which was initially too small; the overall
value of the minuend is not changed by this '"borrowing' process since shifting
a digit of a decimal number to the right or the left by one position is equivalent to
multiplying that digit by 10 or dividing it by 10. Borrowing "'1" from any digit in
a column and adding ''10" to the digit in the column immediately to the right thus

makes no overall change in the value of the minuend. 515
_gg is the same as 2 .?
- 38

In the binary system of numbers the normal procedure can be used where
the subtrahend digit is equal to or smaller than the minuend digit. In the binary
system, however, a shift of one column for a borrowed ''1" represents a multi-
plication or division of the borrowed digit by "'2" rather than by the ""10" of the
decimal system. Thus a borrow of a ''1" from any digit in a column in a binary
number must be cancelled by the addition of a ""binary 10" (which is equivalent to
a decimal 2) to the digit in the next column to the right. In all uther respects the
process of subtraction is the same for binary as for decimal systems.

As an example of binary subtraction let us find the difference when the bi-
nary 1010 is subtracted from the binary 10011,

010
10011 = ‘ [)011 = 19 in decimal notation
-1010 -10
77001 =220 9

0 1001
In the above problem, it becomes necessary to ""borrow' a '""binary 1" from

the leftmost column in order to permit a subtraction in the adjacent column. When
the ""borrowed" digit is transferred to the adjacent column it is transferred as a
doubled value of ''1" and represented in binary terms as ''10". The difference

- between binary ''10" and binary '"1" is equal to binary ''1",

The logic of binary subtraction is summarized in Fig. 7. The above ex-
planation should aid the reader in understanding these tables and the example.
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weights:

borrow digits, B:

first number, X:

second number, Y:

difference, D:

Arithmetic result
of subtracting the

(2) An example which illustrates the rules.

64 __32 __16 __8__ 4 __2 _1_
1 1 0 1 1 1 (0)
1 0 0 1 0 1 0 (=174)
0 0 1 0 1 1 1 (= 23)
0 1 1 0 0 1 1 (= 51)

digits Y and B borrow difference borrow | difference
from the digit of X digit digit b x v || digit digit
minus two 1 0 o 0 O 0 0
minus one 1 1 0 0 1 1 1
zero 0 0 o 1 O 0 1
one 0 1 0 1 1 0 0
(b) Rules for determining the 10 0 . .
borrow and difference digits. 1 0 1 1 0
1 1 0 0 0
1 1 1 1 1

(c) Table of combinations

Fig. 7 Subtraction of two binary numbers

for the borrow and dif-
ference digits.
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Chapter A_4
LOGIC CIRCUITS WITH MEMORY |

I. Approach

This chapter is a continuation of the study of circuits, introduced in the two
previous chapters. The difference, of course, is that the circiits in this chapter
exhibit "memory.'" While there are very few labs per se, the entire chapter
should be taught from a lab point of view. That is, each lesson from the text
should be demonstrated by the use of the L. C. B. This demonstration can also
serve as a lab exercise for the student. The student, then, should build the
circuit himself on the L. C.B. - ' -

The ‘class, therefore, should have outlets available every day for work on
the L.C.B. In general, about half of éach day's class period should be work on
the board explaining the circuits and the other half of the period building the cir=-
cuits,

II. Major ldeas

A. Memory can occur in many simple situations, One of these is when a
relay is controlled by one of its own contacts, i

B, Circuits may have states which can be changed.

C. The following nomenclature is important and should be strictly adhered ,
tos ‘ | 'f'

state of a relay ~ operated or released

relay make contacts = closed or open

relay breaker contacts = open or closed

state of relay winding - energized or de-energized

D. The use of feedback in a memory circuit, (Also the fact that it can lead
to instabilities))

E. The ability to store, address and retrieve binary digits by the use of
memory circuits,

F. The ability to count, shift and sequence a number of events in a particu-

III. Objectives

A. To demonstrate how circuits containing logic elements (such as contacts
controlled by relays) can '"remember'' something which happened to them in the

past.

B. To demonstrate that we can use a relay as a memory umt which controls
itself (feedback).

C. To develop an understanding of how memory elements can be used in
logic circuits,

™ ’ A=-4,1




D. To develop an understanding of the state (stable or unstable) of a cir=
cuit and the application of this idea to the above objectives.

E. To develop an understanding of an addressable memory, counting cir=
cuit, and shift register,

IV. Development

As mentioned in I, this chapter is highly lab oriented. It is suggested that
the teacher explain and discuss each circuit on the board at the beginning of the
period and then have the students build the circuits on the L.C.B. for the rest of
the period. Be sure, therefore, to have outlets available for daily use of the
L.C. B. in class,

. i e 0 o s 07 g P b .

, By now, your students should be able to take a contact network circuit and

k wire it up on the L, C. B, without a formal running list, analyze the circuit and
discuss its general function., Each circuit discussed in the chapter should be
built by every student (or small group of students),

A good teaching technique is to have your students from time to time exe
plain a new circuit to the class, They like this kind of involvement and it makes |
for an interesting teaching=learning situation, g

Be sure to encourage experimentation with the L. C. B. and "'original' cir= |
cuit design by the students, In fact, a good idea is to keep a file of all circuits of
this type for future use in the course.

V. Homework problems with answers

Relative difficulty of questions found in Chapter A=4:

MODERATE DIFFICULT

*Key Problem to be Attempted by All Students

4-1 In the two circuits below, discuss what happens when, starting with
the condition that relay P is released, the switch A is operated. What
happens when, starting with condition that P is operated, A is released?

P !

B
(a) & — 3

a
) maman] ) |
- ;8 , + : '
T v'TW\'-’ |
15 » .t ;
' l
TM A‘4.z




(8)

(a)

™

4-2

J
o
]
[ ’
+

Ans.;

(a) When switch A is operated, contact a is made, relay coil receives
current, magnetic field builds up, and armature is moved over so that
the make-contact p is closed. This time delay, usually about !
millisecond, is known as the relay travel-time. When a goes to the
unoperated state, the p make-contact maintains a constant current
through coil of relay P. This p-contact is known as a holding -contact.

(b) Relay is initially shorted by p, and will remain unoperated,
independent of operation of a.

. Analyze the operation of the following two circuits: that is, describe

‘'step-by-step, starting with all switches and the relay unoperated,
what happens when
(a) switch A is operated and then switch B is operated;

(b) switch B is operated and then switch A is operated.
N o

Ans.:

(a) When switch A is operated, relay P is energized since switch B

is unoperated and contact b is closed; contact p is made and the relay
remains energized through contact p independent of future states of
switch A. If switch B is now operated, its break contact b is opened
and the relay will go to the unoperated state.

(b) Circuit (b) is identical with (a) except that instead of opening the
circuit to P by operating switch B, this time P is shorted by the
operation of B. :

. In each of the three circuits below analyze what happens, starting with

both switches and the relay unoperated, when
(a) switch A is operated and then released, then switch B is >perated

and then released;
(b) switch B is operated and then released, then switch A is

operated and then released.

A"o 3




4-4

(a)

4~5

4-6

Ans. to part (a):

Circuit (a): Operate A and release it, nothing happens; operate B and

P operates, closing p, but when B is released, P goes to the unoperated
state,

Circuit (b): Relay P is dependent only on the state of

switch B,
Circuit (c): Operate A, which opens the short-circuit, and P operates;

release A, P remains unchanged; operate B, P releases;
reiecase B, original state is restored.

Ans, to part (b):

Circuit (a): Operate B, relay closes; open B, relay releases; if A is
now operated and released, nothing happens. | |
Circuit (b): When B is operated and then released, P is operated and
then released; when A is operated and then released, P is unoperated
and remains so.

Circuit (c): Circuit is initially shorted, therefore operating B has no
effect; but when A is operated and then released, relay P is operated
and remains so, because the short is removed,

Explain the operation of the two circuits below.

Ans.$

(a) Unstable, relay chatters on and off (with a period less than twice
the travel time of the armature,)

(b) Equivalent to (a) but period now equals twice the armature's travel
time., These circuits illustrate feedback,

In the circuit below, switch A has been released for a long time, and
then it is operated. What are the possible resulting states of opera-
tion of the relay P? Explain.

¢

Ans.?

Initially unstable, relay is chattering. 1f when A is operated, the
make contact p is closed, the relay remains operated; but if make
contact p is open (and therefore p ie closed), the relay remains
unoperated. .

A bimetallic strip controls a contact, t, so that when the temperature
is high the contact is open and when the temperature is low the
contact is closed. The contact is placed in series with a resistor, R,
the heat from which can raise the temperature of the bimetallic strip.
Explain what happens when the circuit is in operation over an extended
pa;tod of time. Would you call this a stable or an unstable circuit?
Why?

A“‘. 4




Stable as long as ambient temperature remains sufficiently high;
but if temperature drops enough for contact to close, heater is
activated, contact reopens in due course, and cycle repeats; circuit
is unstable in this condition.

4-7 Two bimetallic strips control two contacts t, and t, (when the
temperature at a strip is high the contact is open; “when the tempera-
ture is low the contact is closed). The resistar R, is placed next to
contact t, so that when current flows in R, the temperature at t, is
raised. How would you expect the circuit to behave over an extended
period of time? Would you call this circuit stable or unstable?
Discuss. L t

¥

This circuit represents the thermostats and the heating elements of a
double electric blanket with the wiring inadvertently wit‘che«d so that the
thermostat on His side controls the temperature on Her side and vice
versa, Thus, if She is cold, She adjusts the thermostat on Her side which
causes an increase in temperature on His side, He, in turn, becomes
warmer and therefore turns down his temperature control which results in
less heat on Her side and She in turn becomes colder,

This will yield a stable situation for the heater on one sid i1l be Ne
tinuously while the other will remain off, °weew " o con

4-8 Discuss what conditions are necessary to turn the lamp L on and oif

in the following two circuits.

) b
=< ] e

(a)

Ans.?

(a) L goes on if A and B are operated; it remains on if either AorB
but not both is now released. L goes ,.?ﬁ again when both A and B are
released,

(b) L is initially on if A and B and C are initially unoperated; L will
go off if and only if all three switches are operated.

4-9 The following circuit is used to determine which of two contestanis in

a T.V. quiz show operates his switch first. Discuss the operation of

A“. 5




this circuit assuming that switch C is released. What is the probable
purpose of switch C?

4-9 Ans,:

Lamp L_ goes on if and only if switch A is operated before switch B.
In this clse, lamp cannot be lighted., Vice versa for switch B
firet. Switch C is to reset the circuit to its initial state.

4-10 Discuss how to operate the switches A and B to turn the lamp L on
and off in the circuit below. If the relay and switches are initially

unoperated what is the shortest sequence of operations which will
turn the lamp on?

Ans.?

Operate B (P closes); operate A (P hclds); release B (lamp on). To
turn lamp off, release A or operate B.

4-11 (a) Describe the shortest sequence of operations of switch A which
will cause the lamp L to be turned on. Assume that all switches and
relays are initially unoperated.

(b) How can the lamp be turned off again?




Aﬁ!-a $

Opefate A (Q closes); fzlease A (@ holds; P closes ahd holds);
operate A () Feleases), light goes on. Release A aid light goes ofi.

4-12 Refer to Fig, 6(b) of the text. Recall that O's and 1's can be
stofed by operating and releasing switclies A and B, and that the states
of epefation of C aid D determine the addFess at which data afe stored
of sensed: Fof all pasts of this probiein assuine that all switches and
relays are initially uneperated. , . ,
(2) What and whese is infoFiaation stofed when the switches D and A
afe %@ﬂfi‘b_&d (it that ofdef) aiid switch A is Feieased? o
(B) What and whese is infoFination stored Wheh € is o Fated; A is
gl?efated afifl released; and B is operated and Felease (ifi that order)?
Vhat seguence of operatioiis is fiecessaiy to
(€) stofe a | in the Felay §?
(d) stefe a 0 in the relay R?

Ans,

{a) Qis in the state "i'i, | o

-. has gone to the state ''i' gnd theh to state "'0"; which is stored:
(e) Opersie € and D and then eperate and rFelease A. ,

(d) Opefate C, then opefate and Feisase B (this ensiufes that if B
Brevisusly had stored a ''i' it weuld Row Be efased).

413 Describe the sequence of epefations that are necessasy to tith on the
light in the feliowing eifeuit: Give the Feason [dF each opefation:

) iQi s & 5%

]
<
(. -2
1l

(@

lal Ak
AR

Operate B (Qeloses and hoidi); opefate A (P closes snd holds);
release B (O reieases and L g6ei o).

414 The switelies in the fellowing eiFeuit aFe opefated in the followihg
Begli enee;

i J2|d[4]8]8[F]ssss]08
dilejo|iji|o|jafjilssss]pls
Bijafilifa|e]i]|ilasss]a]i

Deseribe how the relays P and @ cperate and re Exde; and How the

§ P
nsmber of times they eperate relates to the RURBEF 6f opefitions of
switéhes A and B.
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Ans.:

Step | 23456780910 11 12 13 14

a 00!l 1l1ool1o o t 1 o o

b 011001 00 1 1 0 0 1|

P 000000111 1t 1 i o0 o

Q oo0oo0111111! 0 0 o0 0 O

{Nate: §3i; is a difficult problem which is best suited for the eager
and intelligent stadenit. Use of the LCB to check the analysis would
be a gocd 1déi).

4-15 Desctibe, step-by-step, ‘what happens in the following circuit when
switch A is dltefrately operited and released.

Afis. s

Step 0 ! 2 3 456 7 8
a 010101010
P o0o0001! 1110
Q 001111000
R 01 10011! 00
L goes on at step 7.

A=-4.8




VI. Quiz and Test Questions with Answers

1, Inthe COUNTER CIRCUIT shown on the next page you find external
inputs A, B, C, and J, There are three output lamps shown, L;,
Lj, wnd Ly, Let us assume that this circuit is just now '"put on the
line'! anc all the relays and switches are in their zero states,

Ans.~:

(1) WLkat is the main function of the ¢ contact? (To clear to 0)
(2) What is thesstate of relay R and S if we pulse A on-off five times?
(A=0-1-0-1-0-1-0-1-0-1 we end with the fifth on state)
" | R=__ 0 S = 0

(3) What is the frequency of relay R's operation vs. the frequence of
relay T's operation?

FreqX _ -i‘-

Freql

(4) If we define the first A = 0 state as the step number one, and when
we operate A to A =1 as the step number two, and again A = 0 as
step #3, etc., what step number will FIRST light lamp L,?

Step# 12345678.....
Astate 0010101 ..... Step # 3

What step number will FIRST light lamyp L 47 Step # 5

What step number will FIRST operate R? Step # 3

(5) Describe the purpose of input switch B and contacts of relays
labeled J. '

(To clear and reset to any desired count: set J switches properly,
then operate B briefly. )

(6) If we find that at a given time the state of the circuit is P = 1,
Q=1i, R=0,8=1,T=0,U=0, V=1, and W =0, B =0, and
0, what must be the state of A at this time?

C

A = 0
What are the lamp output states at this time? L, = 0 .
LZ = o ] L4 = 1 [ ]

If we now change the state of A, what is the resulting output of

lamps 1, 2, and 4°? L,= 0 , L2= 0O , L

1 4 " 7 )

Switch C is now operated and then released. What happens to
relays R and S? (They are now both at 0.)

TM -A-"4o 9 ;
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2. If we wish to design a circuit which will count to 15, how many stages must
there be?

Ans.: 4.
3. Which of the following constitutes a feedback circuit?
() o : mp o'
(b) ‘Fﬁ?: o*
(¢) & c! e o*
(4) —t- o

Ans,: Only (a).

4, In the single stage counter shown below, what are the states of relays P and
Q after A has been turned on, off, and on again? (Assume all components were
initially released.)

P
L
A A a—
p Q
&
py —AANO
P l1a
a q
% %

0
1

e
Ans.:' P
Q

5. Using truth tables, prove that in Boolean algebra, a+4 acb=a+b

Ans, - - -
—alpb a asb 4 atb atab

0 0 1 0 0 0

_o0]1 1 1 1 1

1 0 0 0 1 1

1|1 fl o 0 1 1

6. Draw a simple circuit to represent the statement, '""P or Q or both, "
¥ 4
7. Draw a simple circuit to represent the statement, "P or Q but not both'!,

Ans, .O_[E ot

T™ A=4,11 5 q




8. Shown below is a block diagram of a shift register. Switch A provides the
pulses for the shifting action, and switch B determines what is ''"read in'' to the
register, Complete the chart below, assuming that B is set as indicated before
each shifting pulse. Q, S, U, and W are the output relays of each stage.

B —| Q@ P~ S Uu
| A l ; '
Ans. : B Q 5 U W
initial 0 1 _0 1 1
istshit 0 _0 1 0 1
2ndshift 0 _0_0 1 _ 0
3rdshift 1 0 0 0 1
gthshift 1 1 _0_ 0 0

9. Complete the chart below to indicate what happens in the following circuit
when switch A is alternately operated and released. Assume that all contacts
are of the ""make=before=break!' type.

- p a P P
© %ﬂ P —3t t R
r - a
: B8+ 5 9 MR+
- - qlq9 |
o T7 —l
o |2 ]s me
i ] o y
o— * - r q P -+
Ans, ¢ 9 9 o= ; —*
Step 0o 1 2 3 4 5 6 7 8 ;
A o 1 0 1 0 1 0 1 0 ;
P 0_0 0 o0 1.1 1 1 0
Q 0_ 0 1 1 1 1 0 0 0 g
R 0o 1 1 0 0 1 1 0 0 :
L | 6o 0 0 0 0 0 0 1 0

10, Is the following feedback logic circuit stable or unstable?

: e ot
L9, | |
S o
Ans.: Unstable. 5,- J

™ A=4,1Z




1l What is the meaniug of the term bit? Ans,: binary digit
In what sense can memory be stored in a computer?

Ans.? Relay unactivated = 0
Relay activated = 1

"

Q
P ol .
P q-4 -
- a b
- v :

12, (a) Construct a truth table to find out what happens, in the circuit
above, to relays "P'"' and '"Q'" each time switch "AY ig operated and re-
leased after '"B'' has been operated once, but not released,

: ~ (b) Extend the truth table to find out what happens to these relays if

""A''is now released, then'"B" is released, and then ""A'"is first oper=-
ated and then released,

(c) What type of circuit does this represent?

Ans,$ () Al Bj P| Q (b) A| B P' Q
0 1 00 1 1 1 1

1 1 1 0 0 1 1 1

0 1 1 1 of o 1 1

1 1 1 1 1 o} o0 1

01 01 O 0

(c) A shifteregister circuit

13, (a) How many memory locations could you have with a 5-digit

address?
(b) With a 7-digit address?
Ans.'s (a) 32
(b) 128

14, (a) Explain how an elevator with memory differs from one with no
memory circuit.

(b) What inconvenience does a waiting passenger encounter with the

latter?

(c) What inconvenience does a riding passenger experience with the

former? T
Ans.: (2) A memory elevator will remember a call signal that

is pushed after it has begun a trip and will stop enroute
to its original destination at the call floor; whereas a
non-memory elevator will go to 1st destination called
for, then stop, necessitating a re-push of the 2nd call
button.

(b) He must wait until the elevator has stopped before
pushing the button.

(c) His elevator is no longer an express, but becomes -
local with possible stops at each floor,

™ A=4,13
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15.

16.

TR, ot rT T me e mmee

k )

Note: The decision to make the elevator with memory or without
memory has several social and economic considerations. A further
extension of this question might ask what these inputs to the decision
are.

Multiply 29 x 22 in binary notatmn, check your answer against the
decimal value.

Ans.: 29=11101 512
22=10110 64
(1)0 0 0 0 0 2
(1)1 1101 8
(H1 11 01 29
(1)0 00 0 0 3 22 -
11101 - TS 58
"1 001 1 11110 58
(Carry digits in parenthesis) B3¢
Binary Decimal

There are only four external inputs for the FOUR ONE-BIT MEMORY
CIRCUIT shown in the diagram on the next page. These inputs are
A, B, C, and D. There is only one output for this circuit and that

is lamp L _.

P s Ans, :
(1) What is the function of contact a in the circuit? (To input 1)
(2) What is the function of contact b in the circuit? (To input 0)

(3) What are the states of the inputs (A, B, C, D) if we wish to make
relay R go from the 0 state to the 1 state?

A=_1 ;B=_0;C=_1,:;D=__19 .

(4) WhenP =1, Q=0, R =0, and S =1, and we next set the input
switches A =0, B=0, C=0, and D = 0, what is the state of Ls?-

L = 0

s
All the above contacts and switch states remain the same except | g
that we make one change, D = 1. What is the new state of Ls? | |

Ls= 0

Next set input switch B to the B = 1 state. Explain what happens.
(At this time A =0, B=1, C=0, D=1). (0 stored in Q)

(5) What modification would you add to this circuit in order to cleay
the whole memory unit so that all the relay coils were reset to
zero? (Break contact of fifth switch between power source and
network, )

(6) What is the name and/or function of the pair of contacts c and
d on the '"branch of the tree' leading to relay S? (Address)

A-4. 14
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VII. Supplementary Materials
l. A technique for studying networks

When discussirg in class such networks as that in Fig. 6, for example,
the technique used in Section 7, Chapter 2, will be found very helpful. These
networks are the kinds in which a sequence of states must be investigated, A
sketch of the circuit is copied on the chalkboard with the contacts properly labeled
(e.g., a or a, etc.). Relays are conveniently designated by square boxes cone
taining the proper letter. At each spot where contacts are open, the path is bro=
ken by a stroke of the eraser, while closed contacts are shown by a continuous
chalk line, Changes in the states of the various contacts are swiftly made, and
the existence or absence of paths is immediately visible. Of course, it is essen=~
tial to go over the diagram again with some care every time the state of a switch
or a relay is changed, to bring the situation up to date.

2. Additional c.rcuits LR

N

Be sure to check the Teacher's Lab Manual (at the back of this manual)
for four additional circuits for optional lab /work as followss;

a, The Runway Circuit (Fig. 6, Exf). IV), is simple and dramatic. It
illustrates feedback quite well,

b, The Combination Lock (Fig. 7, Exp. IV), is an interesting exercise
and is included to drive home the concept of logic circuits with memory.

c. Simple Function Circuit (Fig. 9, Exp. III), is only moderately dif~
ficult, Use the truth table to derive a graph.

- d. The circuit of Fig. 11, Exp. III leads to a considerably more diffi-
cult analysis (the equation is a cubic). It will challenge your best students,

VIII. Material for Depth
1. Reference s'

a. Caldwells Switching Circuits and Logical Design, Wiley, 1958,

b. Culbertson: Mathematics ard Logic for Digital Devices, Van Nos-
trand, 1958.

c. Kemeney, Snelland Thompson: Introduction to Finite Mathematics,
Prentice=Hall, 1966 (2nd edition). '

Unfortunately, these books do not use identical notation. Caldwell is
more comprehensive than you will need, but perhaps the clearest ex=
position. :

2, Film:

Memory Devices, 28 min., color. Obtain through your local telephone
company business office, '
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Chapter A-5 |
ORGANIZATIN OF A COMPUTER

I. Approach

This chapter represents the bridge between the hardware of chapters 2,
3, and 4 and the software of chapter 6. In fact, it shows both in general and
in extreme detail how the logic circuits discussed in these previous chapters
can be assembled to work together to become a general purpose computer.

BEWARE. To guide a current phrase: '"The medium is the message'',
The teacher should be careful to emphasize how the various elements fit to-
gether in the overall picture of a computer in general but should not
necessarily dwell on the extreine detail of this interaction. This means that
the teacher must make a decision in terms of ""'sizing up his class" (which he

has done by now, of course) to see how much detail they want, need or can
handle, N

It is suggested that the general structure of the computer in terms of
its operating elements or components be emphasized along with perhaps a more
detailed study of the instruction cycle and control unit. The details of the
operations of the other elements by themselves have for the most part been
discussed in previous chapters. However, explicit knowledge of the details
of the interaction of these elements within the computer is not necessary and
is not required for further success and appreciation of the cours=. TFor the
student who desires this information, the text gives extreme detail and a
thorough analysis of the interaction of the component parts of the computer.

II. Major Ideas
(Note especially those starred)

A. Definition-Information is any quantity which can be represented by
a combination of binary elements,
Film: For 10 ( "highly recommended'')

B. Information can be transferred from component to component by
signalizing the setting of corresponding relays (select-copy)

C. The elements or components of a general purpose compﬁter perform
the following functions:

1. Information input and output

2. Memory

3. Arithmetic and logical manipulations
4, Control

Transparency; A - 5.9a
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* D. Combinaticns of simple logic circuits discussed in previous chapters
are sufficient to perform all these functions.

E. In performing each step of a computation, the computer goes through
a predetermined cycle of operations which is repeated over and over
again until completion of the program.

Films: F -12 ("good"), L - 2

Transparencies. A-8, 9 b, ¢,d, e

F. Instructions are indistinguishable from data in that both are stored a3

3 signed numbers in memory cells. Instructions are interpreted by the
computer according to a built-in convention (due to the way it was wired)
and cause a computer to proceed through a well-defined sequence of
instruction cycles to complete the desired computation.

w
.

Since data and instructions can both be stored in the same memory,

this means that a program can modify itself. This is one of the most

important though tricky ideas in Part A. (This will be explained in
chapter 6.) .

* H. The simple general purpose computer discussed in this chapter is
totally and absolutely representative of a large scale digital computer.
‘ , This also is one of tﬁe most important ideas in the course.

i Film: F - 21. ("optional")

The relay circuits have their functional counterparts in today's multi-
million dollar machines, and the overall block diagram (laid out by
Babbage well over a hundred years ago) is still typical, as the analysis

of Stead Fast's actions shows.

III. Objectives

1, To bridge the gap between the "hardware" of chapters 2, 3, 4 and
the "software" of chapter 6.

2. To show that by means of such representation, symbolic information
can be transferred from one physical form to ancther (i.e., from
punched cards to the state of operation of relays).

3. To present the organization of a pPrototype computer which can process
information in physical form.

4. To indicate that such a machine can be constructed by using the logic
circuits studied in previous chapters.

5. To expect that the student will be able to appreciate the overview
or general interaction of the elements of a computer rather than the fine
details of such interaction. |

i T™ A-5.2




IV. Development

In order to focus our attention on the overview or general plan of the
interacting of the various elements of our computer, let us attempt to spell
out this overview in rather direct fashion, eliminating the hardware details.
In order to do this, think of the block diagram in Fig. 19 as being broken
down into the five basic elements of the block diagram in Fig. 6.

In general, input and output can be handled by a wide variety of devices
much more highly developed than punched cards, such as display scopes,
magnetic tapes, paper tapes, analog | digital converters, and teletypewriters.
No matter how complex such a device might be, however, it always transmits
information into or out of a digital computer in binary patterns which could be
punched on cards. Because of this and because of its simplicity, we doour
input and output with punched cards.

-Storing and retrieving patterns in memory certainly have little appeal
unless you can also manipulate the patterns in some useful way, perhaps to do
arithmetic calculations with data which are in the memory. The accumulator
not only accepts numbers previously stored in memory but is capable of per-
forming various algorithmic operations on these numbers ( e.g., adding two
numbers together), and returning them eventually to the memory all under
direct and constant supervision by the control unit. Since it must be able to
manipulate numbers as well as '""hold'' them, the accumulator consists of
- circuits which add (subtract) and shift. :

If any part of the computer can be thought of as its '"brain', it is the
control unit. This unit coordinates all the parts of the computer so that events
happen in logical sequence and at the right time. (see instruction cycle for
details)., To show all the pathways control signals take to the other parts of
our basic diagram in Fig. 6, refer to Fig. 19 if interested in these details.

The most critical part of the control unit is the instruction cycle with four

steps: (1) Fetch next instruction, (2) increment instruction counter, (3) executive
instruction and (4) test for completions. The control unit, itself, is the unit
which ""makes things happen''. -

This is neither as powerful nor as mysterious as it may sound, for the
control unit only does exactly what you tell it to do. Numerically encoded
instructions, which are stored in memory, are fetched by the control unit (and
temporarily stored in the instruction register) and directed to carry out
certain basic algorithmic steps. The instruction register and instruction
counter are merely two special circuits inside the control unit which ""store
the current instruction''. The control unit is designed to '"decode" each
number sent to it and to initiate a chain of events designated by that number.
For example, the instruction code number 2 causes addition, 0 causes input,
etc. When one chain of events has been completed, the control unit is ready
to receive another number from the memory and to initate the chain of events
designated by that number, etc.

™
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the computer operates w

Relatively few algorithms or instructions which the control unit can
interpret are actually built into any computer, but they include ones which
make it possible, when combined in the proper sequence, to synthesize any
algorithm whateve: that could have been built in. This remarkable circum-
stance gives a computer enormous versatility, even the simple basic
computer being discussed in this course. We speak of this kind of computer,
one that stores its own instructions and provides for the general synthesis
of algorithms, as a general-purpose computer.

The set of instructions which the computer is directed to carry out
in specified sequence is called a program. It is the program that states the
procedure the computer is to follow in solving the problem at hand. The
program is thus a large problem-solution algorithm composed of many
simpler algorithms, namely the basic ones provided in the repertory of the
computer. The task in using the computer to solve a given problem is

Primarily one of writing an effective program based ultimately on the simple
operations the computer ""knows'' how to do.

In principle, then, the steps that must be taken to use the computer
to solve a problem are the following:

(1) Program: The problem must be analyzed and an algorithm
for its solution constructed in the form of a
sequential set of instructions which are in the
repertory -f the computer.

(2) Input: These instructions must be encoded in numerical form
and stored in the memory together with any data re-
quired by the program.

(3) Operation: The computer must be started at the first instruction;
- all the steps of the program are then automatically
carried out, the computer ''cycling through'' its
instruction cycle for each instruction.

(4) Output: The results must be retrieved from memory.

These four steps would be quite tedious, if they had to be carried
out in detail. Fortunately, there are many simplifying variations of these
four steps, designed to make the task easier. It is possible, for example,
when using a more sophisticated computer than ours to express the problem
not in machine language but rather in a more powerful language which is
easier to use. This language is automatically translated into machine
language by a device called a compiler with all of the proper encoding done
as it is translated. For this course, however, programming is done in
our basic machine la;n@;a%e so that we have a better understanding of how

ith regard to these machine instructions rather

than being concerned with a compiler and languages which are more con-
venient for a human being to use.

™ A-5.4




As already mentioned in I, care must be taken not to beat the
students to death with excessive hardware details. Be sure to emphasize
the overall picture of the general interaction among the elements of the
computer as mentioned above, as well as the specific details of the
instruction cycle.

The analogy using S. Fast Plodder is excellent.

A sensible approach might be to do sections 1 - 4, thus getting (1) an
introduction to the chapter, (2) the motivation provided by Steadfast, and
(3) an idea about a punched card encoding information. (4) Memory could be
covered by a simple back reference to this circuit in Chapter A-4 (without
reviewing its action in detail). Similarly, (5) the accumulator could be
covered by explaining the notion of A, B and S registers, and alluding to its
actual workings by back-reference to the adder circuit in Chapter A-2
(accumulator = adder + timing contacts) to transfer information to and from
memory. Thus a detailed discussion of the two trickiest circuits can be
replaced by a simple discussion of their functions as implementations of
Steadfast's tools. The notion of an instruction in section 7 is crucial, but
the transition from binary to decimal cardiac in section 8 can be handwaved
as a notational convenience for writing instructions. The remainder of the
chapter can be covered by doing only the snapshots (of the control cycle)
and their associated text, leaving the indented, '"in detail" paragraphs
completely optional. Here is the place for overlays, followed perhaps by

. the ""computer play" discussed below. :

It is here that perhaps attention should be spent on details. One

technique that has proved to be quite successful is to have the students

% rehearse and ""act out" the various roles played by the different elements

' of the computer. This can be done by putting the block diagram in Fig. 19
on the board and having a certain student designated for each element. Card
tags can be used to identify elements ( students). The student who is "control"
is in absolute charge. There should be no extraneous talking whatsoever,
and a "'messenger'' should be used to transfer all information which goes
from one element (student) to another.

Control may give terse directions, such as '"Memory Call Selector"
now pointing at the proper student), ''select location 14", ... The student
called on may then point to the desired location on the blackboard map.
Initially, the program and data should have been loaded in memory, the various
registers cleared (0's in them, not blanks!) and the first instruction address
in the IC.

One feature of using this technique is that it focuses attention at each
step on the particular student (element) involved and he must know and be
able to explain his correct function at that time. This creates tremendous
interaction within the class and leads to an excellent teaching-learning
gituation.
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- It is also at the point that a film loop has been provided showing the
instruction cycle and control unit. This can prove very beneficial and has
the advantage of being available for almost constant use by individuals or

groups of students.

In this chapter there are no labs, but at this time (the end of the
chapter) it is suggested that the Cardiacs be used by the class to give a natural
transition from the detailed organization of a computer for executing single

instructions to executing many steps of a program without worrying about the
hardware details of operation (i.e., without reference to the block diagram.)
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V. Homework problems and answers

Relative difficulty of questions found in Chapter A-3:

EASY MODERATE DIFFICULT
#5,1 *5.5 5.6
*5.,2 #5.7 5.9

5.3 5.8
*5.4 *5.11

5.10
* 5,12

*Key Problems to be attempted by all students.
5-1 Write the decimal number 396 in binary-coded decimal form.
Ahs.: 001} 1001 0110
5-2 Write the binary number 1011010 in a binary-coded decimal form.

Ans.: The binary reduces to 90, which, in binary-coded decimal form,
is 1001 0000.

 5-3 Decode the following message according to the correspondence of
Table IIL

100001 110100 100011 111000 000190 111011 000001 001001 000110 00110
Ans,.: JULY 4, 1966

5-4 Which of the following coded syinbols are in error according to the error
detection scheme of Table IV?

(a) 0000001 wrong (d) 1001100 wrong
(b) 1000100 right (e) 1111111 wrong
(c) 1101100 - right (f) 0111111 right

5-5 Construct (draw) a logic circuit which when properly connected to a card
reader of the kind shown in Fig. 7 will turnona light. when there is a
parity error on the card being read by it. The card is punched with the

code of Table IV.

e e e e TR




5-6

5-7

™

Ans.: 7-variable odd-parity circuit:

Construct (draw) a logic circuit which when properly connected to a card
punch (Fig. 8) will punch the proper parity check bit onto each card as it
is punched. The information on the card punch relays conforms to
Table III.

Z,

Ans.: L - ifériable odd-parity circuit:

c:p2 ' cp3 c:p4 cp5

cp, cPy  CR, cpg

Write out a sequence of instructions for your assistant, Steadfast Plodder,
to calculate the cost of a competitor's products (labor plus materials)
from his price list, assuming that this markup is the same as yours.
Make out an instruction sheet similar to Fig. 3.

Ans.: 1. Prepare a sheet with two columns. Label the first column
'"catalog number' and the second "'cost',

2. Copy the first catalog number from the price list onto the sheet.

3. Clear your desk calculator and put the list price of this item
into it. )

4, Divide by 5. 35,
5. Write the quotient on the sheet under '"'cost'.
6. Copy the next catalog number onto the sheet.

7. Repeat, starting from step 3, as long as there are unused list
prices. When you have finished etc.

A-5.8




5-8 Assume that you have a memory of 1024 cells storing 32 bits-each. What
is the total numbez of bits stored by such a memory? How many relays
are required to access each cell independently? (Assume relays with
any number of contacts are available.) How many bits are required in
the address for each cell?

5 (or 32, 768)

Ans.: (a) 21
(b) 10 relays
(c) 10 bits
5-9 During each instruction cycle of a computez:

(2) how many times is the instruction counter incremented? |
(b) how many times is the instruction register changed?

Ans.: (a) once
(b) once

VI. Quiz and test questions and answers

1. How is an item of information represented inside a computer?

Ans. : By the state of relay and switch contacts.

2. The text refers to two terms: data and information. What does
each of these mean? 1Is there an important difference? If so,
what is it? Are data and information encoded alike or differently?

Ans.: Information has a technical meaning in Information
Theory, but in the present context the two words have
the same implications, and are encoded alike.

3. Suppose you are constructing a small demonstration computer
(say for a Science Fair project), and you are planning a memory
to hold 64 items.

(a) How many layers will your access tree require?

(b) How many bits must be in each address?

(¢) What modification, if any, must you make in the tree to handle
(i) 63 items?
(ii) 65 items?

(d) In the latter case, what is now the maximum number of items
that can be handled, and how many bits are needed for each
address?

Ans.: a) 64 = 26; therefore 6 layers are needed.
b) 6 bits (extend Fig. 9).
c) (i) None.
(ii) One more layer must be added, and the tree can now
7 handle
d) 2 = 128 items, with 7 bits per address.

TM A-S.o 9




4. a) How many layers must there be in an access tree for a memory

of 64 cells, each containing 1bit? b) What kind of change must be
made in the complete circuit in order that each cell may store 8
bits? c¢) What further changes must be made for a2 memory of
256 cells, each holding 16 bits?

Ans.: a) Same as 3 (a), of course. The state of the contacts of
the final relay in each branch of the tree determines whether
the bit stored is 0 or 1.

b) At each address we now need a total of 8 memory cells.
Therefore we need 8 copies of the tree, wired in parallel,
but with the initial a and b contacts replaced by i, cr, and
cr, contacts as in Fig. 12, Obviously, o contacts will also
be needed if the computer is to have an output to a card
punch or other read-out device (such as lamps).

c) 256 = 2% so we must add two more layers to the tree;
and there must be 16 replicas of the tree wired in parallel.

5. Explain in your own words how the control circuit and the clock
pulses serve to make the computer execute its instructions in
proper order. §

Ans,: It is important to make clear that it normally takes 2 clock ’
pulses to cause 1 complete step in the action of the computer: ;
the first to the instruction register, tie second to the
register selector. '

6. Consider the following block diagram of the hypothetical computer
developed in this course

par]  [out ] MEMORY CELLS
~ o
ACCUMULATOR hiG QR
- X =vz
|
CONTROL l
ADDRESS |
| SELECTOR |
INSPECTION !
REGISTER INGEECTION :
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a) What is the function of each of the following components:

instruction register: This contains the operation code and
address of the current instruction

instruction counter: This keeps track or count of the namber
of the present instruction

accumulator: This does the arithmetic. It, in effect,
is the scratch pad.

current address selector: This is a set of relays whose contacts
form the memory cell selector tree.

b) What type of circuit would you find in the mem.ory cell selector?
Tree circuit

c) In the above diagram, draw a solid line with appropriate arrows
to indicate the flow of information during the execution of an
ADD instruction. Draw a dashed line with appropriate arrows
to indicate the flow of information during the execution of an
INPUT instruction.

d) There are four main steps'in the instruction cycle of this
computer. List them in order.

l. Fetch next instruction 3. Execute instruction
2. Increment instruction counter 4. Test for completion

The component of the computer which routes information from one
section to another is the control unit. The section which "remembers"
what instruction is next is. the instruction counter. The section which
stores each instruction during its execution is the instruction register.
The section in which arithmetic operations are performed is the
accumulator. '

For the hypothetical computer which we have developed, indicate by
appropriate numbers the order in which the following operations take
place:

1l decode and execute instruction

Il add one to instruction counter

1V test for completion

1 get next instruction

A-S. 11
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VIII,

Supplementary Materials

A. You and the Computer - General Electric Company, 1965,
This booklet can be secured free of charge by writing to Educational
Relations, General Electric Company, Schenectady, N. Y. 12305

. B. An Introduction to IBM Punched Card Data Procéaiin -
Any IBM Branch Office ' |

C. General Information Manual - Introduction to IBM Data

Processing Systems, 1964 - Any IBM Branch Office

Material For Depth

As mentioned previously, the general organization of a cdmputer should
be emphasized, rather than specific hardware details, However, for

-the teacher or student who is interested in a more thorough and detailed

approach, many parts of this chapter may be used for just this purpose.

)

The above mentioned supplementary materials in VII should also serve
as excellent material for study and background information.
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Chapter 6
PROGRAMMING

1. Approach

This chapter deals with the ''softwave' aspect of computer operations - that
is, the programming of a comiputer, Care must be taken, however, to emphasize
that in this course we are not primarily interest in turning out computer program-
me#s but rather are concerned with explaining how a computer may be ''told what
to do'' and with learning how to communicate with it in machine language.

It is important to note that perhaps the very last thing a typical industrial
or commercial programmer learns, if indeed he ever uses it, is machine language
| programming. What usually happens is that he first learns a highly sophisticated
1 language (as far as the computer is concerned) but a relatively simple language
(as far as he is concerned). There are many of these languages such as Fortran,
Basic, Algol, etc. When a programmer uses one of these languages which is
similar to algebra, the computer has a device called a compiler which translates
the language into a symbolic language first and then by use of an assembler into
i a machine language..

Th:.s machme language, then, is the direct means of communication with
the computer. In other words, the final step of communication with the computer
is done with machine language. As mentioned above, most programmers do not
- have to be concerned with using machine language and if they learn it at all, it is
) . only after going through more sophisticated language first.

5 | Since the basic purpose of Part A of this course is to understand how a com-
puter is built and operates, we certamly want to see how it does this at the most
basic level. This level of operation in terms of softwave is of course machine
Tanguage programming. In other words, we have learned about logic and logic
statements, binary arithmetic, relays and logic circuits and the design of a com-
puter and now we are going to study how to take this package of hardware and com-
municate with it by means of our softwave, namely machine language program-
ming.

One important point should be stressed throughout this chapter. Even though
we have a very simple, elementary computer with a very limited set of instruc-
tions in its repetoire, we can do any mathematical problem that can be done on a

large scale computer. iﬁee in mind, of course,. tnI at we have a rather small
memory, only 100 locations, and therefore the slze of our program is very limited.)

 In other words, the important thing to emphasize 18 that our small computer is
truly representative of a large general purpose, stored program computer.

II. Major Ideas

A. The principles of writing programs for a digital computer can be illus-
trated with the relatively simple computer described in this course.

B. A digital computer has the capacity of storing a program in its memory.

} . C. The fact that it is necessary to have precision of thought and execution
D in solving problems with the computer.

™ - . , A-6.1
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D. Real world quantities and relationships can be represented and manip-
ulated with the computer acting as the vehicle or intermediary between thinking
and accomplishment. | -

E. There are three major steps in solving a problem by a stored program
computer; the program must be written, loaded, and executed.

III. Objectives

A. To demonstrate th: use and application of a stored-program digital
computer in solving real-world problems.

B. To develop an urderstanding of compute. pProgramming as it applied to
the computer described in the course.

C. To develop an appreciation for the necessity of precisioﬁ of thought and
execution in solving problems. |

D. To demonstrate the method and the advantage of writing a flow-chart for
the solution of a problem before attempting the step~-by~-step machine language

program,

IV. Development

At the beginning of this chapter there is a very brief introduction in Section 1
followed by an excellent review of Chapter 5 in Section 2. Do not dwell on this
réview. The purpose of this chapter is to teach machine language programming,
not hardware. However, this review does serve the purpose of focuging our at-
tention on the overall picture of computer operations.

In Section 3, the ten basic operations of our corputer are discussed in
detail. These, of course, should be explained very carefully and very clearly.
Be sure not to rush through this., These ten operations must be understood by
the students in terms of exactly what they do. (We are referring to the meaning
of each operation, of course, not the application of these operations). After

spending a sufficient time discussing and studying these operations, the student
should be advised that facility in using them in terms of writing programs can

. best be accomplished by studying the programs written in the text throughout the
- chapter.’

In explaining the first program, i.e. adding two numbers, the program
should be put on the board and each step should be gone over in detail. Be sure
that the students understand what is happening at memory locations 17, 18 and 19
as well as in the accumulator during each step in the program. After introducing
the first program, the Cardiac could be used to have them get the feel of going
through many (but not all) of the same steps as the computer. The Cardiac also
helps to show contents in memory locations as well as the accumulator.

Essentially, then, what we have said above is that in introducing the chapter
and explaining the ten operation codes and the first addition algorithm, the class
should be exposed to the Cardiac in order to get at least some reasonable simula-
tion of what is happening within the computer, the students will probably not use
it very much, perhaps only two or three times, however, it does serve a very
useful purpose.

In going through the remainder of the chapter, be sure to put the programs
™ A-6.2
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on the board for better focusing of attention and class discussion and interaction.
The writing of comments to the right of each step in'a program can be very help-
ful. Perhaps this should be required, at least in the béginning.

A From the very beginning, emphasis should be given to the flow=chart tech-
nique of writing programs. From the macro flowchart to the micro flowchart
to the actual machine language program should he a natural transition. Be sure
to require students to write a flow-chart first before writing the machine language
program., |

The programs in the text are rather well explained and in detail. Be sure
to emphasize the conditional jump and looping, indexed loops, data processing
by the use of shifting, and the loading of a program into memory.. This material
is covered in the first ten sections and.is the basic material of the chapter, Stu-
dents will probably find the last three sections rather difficult, that is, instruc-
tion modification, subroutine, and the billiard table simulation represent material
that is quite a bit more sophisticated than the rest of the chapter. Therefore,
care should be taken to allow for this.

In spite of the above mentioned difficulty, the teacher should try to get
across the basic idea of both instruction modification and subroutining, the impor-
‘tance of the latter becomes rather obvious to the student. Such is not necessarily
the case with the former. The student should be shown how the technique of in-
struction modification '"enables the program to alter its instructions and stored ;
aata itseii during execution'’ and how significant this is in te*ms of the flexibility
of the computer. This has been described as one of the most powerful ideas in .;
the last century. S | | |

e e mteem . e e

: Answers to probléms, both within the chapter and at the end of the chapter
can be found in Section V. Additional programs, as well as material on symbolic
pProgramming can be found in Section VIII. - ’




V. Homework problems and answers
A. Problems from within the text
Question: (Page 11)

How would you generalize this program to punch out a list for an arbitrary year,
" instead of 05C?

Answer:
Replace the contents of the address (where 050 was stored) by n (the variable)
which is read into memory via an input card.

Problem: (Page 14)

Coding for the Morse Code recognizer program:

&swer:
Address Instruction Address Instruction
20 045 36 746
21 145 37 343
22 746 38 749
23 343 : 39 341
24 | 749 40 | 843
25 327 41 550
. 26 843 42 820
27 045 43 548
\ 28 145 44 820
¥ 29 747 45 n
30 343 46 + 009 (s)
31 749 47 - 119 {o)
32 334 48 000 nn
33 843 49 001
34 045 : 50 : 999
35 145

Question: (Page 19)
Coding for the largest of three numbers problem

Answer:

Address Instruction Address Instruction
10 . 050 21 151
11 051 22 752
12 052 23 326
13 150 24 551
14 751 - 25 810
15 321 26 552
16 150 27 810
17 752 50 N1
18 326 51 Nz
19 550 52 N3
20 ' 810
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Question: (Page 20)
Is it necessary to restrict the value of m to be no longer than 9?
Answer: .
No. There is no restriction on the value of m. Since 'this merely deter-
mines the number of loops, it has no limit.
Question:

Is the order of the two input cards with the numbers n and m significant,
or may the position of these two cards be interchanged?

Answer:

The order is not important. In one case, n, would have to be added to
itself m-1 times. In the other, m would be added to itself n-1 times.

* Note: We are limited in the size of the product m x n. Since we have not
talked about overflow, the product may not be more than 999.

Question: (Page 21)
Could we have interchanged the test and the addition of n?
Answer:

No, if we take the question literally. The index would never become nega-
tive and we would be caught in a loop. However, if the author meant '"Could we
add before we test, the answer is yes, if we change the program appropriately.

Question: (Page 18)
Coding for the Dealer program
Answer:
Address Instruction Address Instruction Address Instruction
10 430 18 051 26 810
11 650 19 154 27 555
12 051 20 750 28 810
13 150 21 327 50 T (Dealer's
: : total)
14 251 22 150 51 n (input card)
15 650 23 751 52 17
16 752 24 327 53 21
17 310 25 554 54 000
55 999

Question: (Page 21)

As an exercise, write a micro flowchart and code for finding the sum of the
first n positive integers (s =n + (n-1) + (n-2) + (n-3) +... + 1). Read n from a
card and use an indexed loop in which the index is added to the partial sum.

Answer:

Refer to pages 6 and 7 of part B of Section VIII of the teachers manual. This
problem is completely worked out in detail with full explanation.
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Question: (Page 2 )

Show how you would introduce a test for this last card in the read loop, so
that you could then jump to 55 without an intermediate halt.

Answer:

37 403

38 658

39 057

> 40 157
testing 700

+ 000 355

41 420

42 260

Question: (Page 43)

Can you think of other applications in which real time computation would
be vital?
Answer:

Computerized industrial operations or processes where information is
taken continuously during the process and used later on in the same process.
(Such as in a steel mill, chemical plant, electronics manufacturing, etc.)

B. Problems at end of chapter.
Relative difficulty of questions found in Chapter A-4:

D EASY MODERATE DIFFICULT
* 1 * 4 11,12 * 8
* 2 5 14,15 10
* 3 7 13
6 9

*Key Problems to be completed by all students.

1. What single machine code instruction wonld you write
in order to have the computer do each of the following?
(a) Read the top input card and put its contents into

address (memory location) 34. 034
(b) Add to the accumulator a copy of the contents in
address 52. . 252
(c) Clear the accumulator and bring to the accumulator
a copy of the contents in address 95. 195
(d) Jump to the instruction given at address 24. 824
(e) Copy the contents of the accumulator into address 42. 04z
(f) Substract from the contents of the accumulator a
copy of the contents in address 33. 733
(g) Shift the contents of the accumulator first one place
. to the left and then two places to the right. 412
(h) Halt and reset the instruction counter to instruction
at address 00. 900
F, (i) Test the contents of the accumulator. If the contents
L/ are negative go to the instruction at address 13. 313
(j) Print onto an output card the contents at address 19. 519
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What is the meaning of each of the following instructions written in
machine code? Write out the meaning of each in a complete English
sentence?

(a) 042 - Read the top input card and copy contents in address 42, and
advance top input card. ‘
(b) 403 - Shift contents of accumulator 0 places to left and 3 places to
right (the result is 000). ‘

(c) 171 - Clear the accumulator and bring to it a copy of the word
found at address 71.

(d) 410 - Shift contents of accumulator 1 place to left and 0 to right.
(e) 672 - Store contents of accumulator at address 72.

(f) 819 - Jump to instruction found at address 19; in effect this
operation resets instruction counter to 19. ,

(g) 713 - Subtract the contents found at address 13 from the contents
found in the accumulator at this time.

(h) 215 - Add to the contents of the accumulator the word found at
address 15.

(i) 341 - Test the contents of the accumulator. If 0 or positive, go
to the next instruction; if negative, go to instruction found at address 41.
(j) 516 - Print on an output card the contents at address 16.

(k) 900 - Halt calculation and reset instruction counter to 000.

(1) 309 - Test contents of accumulator. If 0 or positive go to next
instruction; if negative go to instruction found at address 09.

If the top input card has the number 473 printed on it, and the second
card has the number 052, what will each of the following programs do
with these two numbers? (Assume that the top instruction is executed
first.)

Memory Word Memory Word

Address Stored Address Stored
56 063 28 036
57 064 29 136
58 163 30 036
59 264 31 736
60 664 - 32 736
61 564 33 636
62 900 34 536
63 — | 35 900
64 — i 36 —

(a) {b)
(a) This program will add 473 to 052 and print out the sum.
(b) This program will subtract 052 twice from 473 and print
out the final difference.

The following program is one that might be used to find out if a number

- A is larger than another B or not. The top input card contains A, the

second input card contains B. The answer ''yes' is printed out as 001,
the answer ''no'' is printed out as 000, '

(a) How many tests are required to determine if A > B or not? Why?
A-6.7
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(b) If the question was ''is A > B or not'', how could this program be
made shorter?

(c) If the result of the test at instruction 22 is positive what is the next
instruction?

(d) What does this program do if the number A is a negative number?

Answers:

(a) Two. Because A may be equal to B.

(b) Steps given by instructions at addresses 23, 24, and 25.
(c) Instruction at 23. .

(d) The top output card will read 000 (meaning no).

A program for determinin
wEetlEer or not K>E '

Memory Word

Address Stored
16 030
17 031
18 . 403
19 632
20 130
21 731
22 326
23 131
24 730
25 - 328
26 E 532
27 900
28 500
29 900
30 —
31 —
32 —

The contents of the accumulator are changing most of the time during
any calculation. These changes in the accumulator are important. In
each of the short programs below tell what is in the accumulator after
the execution of each instruction.
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Memory | Word Contents of
Address | Stored Accumulator

55 162 008

56 263 o1l

57 324 ()8

58 430 000

59 664 | 000

60 564 000

61 900 000

62 008 000

63 003 000

64 S —_—

(a)

——————————

Memory Word | Contents of
Address Stored | Accumulator
27 134 329
28 735 202
© 29 735 075
- 30 326 075
31 636 075
32 - 536 75
33 900 e
34 329 —
35 127 —
36 e c—

(b)

Write as brief a program as you can (in machine code, starting at
address 53) which will find and print out the value of M-N where

M>N and M is positive.

53 060 53 060
54 061 54 160
55 160 55 060
56 761 56 760
57 662 57 660
58 562 58 560
59 900 59 900
60 === 60 ——
S D— .
62 =

Note: these are equivalent programs.
The second is given to show how a
single memory cell can be used in
sequence for different purposes.

Write a machine code program for finding the value of (M-5N). Start

your program with a flow chart.

Flow chart: Get N
Generate 5N
Store (5N)
Get M
Generate M - 5N
Store (M - 5N)
Out and stop.

A'60 9

Program:

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

036
037
037
237
237
237
237
638
136
738
639
539
900




8. Write a machine code program that will put any three numbers, A, B,
and C, copied from input cards in descending order.

Address Word Address Word
19 053 38 156
20 054 39 655
21 055 40 154
22 154 41 753
23 753 42 349 :
24 331 43 153 i
25 153 ' 44 656 '
26 656 45 154
27 154 46 653
28 653 ' 47 156
29 156 48 €54
30 654 49 553 1
31 155 50 554 1
32 754 51 ' 555
33 340 52 . 900
34 154 53 , c——
35 656 54 c——
36_ 155 . b5 ——
37 654 56 —

A -1 at address 30; A - 1 in accumulator.

9, Below you will find some parts of real program. An arrow indicated
the instruction that is presently being executed. There are some

memory locations that are left blank; determine what ghould go into .
each blank memory location and write what would be ‘the accumulator.

The arrow shows the initial instruction in each case.

Memory Word Memory | Word Memory | Word
Location Stored Location| Stored ||Location| Stored
25 154 19 430 10 029
26 755 20 642 11 129
- 27 656 —-21 141 12 728
. . —13 630

54 329 | a 937 28 001

55 312 42 —— 29 289

56 017 | 30 577 |
Accumulator Accumulated Accumulator
Contents = 017 (a) Contents = 937 (b) - Contents =577 (c)
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What does the following program do?

Memory Stored
Address Word

21 0 36
22 1 36
23 4 20
24 6 38
25 1 36
26 412
27 410
28 6 37
29 136
30 4 02
31 2 37
32 2 38
33 6 36
34 5 36 .
35 8 21
36 cee
37 ce=
38 cee

This program reads the top input card and prints on the first output
card the same number with digits reversed. This process will
continue as long as there is an input card without the number 000 on it.

Write a flow chart and corresponding machine program which will
examine an arbitrarily large set of numbers on input cards (a blank
card marks the end of the set) and which will print out only those cards
which have on them non-zero integers. ‘

-Ans. Flow Chart:

Get number

{if number < 0)

Test number
(if number > 0)
Get'-number

(if-number < 0)
Test-number

(if numter > 0)

(if -number > 0; that is,
if number = 0)

{jump)

(jump)

Print out numbere

A‘6o 11




Machine Program:
20 029
21 129
22 327
23 403
24 729
25 327
26 820
27 529
28 820

29

12, Write a flow chart and machine program which will print out only those
input cards which have on them odd (and positive) integers. (Suggestion:

A blank card makes the end of the set of input integers.

Ans.: Flow Chart:

:Get number

v
Eliminate all but the rightmost digit

v
T_OSubtract two from it

(if < 0)
Test the result —————

(if > 0)

jump

Add one to result<—J‘

. v _
(if <0) Test new result

(if >0)

jump

1

v
Print out number

™™ A-6.12
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Machine Program: Top card is 002, Cards 2, 3,4, etc.
20 033 comprise the list of numbers. The
21 032 last card is blank.

22 132
23 321
24 422
25 733
26 328
27 825
28 200
29 331
30 532
31 821
32 000
33 002

A set of input cards (terminated by a blank card) contains numbers in
which the right-most two d1g1ts specify an address, YZ. The left-most
digit (X) is to be ignored in this problem. Write a machine program
which will print out the contents at these addresses in memory. (For
instance, if the input card reads 056, 156, 256, ..., 856 or 956 the
corresponding output card should print out the contents at address 56.)
This problem is most easily done by generating an instruction equivalent
to ''5YZ'" which is executed later in the program.

Ans.

20 027 Copy in number

21 127 Bring it to the accumulator

22 411 Make the left-most digit zero

23 228 Add 500 to the result

24 525 Store the result as an instruction
25 000 Execute that (output) instruction
26 820 Return to get another number

27 000

28 500

Analyze what the program given below does.

20 403
21 628
22 028
23 129
24 228
25 628
26 528
27 822
28 000
29 000

Ans. The program prints out, at each pass through the program loop,
the accumulated partial sum of the numbers on the set of input
cards.
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Analyze what the program given below does.

20 029
21 030
22 130
23 729
24 631
25 531
26 130
27 629
28 821
29 000
30 000
31 000

Ans. The program prints out, at each pass through the program.ioop,
the difference between the number on the most recently zxamined
input card and the number on the card immediately preceding it.

VI. Quiz and test questions and answers for Ch. A-6

What is the meaning of each of the following instructions written in
machine code?

(a) 900 (d) 345 (g) 120
(b) 403 (e) 518 (h) 819
(c) 713 (f) 642

Answeré:

(a) Halt the calculation and reset the instruction counter to 00 and stop.
(b) Shift the contents found in the accumulator first zero places to the
left, then 3 places to the right - result is 000 in the accumulator.

(c) Subtract from the contents of the accumulator the contents found

in address 13. .

(d) Test the contents of the accumulator. If it is zero or positive go

to the next instructions. If it is negative go to instructions found at
address 45.

(e) Print onto an output card the "word" found at address 18,

(f) Store the contents found in the accumulater into memory location

A address 42,

(g) Clear the accumulator and bring a "carbon copy'" of the "word"
found at address 20.

(h) Place the count shown on the instruction counter in cell #99, and reset
the instruction counter to 19, (Symbolic-jump to the instruciion given at
address 19.\)) -

What single machine code instruction would write in order to have the
computer do each of the following?
(a) Read the top input card and put its contents into address 45.

. (b) Add to the accumulator the contents of address 25.

(c) Clear the accumulator and bring to the accumulator the contents of
address 36.

(d) Jump to the instruction given at address 51. ‘

(e) Store the contents of the accumulator into address 33.

Answer: (a) 045 (d) 851
(b) 225 (e) 633
(c) 136
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3. Analyze the program. At the right of each instruction briefly write
what that instruction does. Finally, describe briefly what the program
does. (The top card has A printed on it, the second card has a B on
it.)

Memory Address Stored Word ) Instruction
10 028 - - Get A ¥ B into computer
11 026 memory.
ig gg.‘; Set address count to 00
14 128) Subtract B from A
15 726
16 322 Test - of neg go to address 22
17 628 - ' Store A-B at 28
ig ;g; Add 001 to count
20 627 Store back intu count
21 814 Jump back-loop-to 14
22 527 Output for count
23 528 Output for (A-KB)
24 900 Finished and stop
25 001 Location for 001
26 --- DATA
27 --- DATA
28 --- DATA
Ans,:
The program will divide B into A and print out quotient and the
remainder.
4, Write a program to read the first two input cards with A and B

™™

respectively printed on them. Have this program determine 2A-3B
(absolute value) and print out the result. Arrange the program so that
it returns and reads the next pair of cards, and the next pair and the
next pair, etc., until it reads a blank card ending program. Start
with address 10.

Ans.:
10 020
11 021
12 120
13 220
14 721
15 721
16 721
17 620
18 520
- 19 810
20 ---
21 ---

A-6.15




™™

Fill in all blanks in the machine code program below. Include in
Column C the contents found in the accumulator after the execution of
each instruction. Also show the final contents in locations 22 and 23
after the total program has been executed.

A B C

Memory Word . Accumulator

Location ' Stored ANS. Contents ANS.
13 120 — 012
14 721 — 003
15 221 — 012
16 622  — 012
17 412 — 001
18 623 — 001
19 522 — 001
20 — 012 — 000
21 — 009 —— 000
22 — 012 — 000
23 — 001 — 000

Analyze the machine code program below. The top input cards
are 003, and 002: |

(a) What proper title could we assign to this program?

(b) At what instruction do you find the start of a loop? .

(c) At the completion of this program what contacts would you find
at address 21 ; 22 ; 23 ; in the accumulator

(d) At what instruction do we find an exit?

Address Stored
Memory Word

07 ' 403
08 621
09 022
10 023
11 ' 123
12 724
13 - 623
14 ' 319

- 15 121
16 222
17 621
18 811
19 521
20 900
21
22
23
24 001
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(2) Program that will multiply A x B.
(b) Loop is started at memory location 18, The loop consists of

all instructions between 11 and 18,
(c) At 21:006; at 24: 001; at 23: -001; in accumulator: -001.
(d) Exit is foufid at instruction 14.

7. What is the purpose of the ''loading program''?
The purpose of the loading program is to place the program that is to be
executed, into the memory of the computer.

8. Write a program in machine code that starts at address 42 and that
when executed will find the value of 2A-B as long as B < 2A and A < 500.

! 42 050
43 051
44 , 150
45 250
46 751
47 652
48 552
E 49 900
50 -
51 -——- |
52 --- f
9. Define in words the meaning of each: o

(a) Algorithm - An Algorithm is a series of steps, or rules that when
followed and executed will produce the desired output. (calculations)
(b) Address - An address is the NAME given to a single memory
location in the computer. | g
(c) Register - A register is any location where a ""word" is displayed.- !
data on instructions. :
(d) Program - A program is a series of instructions that is written
in order to solve a particular problem.
(e) Execute - The term execute refers to the doing or completing of s
the specific instructions given in the program. ;
(f) Operation Code - Each specific machine operation is given an
objective code. The computer is instructed to ADD two numbers, as
an example, through the operation code ADD or 2 in the x location of
the instruction. 4

10. Analyze the following program. At the right of each instruction, write
briefly what the instruction does. Assume that the top card has the number
""A" on it, and the second card has the number "B'" on it.

Memory Address Stored Word

10 028 A.)Puts A into Cell 28

11 ' 026 Puts B into Gell a6 4
12 404 Clears the accumulator
13 627 Stores 000 in Cell 27

14 128 Clears the accumulator & then adds A

15 726 Subtract B frorh A -
™ A-6,17




Memory Address Stored Word

16 322 If A -B is negative go to 22

17 628 If A-B is positive store in 28

18 127 Puts 000 into the accumulator -

19 225 Adds 1 to accumulator

20 627 Stores sum in cell 27

21 814 Jump back to 14 _

22 527 Print out contents at cell 27

23 528 Print out A

24 900 Holt, reset instruction counter to 00

25 001

26 --- B | i
© 27 - 000, 1, 2--- Q

28 --- A (b) Divides A by B

b. Describe briefly what mathematical operation this program performs.
c. What group of instructions constitutes a loop? ¥4 through 21
d. What instruction is the exit from the loop? 1

11. At the right of each instruction in the following program, indicate the con-
tents of the accumulator (S register) after the instruction has been executed.

Memory Address Stored Word Accumulator
10 119 019
11 219 038
12 720 026
13 621 ~020
14 412 002
15 221 028
16 621 028
17 521 — 028,
18 900 08
19 017
20 012
21 --=- 026, 028
12, Describe what the problem does. The content #f the top card is N.
25 403
26 638
27 039 _
28 139 ~Ans.: This program evaluates the expression
29 336 2
gg Zgg —T—N £N for po'p'itive values of N.
32 139
33 740
34 639
35 829
36 538
37 900 . ;
38 000,
39— N
40 001

A-6o 18




13. If a main program call subroutine MUG and subroutine MUG calls sub-
routine WUMP, how does the computer know to get back to the main

,; program from subroutine WUMP? Do not write a program but simply

. explain what must be done by a programmer to provide for this.

Ans.: Since the answer produced by the second sub-routine WUMP is
needed to produce the answer in the first sub=routine, MUG, the
way to get back to the main program from WUMP is through MUG.
SO. from MAIN TO MUG TO WUMP BACK TO MUG TO MAIN.




VII. Supplementary Materials

Darnowski, A Teacher's Guide to Computers - Theory and Uses, National
Science Teachers Association, 1201 Sixteenth St., N. h ., Wahsington, D.C.
Galler, Language of Computers, McGraw-Hill Book Co., New York, N.Y.,
1962. (excellent for programming concepts - emphasis on softwave)

N.C.T.M. Computer Oriented Mathematics. - An Introduction for Teachers,
National Council of Teachers of Mathematics, Washington, D.C. |

Leeds and Wemberg, Comguter Programi.uing Fundamentals, McGraw-Hill |
Book Co., New York, N.Y., ] ' '

Material for Depth
A -Additional Programs

Prégram for finding the reciprocal of a number. Read in a number N
and find 1 to three decimal places. Assume N > 0.

N
mem. add. stored word |
10 032
11 403
12 . 635
13 133
14 634
15 . 134
16 732
17 323
18 634
19 ‘ 135
20 . 200
21 635
22 815
23 134
24 : 234
25 732
26 330
27 135
28 - - 200
29 635
30 535
31 900
32 n
33 -9
34 999 -kn
35 %to 3 dec. places
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&. Program for finding N! Read in N, Print out N!

10| 080
11| 100
12| 681
: 13| 181
% 14| 200
g 15| 682
| 16| 403
17| 683
18] 100
19| 684
| : 20| 182
4 21| 282
22| 683
23| 100
24| 284

3. Program to test whether N is prime. Read N, Print out 001=vyes,

000 = no, and then N

10
Il
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

044
144
645
403
646
100
100
647
145
700
700
700
700
338
145
747
329
645
824

A‘6021

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

684
181
784
330
820
183
681

182
200
682
180
782
339
8té
581

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
414
45
46
47

145
700
341
147
200
647
147
744
324
501
544
810
546
544
810

80
81
82
83
84




4, Program for dividing a positive integer K by a positive integer C to
print out the answer as quotient Q with remainder R on two cards.

10 | 001

il | 015 |
12 | 016 |
13 | 115 ‘
14 | 716

15 | 311

16 | 615

17 | 114

18 | 200

19 | 614

20 | 803

2] | 514

22 | 515

23 | 900

24 | 000

25 -==K

26 | ---C

5. Program for %" where x and n have positive integral values and

| xng 999. Read in X, N, Print out X"

00 | 001 21 | 174
- 01 ] o072 22 | 700
02| 074 - 23 | 330
03 | 174 24 | 674
04 | 700 25 | 811
05 | 326 26 | 500
06 | 700 27 | 900
07 | 328 28 | 572
08 | 674 29 | 900
09 | 172 30 | 573
10 | 673 31 | 900
11 | 173 32 | 000
12| 700 33
13 | 673 -
14 | 319 -
15 | 132 -
16 | 272 -
17 | 632 72 | ===(x)
18 | 811 73 | ~--
19 | 132 74 | --<(n)
20 | 673
™™ A-6,22
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B. Symbolic Programming

1. Introduction

The languages which are really understandable to a computer are awkward
for a man. Even when he is talking to the machine about numerical problems
such as the ones in this chapter, machine code is not a natural cne for the man
to use. What does he care about the nuraerical address of the cell in memory
where a partial sum is kept? Or that, to the computer, ''2" means "add" rather
than '"'subtract''? The first purpose of this chapter is to show that man need not
stoop to the level of talking to the machine in machine code, but that he may in-
struct it in a language more nearly his own. Programs written in this new lan-
guage are said to be written in symbolic code are we shall see shortly what this
language is and what its advantages are.

In symbolic code the machine-language operating codes are expressed as
ordinary English words that, in turn, are compressed into convenient abbrevia-
tions known as ''mnemonics'', as shown in the following table. (Fig. 1) '

Machine
Operating Meaning In ~
Code Ordinary Language Mnemonic

x=0 Input INP
x=1 Clear & add CLA
x=2 Add ADD
x=3 Test accumulator contents TAC
x=4 Shift SFT
x=5 Output ouT
x=6 tore STO
x=17 Subtract ' SUB
x=8 Jump JMP
x=9 Halt & reset HRS

Fig. 1 Table of correspondence between operation
codes and the mnemonics used in symbolic code.

Several distinct steps in the writing of a program to tell a computer how
to solve a problem can be distinguished. First an algorithm or explicit set of
rules for solving the problem should be determined and documented in a form
convenient for a human being to understand. A useful tool in the document of an
algorithm is a flow chart, Next, the flow chart is translated into a program
which uses symbolic rather than machine code. Then the symbolic program

“must be converted to a corresponding program in machine code, since that is all

that the computer can understand. Finally, of course, the program must be
loaded into the computer and executed. In the next section we follow the sequen-
tial use of a flow chart, symbolic code and machine code.

2. A program to determine the lurgest of a set of integers

Writh&the Projggam in Symbolic Code

Let us assume we have an indefinitely large number of input cards on each
of which is written a positive integer. The problem is to find which card has the
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largest integer in a given sequence or set of cards. First let us imagine how the
iob might be done by hand.

We begin with the tentative assumption that the first number (on the top
input card) is the largest, and accordingly we put it aside as a tentative largest
number. Now we take the next card on the stack and compare it with the largest
card. If this next card turns out to have a bigger integer, we use it to replace
the largest card. Following this procedure we keep picking out the card with the
largest integer - and we continue doing this until we have examined all the cards
in the set. : o '

How do we know when we have arrived at the end of the set? Answer: We
previously introduced a marker - a card with a negative integer. By testing the
sign of each integer as it comes up for examination, we know from the appearance
of a negative integer when we have arrived at the end of the prescribed run. Next
we sketch out the program through which a computer might carry out the pro-
cedure we have described.

Start: Put first number at LARGEST

v
Y, Put next number at NEXT
(and also into the accumulator)

' (if next number is < 0)
Test the sign of NEXT

i(it next number is = 0)

Subtract the number at LARGEST from it

if ult is -0 : 6
4 "Ts - ) Test the resulting difference

(if result is = 0)

Gump) , v
Replace the number at LARGEST by the number
at NEXT '

Print out the number at LARGEST @———

Stop

Fig. 2 Flow chart for finding the largest number of a set.

™™
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In the flow chart of Fig. 2 LARGEST and NEXT are our names for the
addresses in memory at which are stored, respectively, the largest number
found up to a given time in the process, and the next number being considered.
Each new number is examined. If it is negative, this is an indication that we
have reached the end of the set of non-negative numbers of the set, and we print
out the largeet number already found.

Another test is performed when we subtract the largest number zlready
found from the new number we are examining. If the result is negative we know
that the new number is no larger than the one we have already fcund, and we get
the next number. If the result is non-negative we replace the previously-found
largest number by the new one. These two tests each have two possible out-
comes. (The operation code X = 3 will be used in the machine code for this
example to allow the computer to take either the next sequential instruction or
jump to another one, depending upon the result of the test.) The next stop is to
rewrite the information which is contained in the flow chart in the form of a
program in symbolic code. (Fig. 3)

A feature of the symbolic-code approach is that symbolic location names
(such as ABOVE and LARGEST) are used to identify certain lines, that 18, steps
of the program. These names can be chosen arbitrarily and are used so that the
programmer need not concern himself about the identity of the exact locations at
which his program will finally be stored. For instance, the instruction ''SUB
LARGEST' means ''"Subtract from the contents of the accumulator the contents
of the memory location at which we have stored the largest number which we have
found so far;'' we have agreed to give this location the symbolic name LARGEST,
As another example the instruction ""JMP ABCVE'" means '"Jump to the line of
the program which we have given the name ABOVE; that is, the second line of the
program.' Notice that symbolic names are used to represent both data (LARGEST)
and instructions (ABOVE).

Assembly

Symbolic coding is clearly much easier than machine coding. It relieves.
the programmer of the job of assigning actual memory addresses to the lines of
his program and it allows him to think in terms of the convenient-to-remember
mnemonics instead of the numerical operation codes. Before the symbolic pro-
gram san be stored in the computer memory, however, it must.be translated
into muachine code. This translation process is called assembly. In present
times it is not usually carried out be hand, although we sh all do it here that way.
We shall want to illustrate that the assembly process is an orderly one, and
therefore one which itself could be (and now usually is) carried out by a properly
written computer.

Assembly customarily is accomplished in two steps, or passes. Each
pass in a single sequential processing of the symbolic program. In the first pass
memory locations are assigned to the lines of the program and consequently a
correspondence between symbolic locations and memory locations can be
established. These correspondences are listed in a symbol table. In the second
pass the various instructions are assembled. That is, each mnemonic is replaced
by the appropriate memory location listed in the symbol takle.
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10 INP LARGEST

11 ABOVE INP  NEXT
12 CLA NEXT

13 TAC BELOW
14 SUB LARGEST
15 TAC-  ABOVE
16 CLA NEXT .
17 STO LARGEST
18 IMP ABOVE

19 BELOW OUT LARGEST
20 . HRS 00

21  LARGEST

22 NEXT

Fig. 3 A program in symbolic code.

‘ For our problem, we assume that the first pass assigns addresses 10
through 22 to the lines of the symbolic program, as shown at the left edge of
Fig. 3. On the second pass each line of the symbolic program is examined,
mnemonics are replaced by operation codes (from Fig. 1) and symbolic
names by memory address (from Fig. 3). The resulting program in
machine code is given in Fig. 4. The words at addresses 21 and 22 have

Memory Address Stored Word
' (XYZ)
10 0 21
11 0 22
12 122
13 - 319
14 721
15 - 311
16 . 122
17 6 21
18 811
19 5 21
20 9 00
21 (0 00)
22 . (0 00)

Fig. 4 - An assembled program in machine code
located with the initial instruction at address 10.

been assembled as zeros. However, it is actually unimportant what the initial
contents are at these locations because when the program is executed they will
be erased before new information replaces them.

3. Computing the sum of the first N positive integers

Writin&the Program in Symbolic Code

As another example consider the writing of a program to compute the sum
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of the first N positive integers (sum =N + ... + 2 + 1). The program is to

work for all integers N for which the sum can be stored as one word in the
computer memory. This means that N must be in the range from 1 to 45. (Why
is this so?) The value of N is printed on and read from an input card; the result-
ing value of sum is to be printed on an output card.

A flow chart for our problem is given in Fig. 5. There are two quantities,
sum and count, which are changed during the computation. (We shall use
underlined lower case script to denote the contents at a particular address with
the same symbolic location name. For instance, sum is the number contained
at the machine address which has been assigned the name SUM,) The quan-
tity sum at a given time has a value which is the partial sum of all the integers,
from N downward, which have so far been added together. The quantity count
is the largest integer which has not, up.to that time, been added to the partial
sum. The initial values of sum and count are set to zero and N, respectively.
The updated values of count 18 tested immediately after it is decreased by
one to detect when it first becomes negative. At that point the summing is
stopped and the answer, sum is printed out. Until then the procedure alternately
causes (i) the partial sum to be increased by the largest integer (count) yet to be
added and (ii) this integer to be reduced by one. '

Start: Set sum to zero

Set count to N -

y | (<0)

et TSt COUNE

L (=0)
. Increase sum by count

Reduce count by one

e

Print out sum @———eee
Stop

Fig. 5 Flow chart for summing the
first N integers.
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" perienced programmer would actually ever write for our problem. He would

start: Clear sum to zero

N
Put value of N at count
(and also into the accumulator)

. , v (if count is -20)
—a Test the sign of count —_—

(if count is > 0)

: .
Add sum to count and store
the result as the new sum

Put count into the accumulator, subtract - oo

(jumpf . C one {rom it, and store the result as
the new count

Print out sum -

|

Stop
Fig. 6 - A more detailed flow chart for
summing the first N integers.

The flow chart given in Fig. 5 is about as detailed a one as an ex-

next write the program in symbolic code. For us it is valuable to write a
slightly more detailed flow chart (Fig. 6) in which the terminology is quite
close to that of symbolic code. We shall not discuss this new flow chart but
shall leave it to the reader to verify that it is equivalent to the earlier one.

The symbolic program of Fig. 7 is, for the most part, self-explana-
tory. The comments are not themselves a part of the symbolic program, and no
use of them is made in the assembly process. These comments are similar to
those an experienced programmer would write to help him (and others) under-
stand what each step of the program is to do. Even a simple program tends to
look somewhat cryptic after the passage of time not only to others but also to the
programmer who wrote it unless comments accompany the program.

The ""SFT 03" instruction shifts the initial accumulator contents three
digits to the right and is one of several possible ways of clearing the accumulator
contents to zero. The instruction '"SUB ONE'" subtracts from the contents of the
accumulator the contents of the memory address which has been given the
symbolic name ONE, (The computer does not automatically understand the
English word ONE, It is only because we have explicitly specified the contents
at location ONE to be 0 01 that the effect is the one we want.) Fig. 8is a
corresponding program in machine code with the initial address arbitrarily

chosen to be ''25',
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Comment

SrT 03 ‘Clear accumulator to zero
$TO SUM and store this zero at SUM.
INP COUNT Copy valus of N from input card into COQUNT
CLA COUNT | and bring this same value to accumulator.

up TAC DOWN Test negativeness of the number at COUNT.
ADD SUM If count is non-negative, add sum to it
8TO SUM and store the result as the new sum.
CLA COUNT | Get count again,
suB ONE subtract one from it,
STO COUNT store as the new count and
JMP up . £0 back to earlier instruction.

D$WN | ouT SUM If count is negative, print out sum

r HRS 00 and stop. '

SUM

COUNT

ONE o 0

; f:ig. 7T-A symboiic program corresponding
.7 to the flow chart of Fig; 6.

—_ Memdry Addregs | Stored Word
) . ~XY2)
i 25 403
_ 26 6 38
g | - o - 27 039
f ‘ 28 . 139
‘; 29 336"
30 238 |
a 638 * oo
32 139 .
33 . 740
34 6 39
35 8 29
36 838
37 9 00
38 (0 00)
39 (0 00)
40 o001

Fig.l 8 - Assembled program in machine code.

Assembly in Relocatable Form

U In g‘gngggl, several programs may be stored in the memory of a
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computer simultaneously. It is clear that no two should be assigned overlapping
sets of addresses. It is not generally known at the time a program is assembled
where it is to be stored in memory. ‘Therefore, programs are often assembled
in relocatable form. That is, they are assembled as if their initial address

were always to be the "'zero" address (in our computer, 00). Additional informa-
tion is probided during the agsembly process to show which words have addresses
which should be changed when the program is relocated by another initial address.

Muemory address Stored Ward
(X YZ)
i' ’ o 00 .4 03
: o 613 7
.02 J 0147
03 114 v
04 1 311 v~
05 213 v
06 615 o~
07 114 v
08 715 7
0 6 14 v~
10 804 L7
1n 513 v~
: 12 - 9 00
13 | (000
. “ (0 00)
B) 15 1T o0

Fig. 9 - '.Aséembled program in relocatable form

| . Our program assembled in relocatable form is shown in Fig. 9. The

- - checked lines show instructions which would have to have their addresses
changed when the-program is relocated. For instance, the humber ''25'" would:
have to be added to all of these (see Fig. 8) if the program were to be stored
with ''25!" as the initial or ""base'' address. In general, instructions which
have a symbolic name in the address component of the word will be checked.

Some instructions, such as "SFT 03" and '""HRS 00" are not modified when
the assembled program is relocated. In the first case because ''03'" does not
refer to an address in memory but rather to how a number in the accumulator .
should be shifted. Since this shifting is independent of where the stored program |
is located in memory, its address component will be unchanged when the program
is relocated. In the second case ''"HRS 00" is a standard way of stopping a
program and therefore the ''00" should not be changed when the program is re-
located. ,

In general, the numbers assembled where data is to be stored should not
be changed when a program is relocated. In particular the contents (001) at the
address which we gave the symbolic name ONE should not be changed. If those

| contents were changed, the execution of the instruction '"SUB ONE'' would cause
i« some number other than ""001'" to be subtracted.
g ™ A-~6.30




4. Subroutines

How long does it take to program a computer? Answer: a few hours if
the problem is simple and the programmer skilled. But if the problem is comp-
licated, such as that of calculating the trajectories of a satellite, the job may
occupy all the attention of a skilled team of programmers for many months.
~ Even so, it would take them many more months were it not for the fact that they
did not have to work out every detailed sequence of events. When the desired
sequence involves a frequently-required routine operation -- such as that of
multiplying m by n or finding the area of a polygon -=- the programmer calls
on a ''subroutine'', a program written by him or someone else and kept in a
library of similar often used programs. A program to solve the physics
problems involved in precisely orbiting a satellite may call upon the assistance
of scores of subroutines. Complex tasks are often broken down into sections to
be programmed by different people as subroutines. Or one person may similar-
ly divide his task into independent sections which he will program at different
times. The following sections lead up to section 7 which covers some considera-
tions involved in subroutines and their use.

5. A Program for Finding Remainders

First we will solve a rather straight forward problem whose program
will become a subroutine. Sometimes it is possible for a program to work
properly for certain types of input data and not at all correctly for other types.
In order to illustrate this fact we shall write a flow chart for a program which
has as its input the numerator and denominator of a fraction and which returns
- as its output the remainder which results when the denominator is divided into
the numerator. For instance; if the numerator is 23 and the denominator is 9
the remainder which the program should compute is 5 since 23/9 = 25/9. A
flow chart which describes a program which would accomplish this task is given
in Fig. 10.

The remainder we want is either the numerator itself or the numerator
after the denominator has been subtracted from it several times. We will
determine how many times to stubract the numerator by testing the difference
between the most recently calculated value of remain and the value of denom.;
When this difference becomes negative we know that the most recent value of
remain is the one we want. " ‘

If the numerator and denominator are both positive and the numerator is
larger than the denominator, the algorithm, or rule, represented in the flow
chart would operate as follows. Assume that the numerator is 23 and the denom-
inator is 9. The first computation of remain-denom gives 14. Since this value
is not negative we shall replace the original numerator by a new numerator, 14,
and try again. The next computation of remain-denom gives 5. Since this value
is still not negative we shall replace the present numerator by the revised numer-
ator, 5, and try again. This time remain-denom has the value -4. Since this
value is negative we shall print out the most recent value of remain (5) as the answer.

If the numerator and denominator are equal (say both have the value 7)
the following operation would occur. The initial computations of remain-denom
yields zero. Since this value is not negative we replace remain by the value zero.
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st Copy numerator into REMAIN

v
Copy denominator into DENOM

v
-+ Compute remain - denom

' e
Test its value (it it is - 0)

(if it is = 0)

{ jumnp )

Replace remain by remain - denuom

Priat out remain as the answer @—-

Stop

Fig. 10 - Flow chart for
computing a remainder

The second computation of remain-denom gives -7 and because this number is
negative we print out the most recent value of remain (0) as the desired answer.
If the numerator and denominator are both positive with the numerator smaller
than the denominator the correct answer will again be given.’

If the numerator is positive (say 11) and the denominator is negative
(say -7) the initial computation of remain-denom would give 18. Since this
number is not negative we replace the original numerator by 18 and try again.
The new value remain-denom is 25. Therefore we update the value of remain
to 25 and try again. By repeating the rules represented in the flow chart we find
the consecutive values of remain become more and more positive (11, 18, 25,
32, 39, ...) and the test of remain-denom will never allow an answer to be
printed out. In fact, the computer would never stop, unless some one became
suspicious that it might be ''in a loop'' and stopped it manually (or unless it
burned out after decades of continuous use).

If the numerator is negative (say ~11) and the denominator is positive
(say 7) the first computation of remain-denom would yield =18, Since this
number is negative our program would print out =11 as the answer. Under these
circumstances the computer wonld stop but its answer would be incorrect. The
reader may wish to find out what happens when other choices of a nrumerator and
a denominator are used with the procedure we have described. (For instance,
what happens when the denominator has the value zero?) This will not be done
here. We merely wnated to show that, in general, one must know the limitations
of a given program if the answers it delivers are to be trusted. We shall give
the program which computes the remainder only for positive numerators and
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denominators.

A symbolic program for the previous flow chart is given in Fig. 11;
For the most part it is straightforward. However, a little attention should be
given to how the contents of the accumulator change. We shall assume that the
numerator is much larger than the denominator. '"CLA REMAIN" brings the
original numerator to the accumulator. ''SUB DENOM!' reduces the number in
the accumulator by the amount of the denominator. The testing of the accumulator
contents does not change them, nor does the "JMP AGAIN'" instruction.” There-
fore, when the '"'SUB DENOM'' instruction is executed for a second time the
denominator is subtracted from the accumulator contents, and these contents
have not changed since the instruction '"'SUB DENOM' was last executed.

INP  REMAIN - Copy the numerator into REMAIN

INP DENOM ’ and the denominator into DENOM,
. CLA REMAIN Bring remain to the accumulator
AGAIN SUB  DENOM ~ and subtract denom from it.
- TAC FINIS Test the difference and,

810 REMAIN if non-negative, store as new remain
JMP AGAIN and try again.

FINIS ouTt REMAIN ' If difference is negative, print remain
HRS 00 |

REMAIN

DENOM

Fige 11 = Symbolic program for
- . finding a remainder

INP R
INP D
SFT 03
STO Q

ABOVE CLA R
SUB D
TAC  BELOW
STO R
CLA Q
ADD ONE
STO Q

JMP ABOVE
BELOW ouT Q

ouT R
HRS 00
Q
R
D
ONE 0 01

Fig. 12 A symbolic program .
- which the student should analyze -
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As an exercise the reader should assemble the machine coded program
for Fig. 11 in relocatable form and understand which, and how, instructions -
need to have their address components changed when the program is located with
its first instruction at, say, memory location 53.

A¢ another exercise analyze the symbolic program shown in Fig. 12.
It is very closely related to the one in Fig. 11. What does this program do?
How would you assemble it in relocatable form?

6. A Program for Finding Greatest Common Divisor

One of the best known numerical procedures in one which leads to the
determination of the greate st common divisor for two positive integers. (The
greatest common divisor is the largest number by which each of the two integers
can be divided without leaving a remainder. For instance the G.C.D. of 189 and
266 is 7.) This procedure is known as the Euclidean algorithm.

The Euclidean Algorithm

The Euclidean algorithm is illustrated in the table of Fig. 13 for the two
numbers 411 and 540. Call these numbers p and q, respectively. Compute
the remainder, r, which is obtained when q is divided into p; this value of r is
411. Next compute a remainder for the pair of numbers 5& and 411; the new
remamder is 129. Continue this procedure usmg as values of p and q for each
computation the values of %and r from the previous computatlon. Sooner or
later a zero remainder will be computed. The desired G.C.D. is the correspond-
ing value of q. In our example this value is 3.

Given pair of numbers: 411 and 540

R 9 r
411 540 411 (first computation)
540 411 129 (second computation)
411 129 24 (third computation)
129 24 9 (fourth computation)
24 9 6 (fifth computation)
9 6 3 (sixth computation)
0 (seventh computation)

' answer
Fig. 13 - An example of the use of the Euclidean
algorithm to determine the greatest common
divisor for a pair of positive integers.

Notice, from the first two lines of the table of Fig. 13, that it makes
no difference whether the initial value of p is larger than that of q, or vice versa.
We shall, however, apply the algorithm only to pairs of positive integers. If we
do this the values generated for the sequence of remainders will also always be
positive (until the final computation for which the remainder is zero).

A flow chart which represents the algorithm is given in Fig. 14. The
reason for testing - r rather than r is that the TAC operation available in our
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computer tests whether a number is negative or non-negative (rather than whether

it is non-positive or positive). We can see from the example of Fig. 13 that

the value of r is non-negative up to and including the seventh computation of a
remainder. The value of -r, however, is negative preceding the seventh compu-
tation and non-negative (in our case, zero) just after the seventh ccmputation.

We can therefore use a test of -r to determine when the algorithm should be
terminated.

Start: Read in p

Read in q

v
—= Compute r ~Remainder (p,q)

v (if ¢ - "0; that is, r ~0)
Gei -r and test it

L (if -r = O;that is, r - 0)

Print out q , the answer

v
Stop

Replace p by q @

(jump)

Replace q by r

Fig. 14 - A flow chart for the Euclidean Algorithm.

The Program in Symbolic Code

A program in symbolic code which incorporates the procedure shown in

‘the flow chart is shown in Fig. 15. For the time being the reader should not

concern himself about the section which computes r from p and g. There are

various ways of replacing it by appropriate instructions. These will be the
subject of a later section of these notes. ’

The four lines of instruction starting with the one given the symbolic
name ARTIC deserve special attention. Their purpose is to move the present
value of %into P and the present value of r into Q. A mistake could very easily
be made here. What would have been the Tesult had we first tried to move r into

Q and then Q into P? One method of programming this would be to write in
sequence the four instructions:
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A

ARTIC CLA R
STO Q
CLA Q
STO P

The first of these would bring r to the accumulator. The second would copy that
value into Q. The third would clear the accurnulator and bring that same value
back into the accumulator. And, finally, the fourth would store it at P. The
next result would be to copy the value of r into P. This is not what we wanted to
do. The method we have shown in Fig. 15 is correct.

INP P Copy in the values of
~_INP Q the two integers.
MORE This section computes
a remainder r using
p as the numerator and
q as the denominator.
SFT 03 Clear the accumulator to zero.
sSuB R Subtract r; this places -r in
TAC  ARCTIC the accumulator. Test it.
ouT Q ' U r=0, print out q,
HRS 00 and stop.
ARCTIC CLA Q i r>0,getqand
STO P store it at P; then
CLA R get r and
sSTO Q store it at Q.
JMP MORE Then compute a new remainder
p .
Q
R

Fig. 15 - A symbolic program for the Euclidean Algorithm.

Imbeddigg One Progg,m In Another

Having already gone to the work of writing a program which determines
the remainder when a numerator and denominator are given, we do not want to
have to do it again when it is needed as a part of the program which computes the
greatest common divisor. A straightforward way of solving the problem is to
make minor modifications in the program for finding a remainder (Fig. 11)
and to substitute it into the section needed in the program for the-Euclidean
algorithm (Fig. 15). Care must be taken to make certain that the symbolic
names used in the remainder program match those used in the program for the
Euclidean algorithm. In addition other minor changes have to be made because
the remainder program was originally written to be used with data supplied from
input cards; however, in Fig. 15 we have already copied the desired data into
memory locations by the time we wish to compute a remainder.

The following represent the changes which must be made in the remainder

program: :

-
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(i) INP REMAIN is to be replaced by gro o

since the desired numerator is already stored at P.

(ii) INP DENOM is to be omitted
since the denominator, Q, has already been copied into memory.

- (iii) OUT REMAIN is to be omitted

since the calculated remainder is not the result we want printed out, but only a
necessary intermediate result. The symbolic name FINIS should, however, still
refer to the instruction immediately following the JMP instruction.

(iv) REMAIN should be replaced by R and DENOM replaced by Q.

The new program, with the section which computes the remainder r im-
bedded in the program for the Euclidean algorithm, is shown in Fig. 16. Notice
that the indicated instruction '"CLA R' can be omitted since it merely requires
the computer to bring to the accumulator from R the quantity which had just been
stored at R.

INP P
INP Q
MORE . CLA
sTO R
CLA R @ (omit)
AGAIN SUB Q
TAC FINIS
STO R
. JMP AGAIN
FINIS , SFT ‘03
: SUB R
TAC ARCTIC
ouT Q
HRS 00
ARCTIC CLA Q
STO
CLA R
. ST0 Q
- JMP MORE
Q
R

Fig. 16 - A completed program for the Euclidean Algorithm.

The adding of the program section which computes remainders was quite
straightforward but the resulting total program has a complexity which is,
roughly, the sum of the complexities of the two programs from which it was
formed. The imbedding procedure which we have illustrated also required that
we go back and reconsider, and rename if necessary, the mdwzdual instructions
for the remainder program.
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Extension of the idea of fully rewriting programs when they are imbedded
in others would mean that in writing a large program we would have to think about
the details of each smaller program which it contained. Such a procedure would
nearly guarantee that we would never be able to build efficiently upon our past
programming efforts. To write a program to solve a new problem we would

have to understand at some given time all of our applicable programming efforts
for the smaller problems it contained. This is obviously impractical, if not
impossible. Subroutines to the rescue! A

7. The Writing and Calling of Subroutines

What a Subroutine Looks Like

In this section we show that the rémainder program can be rewritten as a
subroutine in a standardized way so that a single copy of it stored in computer
memory can be used not only by the program for the Euclidean algorithm but also
by other programs as well. A useful feature of appropriately written subroutines
is that they need not be stored in memory at addresses which are contained within,
or even adjacent to, the set of addresses a® which the main program is stored.

It is necessary to have relocation information before a subroutine can be placed
into a specific set of contiguous addresses in memory. This information, as we
have said before, is usually generated during the assembly process.

F;, Main Program: ' Subroutine; _
) (a1) NP P (13) RMNDR STO REMAIN
}‘ (22) INP Q l(14) CLA 98
E (23) MORE CLA Q (75) STO DENOM
(24) STO 98 (26) CLA 9
(25) CLA P (1) STO _EXIT .
(26) JMP  SRMNDR Y |(78) CLA REMAIN
@7 STO Rw (19) AGAIN SUB DENOM
(28) SFT 03 (80) TAC FINIS
(29) SUB R (81) STO REMAIN
(30) TAC  ARCTIC ||(82) ' JMP__AGAIN ,
(31) ouT Q (83) FINIS CLA REMAIN
(32) HRS 00 \}(84) EXIT (jump back)
(33) ARCTIC CLA Q (85) REMAIN
(34) . STO P (88) DENOM
(35) CLA R
(36) STO Q
(37) JMP  MORE
(38) P
39 Q
(40) R

Fig. 17 - Illustrating the ''call' of a
L) subroutine by another program.
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The subroutine and main program in Fig. 17 illustrates one possible method
of transferring control from one program to another and back again. We assume
that *hese two stored programs occupy non-overlapping locations in memory but
that otherwise their location is arbitrary. The part of the main program shown
in a box is termed a calling sequence and it will be considered in detail later.

The "working part" of the subroutine is shown between lines ''a' and ''b'"' and is
a replica of the corresponding part of the program in Fig. 11.

Essential component3 of any calling sequence are methods for transferring
control of the computer to the subroutine and for remembering what the instruc-
tion count was when control was transferred. That is, the computer must be able
to jump from an instruction in one place in memory to one located somewhere
else, and to remember from where the jump was made. The ''manual" for our

-simple computer (see Chapter 5) specified that when the operation JMP occurs
from a given location the next location number is stored in the right-most two
positions at memory cell 99; the first position of that cell permanently contains
tlie number 8. For instance, the execution of an instruction "JMP 73" stored at
location 26 sets the instruction counter to 73 and stores the number 827 at loca-
tion 99. We shall see shortly the utility of this feature.

Detailed Analysis of the Calling Sequence

Now let us examine in detail what the calling sequence does. The instruc-
tions '""CLA Q' and "STO 98" get the contents of the memory cell named Q and
place them in cell 98, The instruction "CLA P'" brings the contents of cell P to
the accumulator. "JMP $RMNDR' transfers control to the instruction named
RMNDR, the first instruction of the subroutine. (Ihe $ indicates that RMDR is
a location in another program, which must be loaded along with the main pro-
gram.) The execution of the '"TMP $RMNDR" instruction also stores the loca-
tion number of the '"STO R' instruction of the main program in cell 99. For
purposes of discussion we shall assume that the location of the '"STO R'" instruc-
tion is 27 and that location 73 (named RMNDR) contains the ''STO REMAIN"
instruction. (See Fig. 17).

Immediately following the execution of the "JMP $RMNDR' the accumulator
still contains the contents of cell P. The first instruction (STO REMAIN) of the
subroutine places those contents in the cell named REMAIN. The net effect has
been to copy contents of the cell named P into the cell named REMAIN,

The next two instructions in the subroutine, '""CLA 98'" and ""STO DENOM",
bring the contents of cell 98 to the cell named DENOM. These contents, in turn,
are the contents of the cell named Q. T"n other words the contents of cell Q have
been copied into cell DENOM.

The accumulator and cell 98 have been used to communicate the parameters
p and g from the main program to the subroutine. If there were only one para-
meter the accumulator only would suffice. If there were three o more para-
meters, cell 97 and those preceding it could be used in a way similar to the way
we have used cell 98. The more parameters there are the longer the calling
sequence must be.

The next two instructions, '"CAL 99" and STO EXIT' are quite significant.
The first brings the contents of cell 99 to the accumulator and the second plares
‘them into the cell named EXIT, The contents of cell 99 where the number 8 ;
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therefore the contents of 'the cell named EXIT are 827. Recall, however, that
the operation code 8" is the "jump'' operation. Consequently the instruction
contained at EXIT is now the equivalent of "JMP 27". The instruction, when
executed, will return control of the computer to line 27 of the main program.

_ After the workiag part of the subroutine (the part between lines ''a'’ and
"b'') is all executed, there is a transfer of control to the instruction "CLA
REMAIN" and the result of the computation of the remainder subroutine will be
brought to the accumulator. Then the ""TMP 27" instruction stored at EXIT will
be executed. Finally, the '"STO R'' instruction at line 27 of the main program
takes the accumulator contents and copies them into the cell named R. The net
result of the preceding sevzral instructions is the transfer of control back to the
main program and the copying of the answer remain into R. “Following this the
"SFT 03" and subsequent instructions in the main program :re executed,

The main program may later require another use of the subroutine
RMNDR because of the "TMP MORE'" instruction. In that case events parallel to
the ones demonstrated above occur. In fact, it is clear that a given subroutine
may be called from several different places in the same program. Not only that,
a subroutine may call other subroutines, because after control is transferred to
a subroutine the information transferred via locations. 99, 98, 97 ... is stored
within that subroutine and those locations are free to be used again.

How a Subroutine is Used.

It is apparent that the use of subroutines is a powerful method by which
the programs written by one programmer can be made available to another. The
user of a subroutine need not concern himself with how the subroutine is written,
but only upon how it is called. For instance, it is important that the writer of
the ma:n program know that his numerator should be stored in cell 98 and that
he should jump to the subroutine with his denominator stored in the accumulator.
It is ejually important that he know that the subroutine will transfer control back
to the main program with the results of its computation stored in the accumulator.

| Notice also that the user of the subprogram never kncws or cares 'what
symbolic names are used in the subroutine. (Since subroutines are usually
assembled separately it is even possible for the main program and the subroutine
to use the same names. If the reader does not understand this point, he should
not worry. There are many more advanced students who don't either!)

Whether it is practical to write a useful sequence of instructions as a sub-
routine instead of imbedding it in programs where it is needed largely depends
on the length of the sequence. A rery complicated or lengthy sequence of instruc-
tions which is used often should be written as a subroutine. A short or simple
sequence should be imbedded in these programs where it is needed, especially
if it is not much larger than the calling sequence which it would require.




Chabté}r B-1
MODELS

The following quote about Sir Isaac Newton might be used to kick off a
discussion of models,

+ "As a schoolboy, he used all available pocket money to buy tools for model-
making. Amoug other things, he constructed a water clock and a miniature
windmill that could also operate on power supplied by a mouse whom he called
his ""mouse miller''. Young Newton startled the local inhabitants by sending a
paper latern aloft at night attached to the tail of a kite. He constructed overshot
and undershot water wheels and performed various hydraulic experiments''.

From ""The West Can Win" by Donald Wilhelm, Jr. 1966

I. Objectives and Prerequisites
A. Objectives

1. Major objective--to show that models are universally used
representions of the real world.

2. Minor objectives

r a. To teach 'that models may have many forms,

b. To teach that models may have many values.

c. To teach that models may be static or dynamic.

d. To teach that models may be linear or non-linear.

e. To show that graphs are models and to introduce integration
(area under curve).

f. To show that one model may represent several systems and
conversely one system may require several models.

B. Prerequisites

1. The student should have mastery of geometry and algebra including
simultaneous equations and exponential notation.

II. Major Ideas

" There is one major objective for this chapter and six minor ones which
contain the principal ideas intended to be communicated. They are as follows:

A. We wish to teach that models are universally used representations of
the real world. Every thought, every description, (verbal or other-
wise) i8 a model; they represent our ideas of what objects and relation-
ships in the world around us are all about. One looks at another

person--that person is the real world, and what exists in the mind of
the observer is a model.

-

Models are simplified reality; they are manageable representations of
the real thing. )TKey coantain the essential qualities of the system being
modeled and so, if accurately formulated, can be said to be effectwely
equivalent to a high degree.
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It must be emphasized, however, that all models are approximations to
that which is modeled. They are formulated by observation and
measurement in the real world, and they are filled out with data taken
from the system under consideration, but they can never be completely
equivalent for an entire system. -

Satisfactory models are usually achieved by successive refinement. A
Preliminary-model is designed, it is tested against the real-world
prototype, then it is modified-«so there is a continued process of
successive approximations to a reasonably accurate and revealing fit.
It is essential to alternate back and forth between the real physical
world and the modeling domain. Without this continual testing and
refining process, models can lead to misleading results, and if models
are inaccurately conceived or too simply structured the results will be
unrealistic and useless. Developed realistically and accurately, models
are extremely important and useful tools which have far-reaching effects.
Thé remaining six objectives are listed below as specific principal ideas
~the chapter is intended to convey.

B. Models may have many forms. Models start out by being conceptual--
a set of ideas about some real-world system. They can then be express-
ed in many different but equivalent ways. The idea of equivalence can
be seen by considering that the real-world system is a ''black-box"
having certain inputs and outputs. What is important is the functional
relationships between inputs and outputs--What changes occur at the
outputs as various signals are applied to the inputs. For equivalent
functional representation, what is inside this or any other '"black-box
is immaterial so long as the input-output relationships are analogous.
Thus if we consider a real nerve cell, for instance, with its complicated
stimulus-response relationships we can have many ''black-box'
equivalents. So long as the output signals change appropriately with
specified input signals, it is immaterial whether what resides within
the ''black=box'' is a real nerve cell, a string of words, mathematical
expressions, a graphical plot, a programmed computer, electronic
circuits, hydraulic or chemical systems, wheels, gears and levers, or
green cheese.

. Of the many ditferent kinds of modeling vehicles available, there is
generally little difficulty in making an appropriate choice for a parti-

cular problem. One generally chooses the most revealing and most
economical. '

Very often a mathematical model beccmes quite complex and it is
convenient to resort to a computer simulation. When there are many
variables and many simultaneous equations to handle, the speed and
flexibility of a computer (either digital or analog) provide a very
powerful modeling vekhicle.

In being able to manipulate numbers quickly, accurately, and flexibly,
computers perniit various modeling quantities and relationships to be
easily hardled and changed so as to run rapidly through the properties
and predictions_of'ma_ny different versions of a model.
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In this case, the programmed computer becomes a working model
itself. It literally then can be a functioning representation of the cooling
of a cup of coffee, the growth of world population, the vibration in an

air conditioner, or even of another (difficult) computer.

Sometimes even the very flexible mathematical or computer simulation
models are inconvenient or even impossible. The complex, nonlinear
interactions of some systems are at times sufficiently intricate that the
construction of special-purpose hardware (like an electronic or hydraulic
analog) is much more appropriate. In such cases one introduces the
electrical or fluid signals at the input of the model and observes its
performance by measurements of the output.

Models have many uses. Models are used functionally as well as
aescn'gtwelx. Tﬁey are employed systematicaﬁy in engineering not
only to describe a set of ideas but also to evaluate and predict the
behavior of systems before they are actually built. They can save

‘enormous amounts of time and can avoid expensive failures. Models

permit the optimum design to be found withcut trying out many versions
of the real thing. Examples are to be found in scaled-down functional
models like those of aero-dynamic vehicles tested in wind tunnels, and

" in multi-variable network systems like models of population change for

planning transportation systems.

Models are made of widely disparate real-world systems, from nerve
cells to suspension bridges, from petroleum processing plants to rocket
flights, and from the way in which eyes track a moving target to how a
nuclear reactor goes critical. Have the students look for such example

in newspapers and magazines.

Often the effects of a model reacts back on the real world, changing it.
In planning a more effective transportation system, for example, a
model may indicate the need for increased facility in a particular region.

- If that indication is put into practice, the region may then become even

more populous, since with adequate transportation facilities, towns tend
to grow larger more quickly. ‘

Systems, and the models which they represent, may be either stati: or
aynamic. oSome models such as those which reveal the reiationships
etween variables like height and weight, or those which show how air
pressure and flow in the respiratory tracts of animals are related, are
static. They demonstrate events in a system at one slice of time, and

in this '"snapshot' represent a situation in which there is no change.

Dynamic models, on the other hand, introduce the notion of changes in
time. In these models which are more like a motion picture than a
snapshot, variables which change in some orderly way are represented.
Models of population change in a town or in the world, of epidemic speed,
or a heating plant are all representative of dynamic systems.

Systems and models may be either linear or nonlinear. It is important
to see that some systems are linear, such as height-weight raties for a

given age and sex, or between pressure and flow in a preumatic gr
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hydraulic system. In this case the output of a system or a model is
directly Frogortional to the input, i.e., the relationship is linear and a
grapnical plot wiil be a straight line.

Many, if not most, systems in the real-world, however, are nonlinear.
That the output is not relative to the input in a simple, constant-
proportional way. Population growth, the build-up of a rolling snowball,
and the cooling of a cup of coffee are ali nonlinear processes. In these
particular cases, the output of the system at any particular time is
related to the input in such a way that it depends on the particular state
of the system at that time; the relationship, therefore, is not constant,
and a graphical plot is not a straight line.

Exponential change in time is an important kind of nonlinearity. It is
extremely prevalent in nature and in engineering. The examples cited
above are exponentially-behaving systems; growth and decay are
proportional to accumulated size--that is, the larger a quantity becomes,

—

‘the faster (or slower) it grows.

Integration involves the finding of an area under a curve. The idea of
integration 1s introduced without explicit mention of the term (this topic
is developed more fully in Chapter B-2, where it is related to analog
computation.) It is shown how by adding up elemental parts (using

historgrams) which lie under a curve one can compute the area; i.e.,
the accumulated value which the function described by the curve describes.

Included in this presentation, as well as in earlier parts of the chapter,
is a demomnstration of how line graphs (both linear and nonlinear) are
constructed to fit data, and how smooth curves represent average
characteristics. This is carried forward concurrently with mathemati=-
cal notation and manipulation which illustrates again equivalence among
verbal, graphical, and mathematical models.

- Model applicability goes in two directions. Many models can represent
one system. For example, an air conditioner can be described by a

thermodynamic model which relates to heat transfer through the
systems, a control model which represents the functions of thermostat, -
electrical parts, 2and wiring network, or a mechanical model which
describes the moving masses, their mountings, and their vibrational
and acoustical couplings. Each of course is a partial model which
cannot represent the entire system, but each has great utility in per-
mitting analysis, prediction, and design control of important sub-
systems of the whole ensemble.

Conversely, one model can represent many diffearent systems. For
example, exponential growth and decay describes the behavior of a
large number of phenomena. Besides population, cups of coffee, and .
snowballs; such disparate things as the growth of living organisms, the
spread of chain letters, coasting to a stop, accumulation of compound
interest and the operation of nuclear reactors all behave according to
exponential laws.
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Similarly, inverse square attenuation, probability, gaussian distribution,
and game-playing strategy represent models which have powerful
applications to a wide variety of quite different real-world systems.

SUMMARY: The overall intent, then, of this chapter is to show how models are

present in all of our consideration of the real*world, how they range from vague

imprecise verbal constructs to highly accurate and revealing abstractions which
can be implemented by many forms, and how models are used in engineering for
analysis and design evaluation and prediction, thus leading to a more complete
understanding and control of the real-world. ,

1II, A-Text Divisions (14 class pe:‘iods plus 3 labs)

Sect. 1.1 Introduction (l class period) (Films 3, 4, or 5 will fit in here)
1. Definitions of a model--a description
a. Conceptual
b. Verbal
c. Pictorial
d. Graphical
e. Mathematical
2. Uses of Models
a. To describe
b. To evaluate
c. To predict
Sect. 1.2 The Graph as a descriptive model. (2 class periods)
1. Height va. weight as verbral relationship.
2, Height vs. weight in tabular form.
3. Height vs. weight as graph
a. Averaging
b. Interpolating
c. Extrapolating
4, Height vs. weight as an equation.
Sect. 1.3 A Descriptive Model for Air Flow. (2 class periods)
1. Why an engineer might study air flow in animals
- 2; Gathering information (data)
a. Precuations for comfort of the animal
'b. Pressure sensing devices (tranducers)
c. Aésumption '
d. Organization of data
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1. Table
2. Graph

3. Derivation of mathematical model

Sect. 1.4, Dynamic model (3 class periods)
1. Population study
a. Tabular representation
b. Histogram
c. Exponential growth _
d. Projection--extrapolation
Sect. 1.5. An improved population model. (2 class periods)
1. Limitations on predicting from models
2. Use of improved model to project need for
a. Schools
b. Roads
c. Services
d. Merchandise
Sect. 1, 6. Model applicability (2 class periods)
1. One system (air conditioner) may require several sub-system
models .
2. One model may represent several systems
a. Analog computer |
Sect. 1.7. Model cquivalence (1 class period)
1. Stages in development of a model
a. Conceptual
b. Symbolic (words or numbers)
c. Simulation
1. Computer
2. Hydraulic -
3. Machanical
4. Chemical
~ Sect. 1.8. Summary (1 class period as review of chapter)

.
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Laboratory Placement

Familiarization with Oscilloscope*

1.0 Introduction: One class period#*

2.0 Experimental Procedure

2.1 Experiment l: One laboratory period*

Procedures

Putting oscilloscope into operation

1.
2. Intensity and focusing adjustments
3. Vertical and horizontal position controls
4. Sweep oscillator adjustments

5. Synchronization
2.2, Experiment 2: One laboratory period#

; ' Procedures

6. Calibration of the sweep oscillator frequency
7. Amplitude calibration of vertical and horizontal amplifiers
2.3. Experiment 3;: One laboratory period*
Procedures
8. Time calibration of the horizontal sweep
9. Waveforms of sound |
10. Other uses for the -horizontal axis deflection
11, The Z-Axis

*The familiarization experiments may be performed along with chapters
A-4 and A-5 and can be worked in with the Cardiac experiments if the
equipment is available.

C. Student Laboratory Experiments

1. One class period could be used for an introduction to the oscillo-
scope. A discussion of the basic principles of operation should
preceed a demonstration of the use of the scope.

2. The teacher should be very familiar with the three experiments and
should be certain that all pupils become equally familiar.

3. No parts of the familiarization experiment should be omitted as a
thorough knowledge of the operation of the oscilloscope in a
prerequisite to the following experiments:

~a. Analog computer Familiarization, Part Al.
b. Analog Simulation of Physical Systems, Part A2.
c. Sonar Ranging
4. More detailed comments cannot be made at the time of printing due to:
a. Changes in the scope to be supplied

b. Rewriting of the laboratory procedure to match the new scope.
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IV. Demonstrations

A, As an introdution to modeling the teacher may wish to use the
following item: (one extra day if used)

A consultant to a pipe line company that just completed a new line
over rolling hill country was confronted with the problem of the
pump motors burning out before oil was delivered at the terminal
of the pipe line, In formulating his solution the consultant built a
model as shown below,

| \ /CLEAR TRANSPARENT TUBING MIN I.D.=1/2"
A | |

]
] |/BEAKER

-

Colored water is added to the open tube until it stands in equilibrium

as shown in Fig, 1. The pupils may then be asked, '"What will be the

height of the water level in tube A when the first drcps are delivered to
. beaker B if we add more water to tube A?"

The pupils may be surprised to find that the liquid level in tube
A will be more than twice the height of each ''hill",

This phenomenon can be explained by using a second model,
(Really a model of a model,) Assume the tube to be in the shape of
a U with the trapped air in the right hand column, The fluids will be
in equilibrium as shown in F'ig. 3.

TM . : B-lo 8




The consultant solved the ''real life'" problem by installing ""bleeder
valves'' at the top of the hills where air was trapped in the pipes.

The demonstration apparatus can be easily assembled using approxi-
mately 12 feet of clear plastic tubing (be certain t~ use large, clean
tubing --at least 1/2 inch inside diameter) and a piece of plywood to hold
the tubing in the desired shape.

In discussing models the teacher may wish to show models of t/.e DNA
molecule and comment on its structure.

Industrial chemists use models in synthesizing new chemicals. The
replacement of certain groups of atoms by other result in a new product
with properties different from the original.

The teacher can show some transitions using molecular models. If
these are unavailable, tootapicks and gum drops may be substituted for
bonds and atoms. A simple transition that may be demonstrated is

Methane CH, is converted to methyl alcohol CH3OH by the oxidation of
one hydrogen atom

H ‘ H
| |
H——C—H plus 0 yields H—C—OH
. H H

Transparent plastic models of bridges, airplane wings, etc., may be
viewed in polarized light. When the transmitted light is passed through
a second sheet of polarizing material points of stress will be evident.
An overhead projector, two sheets of polarizing msterial and the

transparent plastic model will enable the entire class to view the areas
of stress.
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V. Homework, Problems and Solutions

A. Homework problems and answers

Relative difficulty of problems found in Chapter B-1:

EASY MODERATE DIFFICULT
*4}7 *1, *5, %6, *8 2, 3%

*Key Problems to be completed by all students.

A more modern version of the six blind men and the elephant is
suggested by the following problem. A printed capital letter of the
English alphabet is scanned photoelectrically and the resultant signal

is converted into digital form and read into a digital computer. Six
subroutines in the digital computer inspect it. The first states that the
letter is like an R because it has two ends; the second shows that it is
like a W in that it would hold rain in one pocket if it were held upside
down; the third finds that it is similar to an H because it has one pocket
to hold rain from above; the fourth and fifth both find that it is like an

O because it has no pockets on right or left; the sixth discover -that it is
like a C (and not an R) bécause there are no completely enclosed regions.
Combining these six models of the letter, determine what it is,

Answer: The only possibility is N. .

A paint brush has just been used and the owner wishes to clean it. After
the brush has been scraped against the side of the paint can, it still
contains 4 fluid ounces of green paint. The owner dips it into a quart

of 32 fluid oz. of clean solvent and stirs well until the diluted paint
solution in uniform. After draining, the brush still holds 4 fluid ounces,
part of which is paint and part solvent, since the diluted solution is
uniform. The process is repeated with a fresh quart of solvent.

(a) How much paint is left after 5 solvent baths?

(b) Prepare a table and plot a curve of the amount of paint remaining
after each rinse. What kind of curve is this? Will the paint brush
ever get completely clean? Why or why not?

Ans. (a) After one rinse the entire uniform solution is cemprised of
4 ounces of pamt and 32 ounces of solvent; i.e. the strength
of the mixture is 4/36, or roughly 11%. After draining, the
brush contains (4)(4/36) = 4/9 ounces of paint. With the
second dilution, the mixture is (4/9)/36 = 4/81, gr roughly
4.9% paint. The paint left after 5 rinses is 4/(9) ounces.
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Ans. (b)

Dip Paint in Brush Fraction of Paint in Brush
Number | before Dip (0z) paint in mixture after dip (oz)
1 4 - 4/36 4/9
2 4/9 (4/9)/36 4/81
3 4/ (9)% (4/81)/36 4/729
4 4/(9)3 ' (4/(9)3)/36 4/(9)4
5 4/(9)% (4/(9)%)/36 4/(9)5
OUNCES
OF PAINT
IN BRUSH

NUMBER OF RINSES
B"lo 11

The curve, is exponential,

The paint brush will never get completely clean until just one
molecule of paint is left and it happens to remain in the solvent
when the brush is removed. So it is with all decaying
exponentials which asymptotically approach the limit but
theoretically reach it. Practically, of course, the limit is
reached; a paint brush will get completely clean and coffee will
cool to room temperature in a finite time because no process
is really continous. A point is reached where the random
variations in the physicel system swamp out the residue left

in the exponential process.

You are seryed a hot cup of coffee at 200°F and a cold container of
cream at 40°F, and you do not intend to drink the coffee for 10 minutes.
You wish it to be as hot as possible at that time. Assume that the
coffee cools as shown in Fig, B-1,18A and that the cream container
stays at the same temperature.

B-loll
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(a)
(b)

(c)

(d)

(e)

Ans,

Ans.
Ans.

Ans.

Ans.

Comment - There has been considerable discussion concerning this

A man receives his weekly salary of $150 every Friday and in paying
his various obligations spends half of the amount he has in his pocket
each day. '

(2)

(b)
(c)

Determine the temperature of the coffee att = 5 and t = 10 minutes.

If a volume V, of coffee at temperature T, is mixed with a volume

V, of cream at temperature T,, assume tLat the temperature of

thé mixture is (T;V, + T Vz)/?Vl + V,). What would the temperature
of the mixture be ifll ﬂui% ounce of cfeam is added to 6 fluid ources
of coffee at t = 10 minutes?

Now assume that the cream is mixed with the coffee att = 0. What
is the temperature To of the mixture at that time?

The cooling curve of the mixture is similar to that of Fig. B-1.18A,
except that it begins at the temperature T _ as calculated in part {c)
above and always lies (T _ - 75)/(200 - 75)°of the distance between
the given curve and the straight line showing room temperature.
What will be the temperature of this mixture at t = 10 minutes?

Will a hotter cup of coffee result from adding the cream first or
later?

(a) From Fig. B-1,18A, the temperature att = 0 is 200°F; at
t = 5 minutes, T = 151°F; at t = 10 minutes, T = 121°F.
[The equation of the curve is T = 75 + 125 e-tllo]

.o

(b) T = (121 x 6 + 40 x 1)/7 = 109.4°, or 109°,
() T =(200x6+40x1)/7=177.1° or 177°.

(d) (T_ - 75)/200 - 75) = 102/125 = 0.815 o
At°t = 10 minutes, T = 75 + 0.815 (121 - 75) = 113

[ ]
»

[The equation of the new curve is T = 75 + 102 e

(e) Add cream first to get hottest coffee at t = 10 minutes,
since 113° is greater than 109°,

type of problem. Its' use here is to illustrate modeling.
The problem involves many complex variables. The
validity of the model may be challenged, thus stimulating
discussions and suggesting experiment.

s

How much money will he have left on the following Friday?
Sketch a graph of his current funds versus the day of the week.

If he received $300 every other Friday, would he be in better or
worse shape on the next payday? -

B-1.12
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Ans. (a) $150 (0.5)7 = $1,17 (same answer is obtained by dividing
by two, rounding off to nearest 1¢, where 1/2¢ is raised or
lowered to nearest even cent.)

Ans. (b)
$150
100
MONEY
IN
POCKET |
1

[ I
1 2 3 4 5617
DAY

Ans. (c) $300(0.5)14 = $0.02 (same answer working to nearest 1¢).

The half-life of radioactive decay is the time in which the amount of
the given radioactive material decreases by a factor of two. Radio-
active carbon 14 has a half-life of 5700 years, but let us assume that
it is 5000 years in this problem to allow simpler calculations. Carbon
14 is created by the action of cosmic rays on the atmosphere, ‘and the
amount remains constant with time. Growing plants, and the animals
that eat the plants, absorb carbon 14 during their life, but the process
stops when the plant or animal dies. Radioactive decay then causes
the relative amount of carbon 14 to decrease. Measurement of the
radioactivity of fossils permits an estimate to be made of the time at
which they died.

(a) By what factor will the amount of carbon 14 decrease in 50, 000
years?

(b) Approximately how old is a fossil bone in which the amount of
carbon 14 is 0.1% of its initial value?

(c) Sketch a curve showing the amount of carbon 14 left in an object as
a function of time.

Ans. (2) 50, 000/5000 = 10; (0.5)'® = 1/1024 remaining, or J55

decrease.

Ans. (b) 0.1% is very closely 1 part in 1024. Therefore 50, 000 years.

Ans. (c) |

075
FRACTION

OF
CARBON-14 OS5
LEFT
025

0 ] 1 ]
5000 15000 25000

TIME (YEARS) e
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Let us approximate a human body by a cylinder. Since the proportions
of the body stay relatively constant as it grows, a tall cylinder will
have a larger diameter than a short nne. We shall assume that the
height of the cylinder is always 7 times the diameter. Thus, the
cylindrical approximation of a 6-foot man will have a diameter of 6/7
foot and a volume of w R2H, or about 3.5 cubic feet. But since weight

is directly proportional to volume, the number of cubic feet in the
cylinder represents the weight for any particular height. If the cylinder
is composed of water (which weighs 62.4 pounds per cubic foot) the
6-foot equivalent will weigh about 216 pounds.

(a) Compute the weights for equivalent cylinders whose heights are
2,3,4, and 5 feet. Plot the results, including 6 feet on a graph
showing height versus weight.

(b) What kind of curve is this? How does it compare to that of the
straight-line-average fit of Fig. B-1.3? Discuss any discrepencies
and the validity of the earlier model in light of the new one.

Ans., (a)
200~
2 feet gives 8 1bs, 5
weieHT PO
3 feet gives 27 lbs,  (IN POUNDS)
100
4 feet gives 64 1bs,
5 feet gives 125 1bs, S0
6 feet gives 216 1bs. 0] - L 1 1 L

I 2 . 3 4 -5 6
HEIGHT (IN FEET

Ans. (b) Since we are dealing with volume, weig?t goes up as the cube
of the linear dimensions; i.e., W = kH>, so the curve is cubic.

The earlier model (Section B-1. 2) was adequate as a linear
approximation only because a small part of this curve was
represented; the portion from 5 feet to 6 feet is closa enough
to linear that such a straight line fit is not too far off. This
also illustrates the error pointed out in the text where un-
warranted extrapolation led to meaningless results. Here a
reasonably accurate theoretical model shows how real-world
measurements could be expected to turn out for earlier
portions of the height-weight curve.

List and discuss some systems like the air-conditioner example which
can be described by several different models.

1. Automobile (mechanical, electrical, hydraulic, cooling system,
~ fuel system, engine)

B-1.14
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2. House (structural, ventilating, electrical, heating)

3. Human (structural, respiratory, circulatory, digestive,
nervous, senory)

B-1.8 Experimental data on the growth

of a population of yeast cells are
given in the accompanying table. Time (hourc) | Number of Cells
(a) Plot a graph of the number of
cells versus time in hours. 0 6
What is the population at 9 2 : 10
hours? 4 48
6 117
(b) The shape of the curve is 8 234
exponential at first as the 10 342
cells multiply, but it soon 12 397
5 levels off as the supply of 14 428
| food becomes limited. The 16 438
’ curve is called a sigmoid. 18 442

What would you estimate the
population to be at 30 hours?

(c) Although you estirnate may be an accurate one, based on the tabular
models above and its graph, it is probably not correct in the real
life of a yeast colony. If the table were continued, it would show
that the population decreases somewhat as the environment becomes
poisoned. During what time intervals is the rate of growth a
maximum and a minimum?

Ans. (a) 4001}

300}

NUMBER |

OF
CELLS

200}

100}
Q= | | 1 1 1 L 1 1 1 L
E’, 2 4 6 8 10 2 14 16 18 20 22

TIME (HOURS)

Ponulation at 9 hours is about 300 cells. Linear interpolationof tabular
data gives 238 cells. '

B-1.15
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1

3

4

5

Ans. (b) Apparently it levels off, so best guess is about 450 cells.
As explained in problems, however, the population actually
begins to drop, reaching a new plateau around 475 cells.
Students have no way of knowing this from given data.

Ans. (c) Rate of growth is a maximum where slope of curve is the
steepest. This is about at 8 hours. From tabulated data,
greatest change is between 6 and 8 hours, 117 cells.
Maximum rate of growth is thus 58 cells/hour, or about
1 per minute. The hour minimum rate of growth is found
between 0 and 2 hours, and also between 16 and 18 hours.
In each case it is a change of 4 cells, or 2 cells/hour.

Quiz and Discussion Questions

(B-1.1) ""No model is ever complete''. Would it be helpful if one could
in fact construct a complete model? Explain briefly.

Ans. A "complete" model would have to be completely equivalentto the
entity modeled, and so would lose allthe advantages ot a model.

(B-1.1) Discuss the differences between (a) functional and descriptive
models; (b) dynamic and static models. Give an example of each.

Ans. .A descriptive model is usually static: it does not change with
the passage of time. A functional model is usually dynamic,
and allows for the changes that occur as time goes by. The
first two models in the chapter are descriptive, the population
models are functional.

(B-1.1) Suggest two reasons why a mathematical model may be specially
desirable.

Ans. Inexpensive, convenient for computation of predications
(including '"computerizing''), precise in showing ‘relationships,
often easy to refine, etc.

(B-1.1) When a model is first designed, what is the next step which
should be taken with it? '

Ans.  Test it against reality.

(B-1.2) Figure B-2.2 shows the height-weight data for 17-year-old
men as a somewhat scattered cloud of points. Explain why it is
reasonable and useful to draw a particular straight line through these
points.

Ans. The straight line offers a quick way to approximate the average
weight for each given height (or vice versa), and also offers a
quick way to represent the data with an algebraic equation as a
model.
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(B-1.2) The greatest height shown in Figure B-2.2 is about 7 feet.
Would you be justified in using the graph to predict the weight of an
All-State basketball center, 7'4" tall? Why or why not?

Ans. This is an extrapolation, but not very far beyond the measure-
ments. Since the latter scatter anyway, it may not be
unreasonable to make the prediction as suggested. But either
a yes or a no answer should be acceptable if supported by good
reasoning. )

(B-1.3) Can the graphical model of airflow and pressures in the
breathing apparatus of an animal (Figure B-2.10) be used when it is
breathing out? If so, how? If not, why not?

Ans. Yes. Use the portion of the curve in the 3rd quadrant.
(B-1.4) The diaphragm control on a camera is often marked with the
following numbers (called stops): 11,8,5,6,4, 2,8. In going from any
stop to the one with the next smaller number, the amount of light
admitted to the film at a given shutter speed doubles.

(a) If the light admitted at stop 2.8 is called "'L'', how much light is
admitted at stop 11, shutter speed remaining the same?

(b) If the proper exposure for certain conditions is 1/25 sec at stop
11, what would it be at each of the other stops?

(c) Do the answers to (b) form a linear or a non-linear relation?
Ans. (a) L/16. o

(b) At stop 8: 1/50 sec; at 5.6: 1/100 sec; at 4: 1/200 sec;
at 2.8: 1/400 sec.

(c) Non-linear. {since stop area x time = constant, this curve
is a hyperbola.)

|
(B-1.4) Suppose youhave:acube of wood, L units on a side. Now cut the
cube into smaller cubes, each 1/2 L units on a side. Cut these in turn
into cubes each 1/4 L, units on a side, and so on.

(a) What is the total surface area of the original cube?

(b) What is the total surface area of the 8 cubes which result from
the first cut?

(c) What is the total surface area of all the cubes resulting from the
second cut?

(d) Is the increase in area linear or non-linear?
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Ans. (a) 6 L

) 12 L%

(c) 24 L%
(d) Non-linear

(B-1.5) In the text, several factors which affect the growth rate of a
town are listed; birth rate, death rate, nearness of other crowded
towns, transportation system. Suggest 5 other factors which might
influence the growth rate of a town. In each case, explain briefly why
the factor would be likely to increase or to decrease the growth rate.

Ans. For example: Cost of real estate (if high, negative effect on

growth rate).

Quality of schools (if high, positive effect).

Tax rate (high, negative).

Wat@i supply (good, positive).

Sewer system (adequate, positive).

Well-paved roads (positive).

Good public library (positive).

Shops (if numerous and varied, positive).

Local industries (probably positive up to a point, but debatable).

Zoning law (if stringent, negative, perhaps; debatable).
(B~1.5) In the modified equation for the population growth model.
P=P [r -c(P-P ] , the world population would eventually reach a

stable value of 9. 67 billion. The constant, c, has a value of 3 x 10'12
Suppose a further revision shows that ¢ would better be 10'11. What
effect would this change have on (a) the stable value of the population,
and (b) the year when it would be reached?

Ans. A larger value of ¢ would cause the graph line of Figure B-1.16 to
fall off more steeply. The stable population would be lower (about
5 billion) and would be reached in less time.

(B-1.6) We have seen that it is possible for one system to have a

number of different models which apply to it. Many times an engineer

finds it necessary to have models of subsystems. Suggest 3 models

which could be used to describe a submarine.

Ans. Models of heat flow; controls; engines, etc.; periscope; etc.
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Questions:

e

b,
Ce

d.

€.

SAMPLE TEST for Chapter B-1

Below you will find a model of adult male rabbit Trachea-Bronchial
systems as measured and reported by Dr, Jones after studying 1000
normal, healthy male adult rabbits.

P ;‘ \’ P = pressure at mouth
P, = pressure at branch
f TRACHEA 2 of bronchial tubes

P3 + P4 = pressure at left
and right lungs

f = flow rate of air in
LEFT RIGHT respective tubes in
BRONCHIAL BRONCHIAL FT3/sec

TUBE TUBE

fi =2 (P1 - Pp)

f, =1(Py - P3)

f3 =0.5 (PZ - Py)

What is the plysical meaning of the coefficients 1, 0 relative to 0. 5 of
the Left Bronchial tube vs. the Right Bronchial tube?

If P = P4 how much air will enter the right lung in one second?
If P, = 2P3, is the left lung taking in air or exhaling air?

If Pl =760, P3 =770, Py = 780, find f3 = .
fl 0

How would you modify this model to predict the breathing of a rabbit
that had survived a disease that resulted in the complete collapse of
the left lung? What would be the mathematical form of your new
model?
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fo Your colleague suggests that ne is going to use this model to predict

the behavior of the bronchial tubes in adolescent female rabbits.
What advice would you give him?

5.2 Popville, Nebraska had a population of 10, 000 people in the year
1966, A study of the population trend for Popville shows that the
town has been losing people at a rate of 1% per year. Predict the
town's population in 1968 if you assume no change in this rate.

5.3 A good balsa wood scaled-down model of the SST (super sonic
transport) has many properties of the envisioned real aircraft.
List five of the properties of the real aircraft that the balsa wood
model cannot represent?

5.4 Below is a graphic model of the height-age growth function of girls
at East High School:

64 .
HEIGHT : Lol
. 62 - “® e [ . [
Height  INCHES) "0
(inches) 60 .o' .
. : L
58 = . o® ®
56
L1 | L1 l
Questions: 12 13 14 5 6 17 AGE

a. What is the average growth in inches per year for this group of
girls between ages 14 and 16?

b, Place a '"curve' in the grid above that most accurately predicts the
average for all the girls?

c. If Sue is 12 years old and is 56" tall, what statements can be
justifiably drawn from this graph concerning her height when she is 17?

5.5 Thz Ford Motor Co. makes a clay-wood mock-up model of their
'"new'' cars while they are in the planning stages, List as many good
reasons you can think of for this modeling job,

VI Miscellaneous |

A. Supplementary Ideas That Can Fit Into Text Exposition

1, In developing the idea of intergration under a curve (Fig. Bl. 13 PP. 18,
19 of 7/18/66 draft copy), one can show how the fineness of
quantization oi the histogram bars influences error., For instance if
the bars are 25 years wide (instead of 10) the coarser steps which
result will produce much larger departures from the fitted exponential
curve, Conversely, as the intervals are made smaller, the number of
steps increases and the maximum distance from any point on the
staircase to the exponential curve gets smaller,
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2.

In the limit, of course, the departure goes to zero (i.e., if the
population is counted continously there is no error),

2. The improved population model (Fig B. 16,17, pp. 26, 27 of 7/18/66
draft copy) implies a negative feedback system and can serve as an
introduction to later development of the concept. The corrective
term acts to stabilize the svstem; its sign is always such that the
system is forced to an equilibrium state. Owing to the ""momentum'
of the dynamic population, and to short-term uncertainties in the
factors which control the system, there will be a noisy oscillation
of small amplitude around the stable value of P (where R = O),

3. An example of progressive model evolution which shows how real-
world measurements and improved theoretical models interact to
provide a converging approach to reality is exemplified by the develop=-
ment of celestial mechanics. The sequence of models represented by
the ideas of Ptolemy, Copernicus, Kepler, Newton, and Einstein
illustrate the point.

4. Chemical models are illustrated by simple rate-dependent reactions
like mixing or catalysis, or by much more complex systems such
as the intricate molecular models for genetic structure (see DNA=-
and RNA- based models which have been widely discussed; e. g.,
Scientific American within last two years).

5. Some other examples of exponential functions are: electric light
heating or cooling (the turnoff of an automobile headlamp is readily
perceived as non-instantaneous), the f-stop of a camera lens
(exposure doubles with each step), embryo cell division (there are
about 40 doublings for a human), crystal growth, transmission
through a series of optical or acoustic filters, radioactive decoy
(C14 dating).

6. Suggested bibliographic references:

Beament, J. W. L. (ed. ). Models and Analogues in Biology. (Symp. of
Soc. for Exptl. Biol., No, 14), New York: Academic Press, 1960,

Clough G. C., Lemmings and population problems. Am. Scientist 53(2),
199-212, June, 1965,

Davis, K., Population. Sci. Am, 209 (3), 63-71, Sept. 1963.

Harmon, L. D., and E. R. Lewis, Neural modeling. Physiol Revs.
46(3), 513-591, 1966.

Hesse, Mary B. Models and Analogies in Science. New York: Skeed
and Ward, 1963.

Rosenblueth, A., and N, Wiener. The role of models in science.
Phil, Sci., 12: 316-321, 1945,
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van Neumann, J. The Computer and the Brain, New Haven: Yale
University Press, 1958,

Wynne-Edwards, V.C. Self-regulating systems in population of animals,
Science 147, 1543-1548, 26 March, 1965,

Current issues of Popular Science and Scientific American have many
good examples of modeling.

A-V Sources

The following films are descriptive of one phase or another of modeling.
Films 1-9 are described in the list compiled by the Commission on
Engineering Education '"Motion Pictures for Engineering Education''.
They would be useful in either Chapter B-1 or B-2. Films numbered
3,4, or 5 would be best used at the beginning of B-1

(1) Approaching the Speed of Sound 75
(2) Budget Size Bikini 9
(3) Computer Studies of Fluid Dynamics - 48
(4) Design Augmented by Computer DAC-1 31
(5) Flight Simulation 56
(6) Flow Visualisation in Combustion Systems 29
(7) Little Plover River Project 89
'(8) Problems at Port Washington 9
(9) Speaking of Models ' 9
(10) Firebird III (Modeling & building a new automobile)

(General Motors Film Library)
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Chapter B-2
OPTIMIZATION

I. Approach

A, (WHAT?) This chapter presents three types of algorithms which are
used in certain important classes of decision problems. These problems occur
within the field of engineering called '"operations research.' For such types of
problems, it is possible to determine the optimum choice (or design) or find
improved solutions using a systematic and analytical (i. e. mathematical) approach
to optimization.

B. (WHY?) Although most engineering design activity currently relies on
'""engineering judgment', this chapter is included in the text to show the student
that certain classes of problems exist which can be solved in a strictly mathe-
matical manner. Despite the fact that relatively simple examples from the real
:? world are used for illustrations, the general methods developed for solving the
i problems may be modified and extended to more complicated optimization prob-
lems with the assistance of either an analog or a digital computer.

C. (HOW?) The first half of the chapter begins with a problem with only
a few feasible designs possible, and ends with a problem for which a large number
) of feasible designs are possible. The simple inequality problem (often called a
linear programming problem) in production planning is used as the basis for
developing a technique which can be extended to a more complex problem in trans-
portation planning. For both of these examples, the model of the system either
is known or can be found.

The latter half of the chapter presents two types of problems (bakery and
barber shop) which also require optimization, but in which the information avail-
able for making decisions is not precisely known in advance. In these two exam-
ples, the model is a probabilistic one. In either case, the models used are con-
ceptually simple so that major emphasis is on the optimization portion of the
problem.

D. (GOING WHERE?) Both this and the previous chapter are concerned with
the general question of optimum decision-making. Chapter B-1 dealt with the
four elements of decision-making (model, criteria, constraints, optimization),
but this chapter concentrates on the aspect of optimization.

Because the models are relatively easy to understand, our attention is
focussed on methods of solution. However, in succeeding chapters, it is shifted
to understanding the concept of modeling. Throughout the remainder of part B,
the ideas of optimization and modeling are extended to a much broader class of
problems involving dynamic systems (i.e. those which change with time).

II. Outline

1., Introduction

A. Decision-making is based upon either subjective criteria (e.g.
""engineering judgment'' or intuition plus previous experience) or
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objective criteria (i.e., defined mathematically) or some com-
bination thereof.

Certain classes of decision preoblems exist for which an opt1mum
choice or design can be made. These are in areas where the cri-
teria can be stated in mathematical form and appropriate algorithms
have been developed.

A Production Planning Problem (I)

A.

A simple example of the ''allocation of lirnited materials" type of
problem is solved using the linear-programming algorithm in
which:

(1) all variables of all the mathematical expressions are only
raised to the 1lst degree or power

(2) linear inequalities are used to determine the model and con-
straints.

(3) linear equations are used to express the criteria

(4) a graphical method (i.e. the act of optimizing) introduces a
feasible region of solutions - this becomes progressively and
more accurately defined, and is finally seen to contain the op-
timum solution as a point on the vertex of the boundary of this
feasible region.

A Transportation Planning Problem

A.

B.

This is a type of ''route-planning' problem.

Although this problem is more complicated than the previous ice-
cream problem and more solutions are possible, a 'best'’ solution
is attainable because it is a linear -programming problem aad the
techniques developed in the previous section are still applicable
and valid.

Linear Programming Problems

A.

B.

Linear programming: meeting numerous conditions s1mu1taneous1y
to make an optimum solution accessible. -

Linear programming problems are essentially optimization prob-
lems characterized by:

(1) 2 model and constraints consisting of a set of linear equations
and inequalities

(2) a criteria function (to be maximized or minimized) which is also
a linear combination of the variables.

(3) the optimum solution occurring on the boundary and not in the
interior of the feasible region on a graph. This point is usu-
ally at a vertex of the polygon, where two of the inequalities are
now treated as equalities.
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C. Complex linear programming problems of the man-mads world can
be solved quickly and accurately with the aid of a computer. The
methods developed for solving simple problems can be used to pro-
gram computers to solve more realistic problems which may in-
volve many, many variables.

(1) for example, the ''simplex' algorithm has beeﬁ':levelope&
which depends on the property of ''vertex solutions'' mentioned
above in B (3).

5. Minimum Wire Length

A. This is a different, but simple, algorithm that enables one to find
the optimum location of a telephone switching center. Some of its
interesting features are the following:

(1) for minimum wire length, the actual lengths between buildings
are not needed

(2) the only factor which determines minimum wire length is the
number of telephones

(3) the '"best' location is always at a building,

6. A Production Planning Program (II)

A, In this problem (bakery), the model is a probabilistic one - i.e.
the system model is not known precisely but can be described only
in terms of the nrotability that certain events will happen.

B. This type of model deals with the probability of expected results and
even though we may not have a clear, complete, and concise idea
where we'll end up, nevertheless such models are most useful and
important in the real world.

7. Queueing Problems

A. This is another example of a group of problems involving proba-
bilities which can be treated mathematically.

(1) queues (waiting lines) basically form because there is a prob-
ability of a large number of customers arriving at essentially
the same time.

B. In general, queueing occurs when facilities are fewer than the
demand for their use on some occasions, and greater than the de-
mand for their use at other times.

(1) Usually, queueing thecry tries to seek solutions to questions
based on studies of the model rather than the actual system
itself,

C. In order to consider the question: '"What is the average queue
length?'', the following simplifying assumptions are necessary:
(1) random arrivals
(2) only i service facility
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(3) servicing time is either constant or varies in a random fashion

(4) the utilization factor, P, must be < 1, which means the service
facility can function properly and not break down.

The average queue length (q) may be expressed by either of two
equations depending on whether the servicing time is constant or

random.

Queueing theory is a potent tool because:

(1) its methods can be extended to more complex and interesting
problems, and it can answer other questions about the system

(2) the results obtained may serve as a valuable guide to system
design and optimization.

Since the success of many U.S, industrial organizations depends
upon customer relations and on providing expeditious servicing of
customer demands, basic models and optimization techniques of
queueing theory have become of vital importance not only to en-
gineering, but also to business management operations. For ex-
ample, companies can plan for the expected use or demand of a
given product or service to predict average and peak loads of
the system.,

%#8. Concluding Comments

A.

Be sure to read this summary - however, it is your optimum de-
cision to make or not!

III. Objectives

A.

To have the student acquire some degree of proficiency in both
understanding and using the three types of algorithms presented in
this chapter, as well as such terms as: linear programming, feas-
ible region, etc.

To have the student realize that an optimum choice or decision may
be made for certain kinds of problems which have the following

characteristics:

(1) One can design a model by determining the design parameters
(i. e. the number of the model)

(2) One can define both criteria and constraints objectively (i.e.
expressed in mathematical form)

(3) One can develop an appropriate algorithm (i.e. a set of mathe-
matical rules).

To have the student appreciate the power and beauty inherent in the
techniques of decision-making, and that even though the text has
developed systematic methods of solution for simple decision prob-
lems, nevertheless they can be extended to solve much more com-
plicated problems in the real, man-made world in which we live.
The principles are the same whether the decision is reached by a
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highly complex computer or by means of a simple geometric inter-
pretation (graph) of some algebraic expressions (equations and in-
equalities).

D. To have the student realize that the computer has made possible
the treatment of complex problems (linear programming with a
hundred or more variables), so that decision-making becomes more
effective. Because more of the variables and limitations which
actually exist can be included in the mathematical model, the solu-
tions become more representative of the real world.

IV. Development

*¥1. Introduction

A. The treatment of this may vary - some teachers may prefer to let
it go as a reading assignment only - others may try to develop the
ideas via class discussion.

(1) Example to illustrate the ideas of subjectivity and objectivity
entering into some common decision problems: What might
a consumer consider as he contemplates buying: a car; air
conditioner; a dress; food for the family; etc. ?

B. Though perhaps not so much with this chapter as with some others, :
still you may find it helpful to orient the students by briefly dis-
cussing the outline and objectives before proceeding in depth.

C. Here are 3 suggested teaching schedules for this chapter:

(1) light: Sections 1, 2, 4, 8 (essential minimum)
(2) medium: Sections 1, 2, 4, 6, 8

(3) deep treatment: all Sections with least preference (if necessary
to save some time) being given section 5.

[R # 1] D. The pamphlet '"Mathematics in the Petroleum Industry'' may prove
useful and interesting for students to have and use during the re-
mainder of this chapter (free in classroom quantities. )

*2. A Production Planning Problem

A. This is a very simple example of the linear programming algorithm.
Although it can be done without the algorithm, it is being used to
develop the algorithm - consequently, be sure the problem is well-
understood by all.

B. The text example for this problem is so trivial that the students
might not understand why they should wade through several pages
of text in order to get the answer. An idea: before this sectionhas
been assigned for reading, you might assign problem # 1 to be done
in class. After they have struggled with the problem for 10 minutes
or so some will become discouraged. (Some will become discouraged
after 30 seconds). Now is the time to assign the study of this sec-
tion, with problem 1 as homework.

i
g ,
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[T #B-2.22] C. This transparency may be of some help to you in your discussion
and explanation - you should note:

(1) the presentation does not coincide exactly with the text develop-

ment, but has been simplified to avoid, we hope, the pos siblg
hazards on page B-2.4 of the text, which uses sign reversal in

the inequalities and the word "stronger" when comparing in-
equalities.

(2) be sure the students see why point A is the optimum solution
and not point B - hint: if one examines the criterion equation
P = 13000 - 3V, the term 3V is to be a minimum (or V is small)
if P is to be maximized,

(3) ask the students for an interpretation of point B (the minimum
profit)

(4) we feel it will help if you try to work simultaneously with both
the inequalities or equations and the graphical representation

(5) remember to stress the method by which the solution is developed -
we're trying to show how a mathematical model is developed
and then used to find an optimum solution; also, point out how
the constraints and criterion tend to narrow down and define
the feasible region and that the optimum point occurs on the
boundary of the feasible region.

D. An alternate technique of solving the ice cream production problem
is to use the amounts of vanilla (V) and chocolate (C) as variables,
The feasible region is developed from inequalities involving V and
C. The profit equation is then used to find the optimum amounts
of V and C to produce. Transparency # B2.2b inay be helpful in
the use of this technique. Even though the above does not follow the
textbook development of the problem, it is suggested because the
linear programming problem in the next section is solved with this
alternate technique.

[1. # 10] E. Regarding the placement of lab experiment # 10 ''Design of an Elec-
g g g
tric Heater'' we can offer two suggestions:

(1) use as an introductioan before this section is assigned or dis-
cussed, OR -

(2) this lab can fit at the end of either Section 3 or Section 4 to pro-
vide a chang™ of pace in possibly long classroom ''talk-sessions'
on the text and H., W, problems.

F. I,B.M, has published a manual entitled: ''An Introduction to Linear
Programming'', which may be helpful as background material and
[R # 6] , : ; ,
is also an excellent source of linear programming problems which
can be used for testing purposes.

3. A Transportation Planning Problem

A. Take your pick (you know your own students best) whether you want
to present this material first in class and then have students read
the section later, or vice versa.
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B. This problem is a good illustration of the essential elements of
optimization problems that use a linear programming algorithm.

C. If you're a blackboard worker, have plenty of chalk on hand (col-
ored should prove very helpful here) or else you might try using
some transparencies. The overhead projector can be quite useful
since you will want to refer to previous diagrams (not always feas-
ible on the blackboard). You may want to:

(1) make your own using the diagrams in the text as a guide - have

fun!

[R # 2] (2) purchase some commercial examples of linear programming -
have money!

[T#B-2.3] (3) try our version - have luck!

D. 1In any event, whether you use a blackboard or projector, interpret
as you go along - students should know what each expression means
and the reasons for doing each step.

E. Here are some possible ""trouble spots' in teaching this problem:

f (1) the cost equation C = 45960 - 30x - 10y (in dollars) may need to
f- be clarified. If one solves for y, he gets: y = -3x + (4596 - C )

The term in parentheses is the y - intercept. Hence, if we
want C to be a minimum, then the whole expression will give
a maximum value for y.

(2) Comparing the above equation for y to the general linear equa-
tion y = mx + b, we note that the slope m = - 3. Plot this and
then move a line (ruler) parallel to this line of slope = -3 across
the feasible region. Ask the students to observe where, in this
feasible region, we obtain the largest value of the y - intercept.
This point represents the optimum solution and occurs on the
boundary of the feasible region.

(3) Also, ask the students for an interpretation of the minimum
value of the y - intercept (which is the costliest feasible solu-
tion).

(4) As a check on the minimum-cost solution, refer to table 4 in
the text and verify both the horizontal and vertical sums.

*4, Linear Programming Problems

A. This section is a brief discussion of the scope and nature of linear
programming. It basically summarizes the previous two sections
as well as showing the role of the computer in linear programming.

[R # 4] B. Going further: the article "LP: A Grammar for Problem Solving"
is a good general discussion on the widespread application of linear
programming - there is an example of a farmer seeking the opti-
mum feed blend for his cattle which you might be able to use with
your students.
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R (#7)

[D # 1]
[D # 3]

Minimum Wire Length

A,

Although this is a different and interesting algorithm, this problem
is probably the least important one in the chapter. We feel this is
an optional section as indicated in the suggested teaching schedules.

This problem is simpler than the previous one and is quite straight-
forward. After the algorithm is developed, its solution should bring
satisfaction to the slower students who might have had trouble with
the previous section. It is an algorithm that is easy both to com-
prehend and use.

Going further: for some of the '"eager-beaver'' students who are
intellectually curious and active, we have included in the resource
section a problem which was used in a previous edition of the text
along with an accompanying practice problem. It is '"A More Com-
plicated Minimum Wire Length Design Problem' and it is just that:
complicated - so have fun with it!

A Production Planningfroblem

A,

B.

C.

This example of an optimization problem with a probabilistic model
is meant as a ''lead-up'' to the queueing problem in the next section.

Warning - a subtle point which may need clarification is the dis-
tinction between the average profit per batch and the average total
profit.

A sample lesson plan for this section can be found in the resource
section. It helps to give meaning to the data in the text.

Queueing Problems

A.

This section is only an introduction to queueing theory and its pur-
pose is to give a general indication of the type of results which can
be realized.

Note: be careful to keep track of the simplifying assumptions as
they are introduced - also, to clarify such terms and symbols as
a, B, and the q equations to be used for either constant or random
servicing time.

(1) if you need some extra information on the derivation of the q
equations, we have listed two sources in the depth section which
may be of some help to you.

Lab experiment # 11 or. Queueing can best be done at the end of this
section.

(1) Warning: as written, this may not be feasible and suitable -
hence, you may have to modify the particular situation used in
each school.

An idea: this is an illustration which you might use for an intro-
duction to this section to develop the idea of average quque iength.

B-2.8

A P 1A RN vy e e W pRRe e
R pps s - »



s ey w3 S

N LT T Doy

of the model (especially if it is a probabilistic one) is always
subject to question.

IV. Where a large number of feasible designs are possible, or many
variables are involved in the problem, a systematic method of
solving the problem is usually employed.

(1) Methods which are generally applied to certain groups of prob-
lems are known as algorithms.

(2) An algorithm is a systematic improvement method which can be
described precisely.

(3) Algorithms with many variables (e.g. the simplex algorithm for

linear programming problems) can be quickly and accurately
processed with a computer.

[R # 8] D. For further discussion: for a systematic approach to solving a
sociological problem of our time (crime control), you might be in-
terested in this different kind of optimization problem. It can be
dovetailed in with the summary transparency (T # B-2.8) as an il-
lustration of how a federally sponsored organization has conducted
research into designing a crime control program which is similar

to programs that are used to analyze the operations of military sys-
tems.




It occurred to Dr. J. Truxal as he was circling N.Y.C. waiting
to land at the airpcrt after a trip west to Boulder, Colorado. The
details of this airplace stocking problem are found in part 7 -~ Re-
scurce Materials.

E. You might want to point out to your students that there are 3 dis-
ciplines of queues:

(1) 1st come, 1lst served - e.g. upon entering some types of stores
(butcher shop, the ''deli'’, electronics parts, etc.) you get a
ticket with a number on it and the clerks wait on the customers
in numerical order

(2) randorn - e.g. when you may have to elbow your way through
the crowd to buy the soda pop and hot dogs from the stand on
the beach or at a football game

(3) priority - e.g. your car gets a flat tire going thru a tunnel and
the traffic flow comes to a screeching halt - you'll get prompt
attention all right, plus probably an accompanying bill !

; F. For your general enlightenment, you'll find in the resource section

’ [R # 9] some other information on the three major examples of queues as
well as a summary of pertinent terms. Please note that the text
only deals with the first example,

*8. Concluding Comments

A. It is short, b;.lt good, so read it - keep going - only 4 chapters left
in Part B!

[T-#B-2.8B. A transparency has been prepared which summarized in very general
terms the two steps involved in problem solving.

C. The following is not included in the text, but we hope it may give you
an overall summary of the first two chapters in part B:
I. Two reasons for making a model of a system are:

(1) to predict whether or not a design is feasible prior to construc-
tion or implementation

(2) to make improvements in an already existing system.
II. As we model we usually find it is not possible to effect all the

improvements in design which seem desirable, but must choose
(or optimize) among several alternatives.

(1) If improvement is carried to the point where no further improve-
ment is possible, the design or plan is said to be optimized.

(2) Optimization is the process of achieving the '"best'' criteria
while operating within the constraints set for the system.
-I.LI. In decision or design problems, improvement r.ay be made by:
| (1) "cut-and-try" procedures
(2) an analytical (mathematical) approach - even here, the validity
B-2.9 '
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V. Answers to homework problems

2.1

Suppose that a radio manufacturer turns out only two types of radio: a stan-
dard model, selling at a profit of $20 each, and a luxury model, selling at a
profit of $30 each. The factory has two assembly lines, but their capacity

is limited. It is possible to produce at most either 8 standard radios or 5
luxury radios per day on one assembly line. The manufacturer is faced by
another constraint: owing to limited skilled labor supply he has only 12 em-
ployees, so the available labor cmounts to 12 man-days per day. To assemble
a standard radio requires one man-day, but it takes two man-days to make a
luxury radio.

(a) How many radios of each type should he produce in order to maximize his
profit?

(b) What will this maximum profit be?

Ans.: Let r, = number of standard radios produced per day
ry = wmber of luxury radios produced per day
rs§8 P=2(;rs+30r1
_ 2 P
r1_<_5 --rl—-?ﬁrs+3'0-
r + Zr1 <12
'.r<--1-r + 6 For max. P we want
1= 2°7s .
max y intercept.
fz i \
6 \
5
4
3 MAX PROFIT WITHIN
2 I FEASIBLE REGION
FEASIBLE | L
REGION ——t»

For max. profit make 8 rg, 2 1

. P =20(8)+30(2) =160+ (60) = $220
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2.2 In the transportation problem of Section 3, suppose that the amount
of wheat at Grand Forks is 30, 000 bushels and at Chicago is 60, 000

bushels. Find the minimum cost shipping plan.
Ans
Denver Miami New York
42 55 60
Grand Forks| x y 30-x-y 30
36 47 51
Chicago 20-x 36-y 4+xty 60
20 36 34
4
40}

™™

N
§ _C= 43460
N =
N
2Qt1
N
Q MINIMUM COST POINT
~N
\ N
\,_%_-c=44|eo \
\§ \ "—S\
i N
//f/////////|8///////////,éo ﬁ\\ > X

\

\
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C =10 x [42x + 55y + 60(30 - x - y)
+ 36(20 - x) + 47(36 - y) + 51(4 + x + y)]
=10[- 3x - v + 4416]
= 44160 - 30x - 10y

Minimum cost at|x = 20, y =10 Cmin = $43460

Den.[JMia.|N.,Y.
G.F. 20 10 0 30

Chi. 0 26 |34 |60
20 36 |34
2.3 An oil company has 200 thousand barrels of oil stored in Kuwait

(on the Persian Gulf), 150 thousand barrels stored in Galveston,
Texas and 100 thousand barrels stored in Caracas, Venezuela,

A customer in New York would like 250 thousand barrels and a
customer in London would like the remaining 200 thousand barrels.
The shipping costs in cents per barrel are shown below. Find the
minimum cost shipment schedule,

Kuwait Galveston Caracas

New York 38 10 18
London 34 22 25
Kuwalit Galveston Caracas
New York 0 150000 100000
London 200000 0 0 Total cost = $101, 000,
Ans.:
Kuwait | Galveston Caracas ]
(38 T10 [18
New York X y 25 -x -y 25
| 34 122 ] [25
London 20 - x 15~y x +y =15 20
20 15 10
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C =10,000 x [36x + 10y + 18(25 - x - y)
+ 34(20 - x) + (22)(15 -y) + 25(x + y = 15)]

=10,000[11x - 5y + 1085]
c=|0|,ooo\_/

Yay 25~x-y =0
| .54
4
MINIMUM /;
COST POINT
X+ y=-15=0 T
R
/0-—C=I30,500
3
] 1 =\
%6 0 TITTTITS
/
/
Minimum cost at|x =0, y =15
Crin = 10,000 x 1010 = 10, 100, 000¢ = $101, 000
K G C
NY 0 15 10
L 20 0 0
2.4 a, Find the optimal location for the switching center when the
number of telephones in each building (reading from left to
right) is

8, 7, 8, 2, 2, 5, 4, 6, 7, 1.
b. Did you obtain all the optimal locations?

Ans,: a) At either building with 2 phones.

b) Yes - at either building with 2,

™ B-2.14
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2.5 Consider the diagram on the right.

Two rows of buildings are separated I 6
by a street. Find the optimal loca-  p— fr—
tion for the switching center if there 3 7
is the following constraint: a wire LT— ——
that goes across the street must be 8 3
underground. (The expanse would prm—
limit the numbers of tunnels across 3 8
the street to one.). =
| 6 S 3

Ans.: E S x=—hB

OPTIMAL -?-' 3

AL o 5] [3] 9emmaL swirchin

E THIS SIDE -=3=- —7—. ENTER FOR THIS SIDE

OPTIMAL TUNNEL

" The solution involves finding the optimal center for each side separately (thus
i. determining the point with minimum wire length to the tunnel). The position
[ of the latter is chosen to minimize the number of wires through the tunnel.

2.6 (For Special Credit) The restriction in section 5 that the buildings must lie
on a single road (note that the road need not be straight) can be relaxed. Sup-
pose the buildings lie on a road network as illustrated below.
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Ans.:

Each small circle is a building, Notice that there is exactly one path

between any two buildings. A configuration with this property is

called a tree. The community has many other roads but telephone

lines can be laid only on the indicated roads because (a) of town laws,

(b) of geographic obstructions, and (c) of economic factors, For a

tree we know how to solve the problem of optimal location of a switching center,

ae

C.

For the single road town problem, the optimal location was
characterized by two inequalities, What characterizes the
optimal location for the tree town. problem? You can obtain the
correct inequalities by the same analysis used in the text,

Find the optimal switching center location for figure above,

Give an algorithm for making the necessary calculations in a
systematic and efficient way.

OPTIMUM  LOCATION

ge
-
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2.7

Ans.:

A newstand buys a certain weekly magazine for 20¢ and sells it for
35¢, Left-over magazines can be returned at the end of the week
for a refund of 5¢, Their records show that they sell,

Only -50 magazines

51-55 "
56-60 "
61-65 "
66-70 "
71-75 "
76-80 "

5% of the time
10% of the time
20% of the time
30% of the time
15% of the time
12% of the time

__8% of the time

100

How many magazines (to the nearest five) should the newstand order
to maximize the average weekly profit? What is the maximum

average weekly profit?

No. magazines

% of time the
no. is sold

AVERAGE PROFIT (in cents/mag.)
% SOLD (Prof. )-% NOT SOLD(LOSS)

1. 50 100 15.0

2. 51-55 95 13.5

3, 56-60 85 10.5

4, 61-65 65 4.5 OPTIMUM
5, 66-70 35 4,5 TOINT
6. 71-75 20 -8.0

7. 76-80 8 -12.6

80 and above 0

Total aver. profit = 50 (15) + 5 (13.5) + 5 (10.5) + 5 (4.5) = $8.92

2.8 In a barber shop the service time is 15 minutes per customer. The cost

™

for a haircut is $2. 00.

(a) If the average inter-arrival time is 20 minutes, find

The percent of time the barber will be working.
Answer 75%

(b) Assuming that we are talking about constant serving time, what is the

average queue length'? B =
Answer q=.75 (1--( 75)/1-.75 =

15/20 = .75

1. 87 customers

(neglecting tips)
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re: Problem B-2.7

An Algorithm to Determine the Profit when Unsold Magazines are
Returned for Credit

Let us assume that 55 magazines are received during one week, This quantity
is sold 95% of the time. However, because of returns (5% of the time) the expected
profit is reduced from (.95 x 15¢) to (.90 x 15¢).

| In a similar manner, when 60 magazines are received, returns will be made

: 15% of the time., The loss incurred by the returns reduces the expected profit

; from (.85 x 15¢) to (. 70 x 15¢). These values are shown in the extreme right hand
column on page 17.

Note that in problem B-27 the anticipated profit of 15¢ per copy is just balanced
by a possible loss of 15¢ if the item is not sold. How should the algorithm be modi-
fied so that it may be used with marketing problems in which the mark-up per item
does not equal the loss resulting when unsold merchandise is returned for credit?




(c) What is the gross income/day assuming an 8-hour day?

Answer 3 customers/hr 24 customers/day
income/day = 2 (24) = $48

(d) In order to stay in business the barber must gross at least $40/day. If
he wishes to keep his percent of working time constant and does not wish to
speed up his service time, how much must business increase before he can
afford to hire another man costing $20/day?

Solution (d) $20/day means 10 more customers per day.

The shop is 4 customers above the break even point, therefore if
business increases by 6 more customers the barber can afford a new
man.

(e) If he had not hired a new man when business increased by the amount in
part (d), what would be the average queue length (still assuming constant ser-
vice time)?

Solution B = 15/16 = .94

q=.94(1 -%(.94)
~T—94 = 8.3 customers

2.9 In the previous problem we assumed constant service time.

(a) Use the same figures and calculate the queue lengths of (b) & (e) assuming
random service time.

B=.75 q:%:-i'—_z-s,ﬁ=3customers
B=.94 q =%%- = 15. 6 customers

(b) Which is a more realistic model for serving time constant or random?

Answer Random serving time is more realistic because each customer re-
quires a different amount of time for a haircut.
(c) How could the barber decrease his queue length without getting more help?

Answer By decreasing service time.
VI. Evaluation: Suggested quiz and test questions
Given the inequalities 3A + 2B > 2, A <1, B <1, graph these inequalities on

and B axes. I.e., indicate the portion of the A, B plane where these inequa-
lities are all satisfied.
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Ans.:

1.
A
'// / /A< ¥
<
34" -
e
G\\e
% I\ B

2. What is meant by the term '""feasible region' in the solution of a linear pro-

Ans.:

Ans,:

gramming problem by graphical means?

The feasible region includes all the sets of values of the solution to the
problem for which the restriction of the problem is met.

A B C D E
2 3 4 4 6

Five buildings are situated in a row as shown, where the number in
each box gives the number of telephones in the building,. Where should
the switching center for the group be located?

A B C D E
2 3 4 4 6

0,19 2,17 5,14 9,10 13,6
—> > =S —

The proper center is in building D,

An advertiser wishes to sponsor a television comedy half hour and must decide
on the composition of the show. Let x be the number of minutes of commercial
time and let y be the number of minutes the comedian appears. Assume that
the advertiser insists that there be at least three minutes of commercials,
while the television network insists the commercial time be limited to at most
fifteen minutes. Now the commercial time plus the comedian time must fill

up the half hour.
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a) What are the inequalities defining our problem?

x>3
x < 15
v S0
x+vy =30
b) Graph the equation and the inequalities and outline the feasible region.
Ans.:
ok,
FEASIBLE
REGION
Y
(MINUTES) 20}
AN
N
10
o C o
] ] \
N\,
10 20 30N X MINUTES

c) If the comedian costs $200 per minute and the commericals cost $50 per
minute

(1) Write an equation to represent the cost.
(2) What is the minimum cost?
Ans.: C=50x+ 200y =50 (15) + 200 (15) = $3750
d) The advertiser wants to maximize the number of people who watch the
program, and 70, 000 more people will tune in for every minute that the

comedian is on. Assuming the advertiser can 'spend as much as he has to,
calculate the maximum number of prople that will watch the program.

N = 70,000y =70, 000 (27) = 1, 890, 000
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5. (May be us:d for class discussion as well as a quiz). An electrical wiring
company has the following problem. They want to control two electrical de-
vices (represented by light bulbs) by two switches inngendently from some
distance away. The standard circuit for this problem 1is:

ACTIVATED SYSTEM

[~ —=> —7=—— CONTROL SYSTEM L (0) )

& ! g

{ 1 1

A C : | l ’.6\ !

C. . !
POWER SUPPLY— — — — =1 Leed

[

A bright young engineer in the company looks at the above circuit and offers
his own circuit which reduces the number of connecting wires between the con-
trol system and operating system irom 3 to 2. The following is the block dia-
gram of his circuit.

CONTROL ACTIVATED
SYSTEM SYSTEM

The young engineer is able to eliminate one connecting wire by the additicn of
four electrical elements called diodes.

The electrical wire company has an important decision to make when you
consider that this circuit is used in thousands of system. Captain Optimization
to the rescue. The first thing we have to do is gather data about the price of
wires and diodes. For instance,

Wire costs 10 cents per foot
Diodes cost $1. 50 each

One can readily sze that adding diodes to the circuit is

(1) a waste of money if the distance is small
(2) a great saving if the distance is large

At what distance should the company switch circuits? (Solve the problem
graphically)
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20

2 WIRES CIRCUIT

cosT 15
(DOLLARS) \
10 !
N
. 3WIRES CIRCUIT

10 20 30 40 50 60 70 80 90
DISTANCE (ft)

The company should switch circuits when the distance is about 57 feet.

Extra Credit

Figure out the actual circuit that the young engineer developed. (Hint - Four
diodes were used; 2 in the control system and 2 in the activated system. A
diode allows electricity to flow in only one direction. In your circuit use the
symbol _“‘_ to represent a diode.

Ans.:

-

e

6. Questions can be obtained in IBM manual "Introduction to linear programming'
mentioned in reference section (R # 6)

7. Quiz based on transparency on linear programming.
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VII. Resource Material

1. Mathematics in the Petroleum Industry, a pamphlet obtainable from
American Petroleum Institute, 1271 Ave. of the Americas, New York
N.Y. 10020. Contains excellent linear programming problem, also
sections on game theory and minimum distance problems.

2. LP: A Grammar for Problem Solving_: Data Processor, Dec., 1966.

Published by: Data Processing Division
IBM Corporation
112 E. Post Road
White Plains, N. Y. 10601

Deals with linear programming applied to management and engineering
problems.

3. Crime Control: Task Force Urges Use of Science and Technology:
Science, 23 June 1967, Page 1579 f£f.

A completely different kind of decision problem: the application of
engineering concepts to the problem of crime control.

4, An Introduction to Linear Programming. Obtainable for IBM Branch
Offices. Chapter 1 of this manual contains problems similar to those dis-
cussed in Chapter B-1, probably useful as a source of test questiocns. The
rest of the manual will be useful for ambitious students.

5. Transparencies for Linear Programming discussion can be brought
from:

Creative Visuals

Division of Cramco Industries, Inc.
Box 310

Big Spring, Texas

6. A More Complicated Minimum Wire Length Design Problem

This problem should be a challenge to even the better students. As a
demonstration of what you are getting at, you might take off the back of one of
the Logic Circuit Boards to show the printed circuit.

The system for calculating possibilities in Table 1 is indicated below. Some
student will ask about (P-C)! when ? is 10 and C is 10. Remind him that factorial
zero (0)! is defined to be equal to 1. if he wants to know why answer him if you
can, or refer him to his algebra teacher.

In the switching center problem we were able to devise an efficient algorithm
for computation. In the following problem we are not so fortunate. We are com-
pelled to resort to a strategy which may give a good solution and possibly a ''best"
solution.

A manufacturer is producing a device, for example, a small computer. The
device is composed of components which are identical in size and shape. The com-
ponents are similar to 3 x 5 cards but with small electrical parts soldered or at-
tached These components have terminals by which they can be electrically inter-
connected when they are inserted into a rack The terminals on each component
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make contact with terminals at the back of the rack and the latter terminals are
wired together according to the designer's plan.

This method of construction has many advantages. The division into indi-
vidual components enables the designer to substitute a number of small problems
for one large problem Rapid repair can be accomplished by the removal and in-
sertion of any component. Manufacturing is more easily automated and the wiring
of the rack can be performed by a machine Finally, minor modifications of de-
sign can be made even, after manufacturing has started.

A common problem that arises is one caused by electrical interactions be-
tween nearby pairs of wires at the back of the rack. These interactions produce
malfunctioning of the device. The standard method used to avoid this difficulty
is the arrangement of the components in the rack with a minimum wire length to
the terminals on the rack. After such an optimal component placement has been
determined minor modifications can be made to remove any remaining interaction
which produces malfunctioning

This optimal component Placemeni&roblem is very difficult. We idealize
this problem to simplily the mathematical model. The solution of the simplified
mathematical equation represents a good approximation of the optimal solution of
the physical problem.

Let us suppose that our components are points in a plane, and that they can
be placed at equally spaced positions (one-unit separations) on a line interval (our
rack) as shown in Fig

é_/‘/Possiblle( Loca‘t‘ions &or Components
||-—||_ g —_ L 2
1
unit

Fig. 1 Possible component locations.

Furthermore, suppose that there are (c + 2) components (p + 2) positions
on the rack (p > ¢), and that design considerations require that 2 of the components
be at the ends of the rack for connecting the device to the outside world

A direct attack on the problem would require a trial of all possible place-
ments of the ¢ movable components in the p available positions * A few sample
cases are listed in Table 1

*The number of such possibilities is obtained by picking c positions in all possible
ways (the combination of p things c at a time = p!/[c! (p-c)!] and, for each selec-
tion of c positions, placing the c coirponents in all possible ways (=c!). Thus,
there are p!/(p-c)! possibilities. Here p! is used to represent p factorial,
where 6!, for example, equals 6 x 5x4x3 x2x 1.
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P c possibilities

10 10 3, 628,800
10 5 30, 240
5 3 60

Table 1 Sample possibilities for placing c
components in p free locations.

An enumeration of all possibilities is clearly out of the question. Attempts
to analyze the problem have not been fruitful. We must resort to a strategy (or
intellignet guess) in order to formulate an algorithm which will give a reasonable
solution.

One approach frequently used in such situations is called iteration. Iterative
procedures begin with a guess at a solution. With some properly selected algor-
ithm, we attempt to improve the guess; we then repeat the algorithm to improve
the ""improvement''. The procedure is completed either when no further improve-
ment can be made or when a decision is made that the solution is reasonably close
to the desired result.

Let us consider a problem with 5 components designated A, B, C, D, and
E, where A and E are to be at the ends of the rack. Table 2 lists each component
and the required number of wires to every other component. Furthermore, in
order to work with a specific problem, we assume there are seven rack positions
(including the two at the end for components A and E), spaced at intervals of one
foot.

NO. OF WIRE CONNECTIONS

0 COMPONENTS
Fro A B C D E
A 0 1 2 0
B 1 0 3 2 1
C 2 3 0 1 2
D 1 2 1 0 2
E 0 1 2 2 0

Table 2 A listing of the number of wires between each pair
of components (e.g., there are 3 wires between
components B and C, etc. ).
To apply the technique of iteration to this component placement problem,

we must first make an initial placement. One possible initial placement is shown
in Fig. 2.

A|B C D | E |Components
oo jo |oje ]| |eo
T [2|3[4[5] 6 |7 [Position

Fig. 2 Initial Placement of Components.
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The length of wire needed for this placement is computed in Table 3, where the
distance between components is the number in the center of each square and the
number of wires between components is the number in the upper right-hand cor-
ner of each square.* Multiplying the two numbers in each square and then adding
the results in each column gives the distances at the bottom. Adding the lengths
in the bottom row gives the total length of wires required, which is 41 feet in this

case.

A B C D
Fromy————peeoee- P < gmm == No. of
B 1 1T | ‘ i : Wires
...... fecccca Distance
C 3 2 2 3] . | Between
----- Components(Feet)
D s W 4 2], 1 |
E o 9] s L] 5 T2 , 12
- Total Length
12 |+19 |+8 + 2 = 4] of Wire

Table 3 Length of wire required by initial placement.

This overall length of wire is not necessarily the shortest that is possible.
To discover a better placement we need an improvement algorithm. It turns out
that we can use the switching center algorithm developed in the text, Section 5.
Suppose, for example, we wish to find the optimal location for component C when
all other components are kept fixed. Think ofsC as a ''switching center' with wires
connecting it to ''telephones'' at each of the other components. The number of ''tele-
phones'' at each component is the number of wires from C to that component (given
in Table 2).

Fig. 3 shows the switching center algorithm applied to finding the best loca-
tion for component C. Let us study it with some care. If we placed component C
into position 1, ** there would be no appreciable wire length from A to C, but there
would be 3 wire lengths from B, 1 wire length from D and 2 wire lengths from com-
ponent E, a total of 6 wires. This can be checked from Table 2.

A shift of component C to the right from position 1 to position 2, will reduce
the length of all wires to the right of position 1. Since the total number of these
wires is 6, the overall reduction irom this shift will be 6 lengths of the position
interval. However, this shift to the right now adds 2 gap lengths from A to C. The
increase of 2 gap lengths and the decrease of 6 gap lengths is shown in the top row
in Fig. 3 by the numbers 2, 6; hence, movement to the right results in an overall
decrease in wire length.

We neglect here the fact that A is already in position 1; we are trying to find the
optimum location for C without regard to position availability.
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No. of Wires

& 3 1 2 To Component C
Component

é ].3 [ C.J ] ° ® ]2 ].E Placement

1 2 3 4 5 6 7 Position

Fig. 3 Best location for C with A, B, D, E fixed.

If we now shift the position of component C from position 2 to position 3,
each wire to the left of position 3 must be increased in length, so that 5 gap lengths
of wire must be added to the total length of wire. However, all wires which are to
| the right of position 3 are decreased in length. Since there are 3 connecting wires
to C which are to the left of position 3, this decrease is 3 gap lengths. The overall
effect of this second shift will then be shown as 5, 3. If we are shifting to the right,
then the first digit indicates the increase on the left, and the second digit indicates

the decrease on the right.

It is thus apparent that the second shift -- to position 3 == produces an in-
crease in wire length. Out best placement for component C is therefore at position
2. But since position 2 is already occupied by component B, we can select position
3 as the second choice for placement.

Continuing the improvement algorithm, we next determine the best location
for B, holding A, C, D, and E fixed. Fig. 4 shows our algorithm applied to this
task.

1,6 1,6} 4,3 |4,3 4,3 6,1
No of Wires
1 3 2 1 to Component B
Component
ﬁ 1 e C.J []3] ® D }E Placement
1 2 3 4 5 6 7 Position

Fig. 4 Best location for B with A, C, D and E fixed.

The best location, from Fig. 4, is in position, but C is already there. Let us com-
- pare the number of lengths of wire when B is in location 2 to that when it is in loca-
- tion 4. We note first that we nced concern ourselves only with the lengths of wire
" that connect the other components to B. The number of wire lengths connecting
- these components (A, C, D, E) to each other is not affected by the position of B.
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When B is in location 2, there is one gap length to it from A, 3 lengths from C,

(2) x (4) or 8 lengths from D, and 5 lengths from E for a total of 17 lengths. When
B is is location 4, there are (1) x (3) lengths from A, (3) x (1) from C, (2) x (2)

or 4 from D, and (3) x (1) from E, for a total of 13 lengths. Thus, it is better to
place B in location 4.

Next, we apply the algorithm to locating component D with A, B, C, and E.
held fixed, This is shown in Fig. 5. Again the best location is occupied by another

1,5 1,5) 2,414,2 | 4,2] 4,2

No. of Wires To
1
1 2 2 Component D
Component
A P

C B [D] E Placement
{
; | 2 3 4 5 6 7 Position

Fig. 5 Best location for D with A, B, D, E fixed.

component (B in this case). Since the position to the left of B is also occupied,
obviously the position to the right is the best possible location.

If we apply the algorithm again to the location of C or B, we find no improve-
ment possible, * so we are tempted to stop, feeling we have the best solution.
Table 4 computes the wire length from 41 units (initial placement) to 33 units.

0 ,
FROM T A B C D
71" ~~--- jo==-- m=====- \
B ' ' 0
3 ' _: 0
2 cI o A
[ ]
Cl 2 1 Vo ;
1 2 1) :
D1l 4 1 |2 :
0 i 2 2
El ¢ 3 4 2
total length
of wire
11 8 10 4 33

Table 4 Length of wire for placement of Fig. 5.

“In general, going through the components only once does not terminate the
iterative process.
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The placement of Fig. 5 is good but it is not the best. If C, B, and D are
all shifted one position to the right, the wire length is reduced. It is interesting
to note that we would have arrived at this (optimum) placement in one step from

the initial placement of Fig. 2.if we had asked for the best location of B holding
A, C, D and E fixed (try it!).

Example:

Apply the component placement technique to the situation in which the rack
has 8 positions and there are 5 components with interconnections as given
in the table below (similar to Table 2). Components C and D must be at the
ends of the rack. Make a table like Table 3 to do your computations.

A{B C |DI|E

P A x |2 (|2 ]|3]2
B 2| x|1 0] 3

C 2|11 |x 210
D 3102 x| 2
E 2 ﬁ) 2 | x

Solution to Example:

2 2 2 3

Location C B (A) E D
A (4,5) (9,3)

1 2 3 0

Location C (B) A E D

B (L5) (3,3) (6,0)

0 3 2 2

Location C B A (E) D

E (3,4) (5,2)
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Interchange A and B C A B E D
A IBJ|C |ID
3| 14
c| & SE
D 3IZ -E_ 7
E 214 13| D B
23] 8 14 2 47 | Note, above is 1 better

R#9 7. A. Examples of Queues:

l.. cases of continuous service where there are a limited number of
customers to be served at one time - these include:

(a) one server (i.e. ''funnel" or '"bottle-neck'' situation) - e.g., |
a doctor's office

(b) parallel servicing (i.e. multi-server queues) - e.g., a de-
partment store. ;

2. cases of sporadic service where there are an unlimited number of
customers to be served at one time ~ e.g. cars controlled by a
stop light at an intersection.

3. cases where the number of items is limited by storage facilities
and influenced by the probability of expected results (sales) - e.g.
inventory problems, such as stocking a particular size and style
of a pair of shoes.

B. Terminology: ’

These terms are applicable to the situation in which customers are
satisfied with limited servicing facilities:

1. a-= number of arrivals these describe the
N unit of time > probabilities of
1 CUSTOMER arrival
2, = or T a = mean time between arrivals times
Q y,
| : D
3. p= num‘ber sgrwced these describe the
. unit of time eq s
>probab111t1es of
4, &- or T = mean service time or the time SERVICE times
between operations J
/e e L
5. B = s 5~ utilization factor

Furthermore, the following conditions are assumed in our idealized
treatment of queueing theory in the ECCP course:
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VIII.

(1) customers are serviced on a first come, first served basis

(2) there is a random arrival of the customers (note: this is not only
a useful simplification, but it is also generally true in most or-
dinary real life situations)

(3) there is an infinite number of possible customers so as to avoid
the prospect of any population depletion with time.

Material For Depth

References:

1.

Henri Theil: Operations Research and Quantitative Economics,
Mc Graw-Hill,l%Eg, Chapters 1 and 9.

John G. Kemeny: Introduction to Finite Mathematics, Prentice Hall,
1957, Chapter 6.

Drake, Alvin W.: Fundamentals of Applied Probability Theory,
pp. 188-191, Mc Graw-Hill, 1967.

E. Ruiz-Pala, C Avila-Beloso, W.W. Hines: Waiting-Line Models,
Reinhold, 1967. Supposedly a simple presentation of queueing theory
which is still quite complex. '

T. J. Fletcher, ed.: Some Lessons in Mathematics, A handbook on
the teaching of 'Modern' Mathematics by members of the Association of
Teachers of Mathematics, Cambridge University Press, (paperbook
$2.95) 1965, Chap. 7, Linear Programming, pp. 208-222. Other
subjects included which have some bearing on the ECCP course are:
binary arithmetic and codes; flow charts; logic and problem algebra;
matrices; graphs; etc. Book also mentions a binary adder and a LLCB
for the wolf, goat and cabbage problem.
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Chapter B-3
MODELING

I. Approach

The intent of this chapter is to show how models are present in our
consideration of the real world.

II. Outline
Section 1. The Nature of Models

A model is a simplified version of any real world image. Whether we
construct it in our minds or really build it, we include only the essential ideas
about which we wish to obtain more information.

Models may be verbal expressions, maps, graphs, or mathematical
equations. In these forms, they may be used to describe a set of ideas and to
evaluate and predict a system before it is built. Models may be tested, refined
and improved at low cost.

Lab XIII
Film F-1 ("optional")

Section 2. The GraPh as a Descriptive Model

Numerical data can be represented in a graphical form where the observer
can determine, at a glance, the slope and y-intercept (if the graph is linear). From -
these observations, predictions can be made and mathematical equations can be
found.

Lab XIII
Section 3. A Descriptive Model of Traffic Flow

A school corridor traffic problem is developed. Here, traffic is measured
before, during and after the time when classes are being changed. A hlstogram is
drawn, from which traffic patterns can be predicted and classes and room assign-
ments can be made more efficiently.

Lub XIV
Film F-4 ("'good") 5.

Section 4. A Descriptive Model for Air Flow

A model of a respiratory system of an animal is developed. In this model,
air flow through the trachea and bronchial tubes from the throat to the lungs and the
accompanying air pressure are observed. From two measurements of pressure
and one measurement of flow, a full mathematical analysis of flow rates can be
made. From a few basic measurements on a system, can be obtained a simple
mathematical model.

Transparency B-3. 4
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Section 5. Qnamic Models

The previous two sections illustrated models in which the relationships
between factors do not change during the time interval involved in our observation
of the behavior of the systems. When a change in time or in motion is used, we
have a dynamic system.

Section 6. A Population Model

Based on the world population in 1960 of 3 billion and an increase of 2%
per year, a model of world population is developed. The process of summing or
integration is introduced and plots of the '"population explosion'" are drawn from
these assumptions. The doubling of population every 35 years and plots of popula-
tion until the year 2692 are also given.

Section 7. An Improved Population Model

The anparent exponential population growth of the previous section is
compared to various biological and magnetic saturation models to show that the
world population also has a limit. Many factors affect these ultimate growths and
so is the world population affected by food supply, living space, war, birth control
or any combination thereof.

Section 8. Uses of Population Models

| , Government on all levels uses population models to predict growth rate.
D Film F-S ("optional")

Section 9. Model Aiplication

Many models may be necessary for one system. For a car, the coohng
system would require one model, the power plant requires another, the suspension
system another, etc. However, the cooling system model of a car might model the
cooling system of a house or refrigeration system. One model such as the cooling
of a cup of coffee is exponential. A chain letter and the increase in head-size of an
infant child are also exponential models.

Section 10. Model Ecluivalence

Models can be formed with symbols, or be constructed with computers or
other mechanical, electrical or chemical systems. These systems can be equivalent
as long as their behavior duplicates the behavior of the real system. The '"black-
box'' idea where only the input and output are important is compact but simple.
Mathematical models are generaily used coupled with the speed and accuracy of
computers. They pernnt rapid change of numerical factors to predict the outcome
of many different versions of the model, and may act as the working mode;.

Film F-18 ("'good')

Section 11. Summary

The primary object is to focus attention to the point of view that under-
’ standing in the Man-Made World comes through simplified versions of reality called
'"models' and the use of models to understand complicated situations.

'\
A
»
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III,

Objectives

Students should clearly understand these ideas and concepts:

A. Models are universally used representatives of the real world.
Models may have many forms.

Models may be static or dynamic.

Models may be linear or non-linear.

mEUav

One model may represent several systems and conversely, one system
may require several models.

IV. Problems with Solutions and Answers

3-1

3-2

Relative difficulty of questions in B-3.

EASY MODERATE DIFFICULT

*4, 8 *1, *2, %6, *7 3, *5

*Key Problem to be Attempted by All Students

A more modern version of the six blind men and the elephant is suggested by
the following problem. A printed capital letter of the English alphabet is
scanned photoel~ctrically and the resultant signal is converted into digital
form and read into a digital computer. Seven subroutines in the digital
computer inspect it. The first states that the letter is like a U because it
has at least one pocket to hold rain coming from above; the second shows that
it is like a K because it has at least one pocket to hold rain from below; the
third and fourth find that it is like an A because it has no pockets on the right
or left; the fifth shows that it is like a V because it has two ends; the sixth
shows that it is like an S because it has no junctions; the seventh shows that
it is like a D because it has two corners. Combining these seven models of
the letter, determine what it is.

i

Ans.: The only possibility is N.

Let us approximate a human body by a cylinder. Since the proportions of the
body stay relatively constant as it grows, a tall cylinder will have a larger
diameter than a short one. We shall assume that the height of the cylinder is
always 7 times the diameter. Thus, the cylindrical approximation of a
6-foot man will have a diameter of 6/7 foot and a volume of wrh, or about

3.5 cubic feet. The human body is about 60% water and weighs about the same

as an equal volume of water would. Water weighs 62. 4 pounds per cubic foot
so the 6-foot equivalent will weigh about 216 pounds.

(a) Compute the weights for equivalent cylinders whose heights are 2, 3, 4,
and 5 feet. Plot the results, including 6 feet, on a graph showing height
versus weight.

Graphs are models and the area under a curve sometimes has a meaning.




(b) What kind of curve is this? How does it compare to that of the straight-
line-average fit of Fig. 3? Discuss any discrepancies and the validity
of the earlier model in light of the new one.

, HEIGHT (feet,

Note to teachers: It is easily shown that the weight of an object vaires as the f:ube
E of the scaling factor of its dimensions. In this problem doubling eaqh d1m.ens1on
' results in a multiplication of the weight by 23 or 8. Tripling each .d1mens1on pro-
duces a multiplication of its weight by 3° or 27 etc. The analysis is as follows:

W = (rrh) (62. 4)

Ans.
(a) Weight = (mr°h) (62. 4) 250
WEIGHT
(pounds) 200}
Height [Diameter | Weight
(ft. ) (ft.) (1bs) I50F
2 2/7 8 00}
3 3/7 27 f
3 4/7 64 SOF
5 5/7 125 , L
| 6 6/7 | 216 I T R B

Since the diameter is 1/7 of the height, r = 1%-

h 2
W= (r)(fp)  (h) (62.4)

= (%‘i) () (h3); but (%‘-63) m can be set equal to k, thus
= kh’

(b) Since weight is proportional to volume, the curve is cubic.

The earlier model (Section 2) was adequate as a linear approximation
because only a small part of this curve was represented; the portion
from 5 feet to 6 feet is close enough to linear that such a straight line

fit is not too far off. This also illustrates the error pointed out in the
text where unwarranted extrapolation led to meaningless results. Here
a reasonably accurate theoretical model shows how real-world measure-
ments could be expected to turn out for earlier portions of the height-
weight curve.

3-3 A paint brush has just been used and the owner wishes to clean it. After the
brush has been scraped against the side of the paint can, it still contains
4 fluid ounces of paint. The owner dips it into a quart (32 fluid oz.) of clean
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solvent and stirs well until the diluted paint solution is uniform. After
draining, the brush still holds 4 fluid ounces, part of which is paint and
part solvent, since the diluted solution is uniform. The process is repeated
with a fresh quart of solvent,

B T R A

(a) How much paint is left in the brush after 5 solvent baths ?

(b) Prepare a table and plot a curve of the amount of paint remaining after
each rinse. What kind of curve is this? Will the paint brush ever get
completely clean? Why?

Ans.:

(a) After one rinse the entire uniform solution is comprised of 4 ounces of

paint and 32 ounces of solvent. The fraction of paint in the mixture is
then:

4 _ 4 _ 1
4+32 " 3% " 9

After dfaining, the brush now contains:
1 4 ~ .
(4) (6-) =35 = 0. 45 ounce of paint
With the second dilution, the fraction of paint in the new mixture is:

4/9 _ 4/9 _ 1 1
W'T'H"r?

and the amount of paint in the brush after draining is:

(4) (9—12) = -541- = 0. 049 ounce

Continuing this process, it is evident that after the fifth rinse the brush
will contain: |

(4) (;15-) = -57)%(; = 6.8x10°° ounce

g -
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(b)

"Rinse Paint in Brush | Fraction of] Paint in Brush
Number | Before Rinse Paint in After Rinse
(0z.) Mixture (0z.)
4 1
1 | 4 <5 3 = 0.11
4 4/ 1 _
2 3 3'6_ ;2- = 0.012
2
4 4/9 1
3 o~ —— =3 = 0. 0013
. 9 9
4 4 4/9 L = 1.5x10™%
-3 35 4= X
9 9
4 4/9 1 -5
9 9
4
OUNCES : !
OF PAINT
IN BRUSH L
AFTER RINSE
2k
1"
O.5F
L I ]
| 2 3 4 ‘ )

NUMBER OF RINSES

The curve is exponential.
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(b)

Rinse Paint in Brush raction of| Paint in Brush
Number | Before Rinse Paint in After Rinse
(oz.) Mixture (0z.)
4 1 _
1 4 -%- -9— = 0. 11
4 4/9 1 _
2 3 3'6_ ;2." 0.012
3 4 4/9° 1 =0.0013
2 ~ 36 ~3 -
9 9
4 4 “56_4/93 l = 1.5x107*
—3 '—4 - . X
9 9
4 4/9 1 _ -5
5 -4 —=5— — = 1.7x 10
9 9
4
OUNCES 3
OF PAINT
IN BRUSH L
AFTER RINSE
2l
X
0.5
| 4‘%
| 2 3 4 ‘
NUMBER OF RINSES

The curve is exponential.
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3-5

You are served a hot cup of coffee at 200°F and a cold container of cream
at 40°F, and you do not intend to drink the coffee for 10 minutes. You wish
it to be as hot as possible at that time. Assume that the coffee cools as
shown in Fig. 20(a) and that the cream container stays at the same
temperature.

(2)

Determine from the graph the temperature of the coffee at t = 5 and
t = 10 minutes.

(b) If a volume V, of coffee at temperature T, is mixed with a volume V, of

(c)

(d)

(e)

cream at temperature T,, assume that the temperature of the mixture is:

TIV1 + TZVZ

vV, Y,

What would the temperature of the mixture be if 1 fluid ounce of cream is
added to 6 fluid cunces of coffee at t = 10 minutes?

Now assume that the cream is mixed with the coffee att = 0. What is
the temperature To of the mixture at that time?
A

The cooling curve of the mixture is similar to that of Fig. 20(a), except
that it begins at the new temperature To as calculated in part (c) above

T -175
and it always lies —z-cz)ﬂrrs— of the distance from the straight line

showing room temperature (75°) to the given curve. What will be the
temperature of this mixture at t = 10 minutes? ‘

Will a hotter éup of cofiee result from adding the cream first or later?

Ans.:
200K STARTING TEMP,
TEMP, I
IN 1501
DEGREES |
FAHRENHEIT T
100+
T ROOM TEMP.
50:&
" o.. .

0O 5 10 15 20 25 30 35 40
TIME IN MINUTES
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(a) From' the graph, at t = 5 minutes the temperature is about 155°F;
at t = 10 minutes the temperature is about 125°F.

T = (40)(1) + (125)(6) _ 790 -

(b) ) 1+6 =—-7— =113OF ;
, (c) To= (40)(11.)|.'|'6(200)(6) = 1240 = 177°F
T - 75
o < 177-75 _ 102 _  g;5

(d) 25075 = Z00-78 = 1Z5
At t = 10 minutes T = 75 + (0.815)(125-75) = 75 + 41 = 116°F

(e) Since the answer to (d) is greater than the one for (b), it would be better
to add the cream first.

Comment - There has been considerable discussion concerning this problem.
“ Its use here is to illustrate modeling. The problem involves

' many complex variables. The validity of the model may be {
| challenged, thus stimulating discussions and suggesting experi-
ment.

3-6 The half-life cf radioactive decay is the time in which the amount of the given
radioactive material decreases by a factor of two. Radioactive carbon-14 has
a half-life of 5700 years, but let us assume that it is 5000 years in this
problem to allow simpler calculations. Carbon-14 is created by the action of
cosmic rays on the carbon dioxide in the atmosphere, and the amount remains
constant with time. Growing plants, and the animals that eat the plants,
absorb carbon-14 during their lives, but the process stops when the plant or
animal dies. Radioactive decay then causes the relative amount of carbon-~14
to decrease. Measurement of the radioactivity of fossils permits an estimate
to be made of the time at which they died.

(a) What fraction of carbon-14 will remain in a sample after 50, 000 years?

(b) Approximately how old is a fossil bone in which the amount of carbon-14
is 1. 0% of its initial value?

(c) Sketch a curve showing the fraction of carbon-14 left in a sample as a
function of time.

Ans.:
(a) —55%% = 10 half-lives
1,10 _ 1

(5)" " = 1p3g ©f original carbon-14 remaining
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® N = 1.0%=0.01

2N = 0.01
2N = 'O"I'OT = 10°
Nlog2=2

2 _ 2 _ .
N - m = m = 6.7half—11ves

(6. 7)(5000) = 33, 500 years

{c)

No. | No. Fraction of |
half-| Years carbon-14 1.0
. remaining FRACTION
0 0 ] OF 075
CARBON-14
1 5, 000 0.5 LEFT 05 :
2 |10,000 0.25
3 15, 000 0.13 0.25 ]
4 {20,000 0. 063 ol— 1 |
5000 15000 25000
5 25, 000 0. 031
TIME (years)

3-7 Experimental data on the growth

of a ulation of yeast cells are )

giverllx;rlz the accorgpanying table. Time (hours) | Number of Cells

(a) Plot a graph of the number of 0 6
cells versus time in hours. 2 10
What is the population at 9 4 48
hours? 6 117

| 8 234

(b) The shape of the curve is 10 7342
exponential at first as the 12 397
cells multiply, but it soon 14 428
levels off as the supply of | 16 438
food becomes lirnited. The | 18 442
curve is called a sigmoid. s

What would you estimate the
population to be at 30 hours?

(c) Although your estimate may be an accurate one, based on the tabular
model above and its graph, it is probably not correct in the.real life
| of a yeast colony. If the table were continued, it would show that the
| population decreases somewhat as the environment becomes poisoned.
b During what time intervals is the rate of growth a maximum? A minimum?
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3-8

Ans,

(a)

(b)

(c)

400}

300}
NUMBER
OF
CELLS
200

] ] ] 1 ] | 1
6 8 10 12 14 16 18 20 22
TIME (hours)

N
&

Population at 9 hours is about 300 cells.

Apparently it levels off, so best guess'is about 450 cells. As explained
in the problem, however, the population actually begins to drop, reaching
a new plateau of around 375 cells. Students have no way of knowing this
irom given data.

Rate of growth is a maximum where slope of curve is the steepest. This

is about at 8 hours. From tabulated data, greatest change is between

6 and 8 hours, 117 cells. Maximum rate of growth is thus 58 cells/hour,
or about 1 per minute. The minimum rate of growth is found between

0 and 2 hours, and also between 16 and 18 hours. In each case it is a
change of 4 cells, or 2 cells/hour.

List and discuss some systems like the air-conditioner example which can
be described by several different models.

Ans.

1.

Automobile (mechanical, electrical, hydraulic, cooling system,
fuel system, engine)

House (structural, ventilating, electrical, heating)

Human (structural, respiratory, circulatory, digestive, nervous)

B-3.11




V. Development

Section 1. The Nature of Models

A brief discussion of what a model is with J. G. Saxe's, '""The Blind
Men and the Elephant' is good introduction to the chapter. Be sure to get across
the main theme that models are universally used representations of the real
world.: :

Every thought, every description (verbal or otherwise), is a model;
they represent our ideas of what objects and relationships in the world around us
are all about. One looks at another person--that person is the real world, and
wnat exists in the mind of the observer is a model,

Models are simplified reality; they are manageable representations of
the real thing. They contain the essential qualities of the system being modeled
and so, if accurately formulated, can be said to be effectively equivalent to it.

It must be emphasized, however, that all models are approximations to that
which is modeled. They are formulated by observation and measurement in the
real world, and tlfey are filled out with data taken from the system under con-
sideration, but they can never be completely equivalent for an entire system.

Satisfactory models are usually achieved by successive refinement. A
preliminary model is designed, it is tested against the real-world prototype, then
it is modified--so there is a continued process of successive approximations to
a reasonably accurate and revealing fit. It is essential to alternate back and
forth between the real physical world and the modeling domain. Without this
continual testing and refining process, models can lead to misleading results, and
if models are inaccurately conceived or too simply structured the results will be
unrealistic and useless. Developed realistically and accurately, models are
extremely important and useful tools which have far-reaching effects.

Models are used functionally as well as descriptively. They are employed
systematically in engineering not only to describe a set of ideas but also to- evaluate
and predict the behavior of systems before they are actually built. They can save
eénormous amounts of time and can avoid expensive failures. Models permit the
optimum design to be found without trying out many versions of the real thing.
Examples are to be found in scaled-down functional models like those of aero-
dynamic vehicles tested in wind tunnels, and in multi-variable network systems
like models of population change for planning transportation systems.

Section 2. The Grggh as a Descsztive Model

: This section is a good example of a practical graphing problem. Figures
2 and 3 should be discussed as well as the entire mathematical relation of the model.
In this example, we use the model to predict points which were not originally in our
data sample. - It is interesting to test this model from data taken from your own
class. Enter these data on your own plot, find the y-intercept and the equation for
the graph. It should be interesting to find that your graph may differ greatly from
the example made up in the text. (The equation from one school with 23 boys - '
18 seniors, 4 juniors and one sophomore was: W = 3.9h - 123). Be sure to
emphasgize that the model may not be used to predict beyond the.region of results
obtained experimentally.
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Section 3. A DescriEtive Model of Traffic Flow

This section deals with a problem which is close to what every student
faces everyday - namely the school corridor traffic problem. Here the student
understands very well the difficulty encountered in obtaining the data for the model.
The discussion of this section coupled with the traffic flow experiment will really
make the student understand the problem posed and the benefits of such a study.

Section 4, A Descriptive Model for Air Flow

This section is one of the few in the entire course which deals with a
model which is not mechanical or electrical. It may cause some students to
squirm and lose sight of the purpose of this section.

To understand the model, a few simple rules of aerodynamics are shown
and the definitions of all variables are given. The model then indicates the exact
relationship between flow and pressure differences in the trachea and the bronchial

: The corhplete model is developed by three measurements - two measure-
ments of pressure and one measurement of flow.

The slope-intercept equation is drawn to find the approximate equivalent
of the model. The complete mathematical model for describing the air flow as
related to the pressures at various points yields four equations. Substituting the
- pressures, the flow rates can be found by substitution of the first three equations
) into the fourth. This section vividly demonstrates that the model has permitted
~ us to make relatively simple determinations of flows for given pressure conditions,
revealing some important quantities in the system which were not directly measured.

Section 5. Dynamic Models

Systems, and the models which they represent, may be either static or
dynamic. Some models such as those which reveal the relationships between vari-
ables like height and weight, or those which show how air pressure and flow in the
respiratory tracts of animals are related, are static. They demonstrate events in
a system at one slice of time, and in this ''snapshot'' represent a situation in which
there is no change, ' :

Dynamic models, on the other hand, introduce the notion of changes in
time. In these models which are more like a motion picture than a snapshot,
variables which change in some orderly way are represented. Models of population
change in a town or in the world speed of development of epidemics, or some aspects
of a heating plant are all representative of dynamic systems.

Section 6. A Population Model

20% of all thé people who have ever lived are alive today. This is a vivid
kick-off for a discussion on the population model and "explosion'.

Using table 2, the concept of Z or summation of population-is introduced.
The teacher should use his or her judgement about revealing that this is integration.
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, The histogram (Figure 16) reveals the relationship that the heights of

the bars go up each ten years, but become increasingly larger. A smooth average
line may be fitted by connecting the corners of the tops of the bars., This produces
a non-linear line which is exponential,

Many, if not most, systems in the real-world are non-linear, and the
output is not relative to the input in a simple, constant-proportional way. Popula-
tion growth, the build-up of a rolling snowball, and the cooling of a cup of coffee
are all non-linear processes. In these particular cases, the output of the system
at any particular time is related to the input in such a way that it depends on the
particular state of the system at that time; the relationship, therefore, is not
constant, and a graphical plot is not a straight line.

N Exponential change in time is an important kind of non-linearity. It is
extremely prevalent in nature and in engineering. The examples cited above are
exponentially-behaving systems; growth and decay are proportional to accumulated
size--that is, the larger a quantity becomes, the faster (or slower) it grows.

'The population model is expanded in Figure 18 to the year 2200 and in
Figure 19 to the year 2700 to reveal a fantastic growth rate which surely is not
expected. At the present time, there are approximately 2250 persons per square
mile while the population model predicts 15 persons per square foot by the year 2692

Section 7. An Im Broved PgPulatlon Model

‘ : It is obvious from the above figures that the population model is incorrect.

| Biologically, there are many examples which parallel human population growth. At

D first, these models grow exponentially but the rate of growth sooner or later begins

‘ to lessen and in time will reach zero. One estimate expects our population to ..
stabilize at a value of a little less than 10 villion in about 100 years.

‘Although the present increase in population is abocut 2% per year, thkere
is no doubt that this rate must decline. Biologically, either the birth rate must
decline or the death rate must increase. In spite of some opposition to birth control, -
the other alternatives to limiting the population are highly unpleasant alternatives.
The present growth of human population is the result of our conquest of disease and
the enormous increase in our food supply. This leveling-off of various bmlogmal
examples follows an S-shape curve known as a sigmoid.

Section 8. Uses of PoBulation Models

2 .

Local, state and federal agencies use population models to predict trans-
portation needs, school planning, and recreation areas. Voting districts use census
figures which change every ten years and sometimes do not fairly represent the
changing population picture. Often the effects of a model react on the real world,
changing it. In planning a more effective transportation system, for example, a
model may indicate the need for increased facility in a particular region. If that
indic ition is put into practice, the region may then become even more populous,
since with adequate transportation facilities, towns tend to grow larger more quickly.




Section 9. Model Application

Many models can represent one system. For example, an air conditioner
can be described by a thermodynamic model which relates to heat transfer through
the systems, a control model which represents the functions of thermostat, electri-
cal parts and wiring network, or a mechanical model which describes the moving
masses, their mountings, and their vibrational and acoustical couplings. Each of
course is a part1al model which cannot represent the entire system, but each has
great utility in permitting analysis, pred1ct1on, and design control of important
sub-systems of the whole ensemble.

Conversely, one model can represent many different systems. For
example, exponential growth and decay describes the behavior of a large number
of phenomena. Besides population, cups of coffee, and snowballs, such disparatc
things as the growth of living organisms, the spread of chain letters, coasting to
a stop, accumulation of compound interest and the operation of nuclear reactors
all behave according to exponential laws.

Section 10. Model Equivalence

Models start out by bei.ig conceptual--a set of ideas about some real-
world system. They can then be expressed in many different but equivalent ways.
The idea of equivalence can be seen by considering that the real-world system is
a "black=-box' having certain inputs and outputs. What is important is the functional
relationships between inputs and outputs--the changes that occur at the outputs as
various signals are applied to the inputs. For equivalent functional representation,
what is inside this or any other ''black-box'' is immaterial so long as the input-
output relationships are analogous. Thus if we consider a real nerve cell, for
instance, with its complicated stimulus-response relationships we can have many
'"black-box'' equivalents. So long as the signals change appropriately with specified
inpu. signals, it is immaterial whether what resides within the 'black-box'" is a
real nerve cell or anything else whatever.

Of the many different kinds of modeling vehicles available, there is
generally little difficulty in making an appropriate choice for a particular problem.
One chooses the most revealing (economy being a constraint).

Very often a mathematical model becomes quite complex and it is con-
venient to resort to a computer simulation. When there are many variables and
many simultaneous equations to handle, the speed and flexibility of a computer
(either digital or analog) provide a very powerful modeling vehicle.

In being able to manipulate numbers quickly, accurately, and flexibly,
computers permit various modeling guantities and relationships to be easily handled
and changed so as to run rapidly through the properties and predictions of many
different versions of a model.

In this case, the programmed computer becomes a working model itself.
It literally then can be a functioning representation of the cooling of a cup of coffee,
the growth of world population, the vibration in an air cenditioner, or even of
another (difficult) computer. .
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" mented in many forms, and how models are used in engineering for analysis and

Sometimes however, even the very flexible mathematical or computer
simulation models are inconvenient or impossible. The complex, nonlinear
interactions of some systems are at times sufficiently intricate that the construction
of special-purpose hardware (like an electronic or hydraulic analog) is much more
appropriate. In such cases one introduces the electrical or fluid signals at the
input of the model and observes its perforinance by measurements of the output.

Section 11. Summary

The overall intent, then, of this chapter is to show how models are present
in all our consideration of the real-world, how they range from vague imprecise
verbal constructs to highly accurate and revealing abstractians which can be imple-

design evaluation and prediction, thus leading to a more complet- understanding
and control of the real world.

V1. Laboratory Experiments and Placement

There are three laboratory experiments for this chapter. Experiment
XII: Is it an Elephant? is similar to the Chem. Study where the student tries to
predict the contents of a container without access to the interior. Exp. XIIL:
Measurement Modeling and Prediction, is intended to predict cap and gown size
for graduation from a sample taken in the Junior year. Exp. XIV: Traffic Flow
Study, is closely related to the material in the text (and could be modified to follow

the text exactly). ,

VII. Transparencies

N / .
; <— THROAT
TRACHEA
BRONCHICAL
 MODEL
| . «— TRACHEA

\\‘-—'BRONCHlAL

LEFT LUNG | RIGHT LUNG




VIII. Quiz, Test & Discussion Questions
A, Quiz Questions: (Text section in parenthesis)

1. (1) '""No model is ever complete''. Would it be helpful if one could
in fact construct a complete model? Explain briefly, . -

Ans.: A '"complete'' model would have to be completely equivalent to
the entity modeled, and so would lose all the advantages of a
model. '

2. (1 & 5) Discuss the differences between (a) functional and descriptive
models; (b) dynamic and static models. Give an example of each.

Ans.: A descriptive model is usually static: it does not change with
the passage of time. A functional model is usually dynamic,
and allows for the changes that occur as time goes by. The
first three models in the chapter are descriptive, the population
models are functional.
3. (1) Suggest two reasons why a mathematical model may be specially
desirable.

Ans.: Inexpensive, convenient for computation of predictions (including
''computerizing"), precise in showing relationships, often easy
to refine, etc.

4. (1) When a model is first designed, what is the next step which
should be taen with it?

Ans, : Test it against reality.
5. (2) Fig. 2 shows the height-weight data for 17-year-old men as a

somewhat scattered cloud of points. Explain why it is reasonable and
useful to draw a particular straight line through these points.

Ans.: The straight line offers a quick way to approximate the average
weight for each given height (or vice versa), and also offers a
quick way to represent the data with an algebraic equation as a
model. ,
6. (2) The greatest height shown in Figure 3 is about 6 feet. Would
you be justified in using the graph to predict the weight of a candidate for
end, 6'6" tall? Why?

Ans. : This is an extrapolation, but not very far beyond the measure-
ments. Since the latter scatter anyway, it may not be
unreasonable to make the prediction as suggested. But either
a yes or a no answer should be acceptable if supported by good
reasoning.

7. (4) Can the graphical model of airflow and pressure in the breathing
apparatus of an animal (Figure 14) be used when it is breathing out? If
so, how? If not, why not?

Ans.: Yes. Use the portion of the curve in the 3rd quadrant.
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8.

10.

(5) The diaphragm control on a camera is often marked with the
following numbers (called stops): 11,8, 5.6, 4, 2.8. In going from any
stop to the one with the next smaller number, the amount of light admitted
to the film at a given shutter speed doubles.

(a) If the light admitted at stop 2. 8 is called "L', how much light is
admitted at stop 11, shutter speed remaining the same?

(b) If the proper exposure for certain conditions is 1/25 sec at stop 11,
what would it be at each of the other stops?

(c) Do the answers to (b) form a linear or a non-linear relation?
Ans,: (a) LJ/16.

(b) At stop 8: 1/50 sec; at 5.6: 1/100 sec; at 4: 1/200 sec;
at 2.8: 1/400 sec.

(c) Non-linear. (since stop area x time = constant, this curve
* is a hyperbola.)

(5) Suppose you have a cube of wood, L units on a side. Now cut
the cube into smaller cubes, each 3 L units on a stide. Cut these in turn
into cubes each %L units on a side, and so on.

(a) What is the total surface area of the original cube?

(b) What is the total surface area of the 8 cubes which result from the
first cut?

(c) What is the total surface area of the cubes resulting from the
second cut?

(d) Is the increase in area linear or non-linear?
Ans.: (a) 6 L2
(b) 12 L2

| 2
(c) 24 L

(d) Non-linear

(6) In the text, several factors which affect the growth rate of a town
are listed: birth rate, death rate, nearness of other crowded towns,
transportation system. Suggest 5 other factors which might influence the
growth rate of a town., In each case, explain briefly why the factor would
be likely to increase or to decrease the growth rate,

Ans.: For example: Cost of real estate (if high, negative effect on
growth rate). .
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11. (9)

B.

3

Ans,:

Ans,:

For example: Cost of real estate (if high, negative effect on
growth rate).

Quality of schools (if high, positive effect).

Tax rate (high, negative).

Water supply (good, positive).

Sewer system (adequate, positive).

Well-paved roads (positive).

Good public library (positive).

Shops (if numerous and varied, positive).

Local industries (probably positive up to a point, but debatable).

Zoning law (if stringent, negative, perhaps; debatable).

We have seen that it is possible for one system to have a number
of different models which apply to it. Many times an engineer finds it
necessary to have models of sub-systems. Suggest 3 models which could
be used to describe a submarine,

Test Questions

1.

Models of heat flow, controls, enginey, periscope, etc.

Below you will find a model of adult male rabbit trachea-bronchial
systems as measured and reported by Dr. Jones after studying 1000
normal, healthy male adult rabbits.

TN

LEFT
BRONCHIAL
TUBE

|

P, = pressure at mouth

P, = pressure at branch
TRACHEA % of bronchial tubes

P3» P4 = pressure at left
and right lungs

f = flow rate of air in

RIGHT respective tubes in
BRONCHIAL cu. crrt. /sec.

TUBE

fi=2(p1-P2)
f2 =1(p2 - P3)
f3 =0.5(pp = Pyg)
fj =12 + 43
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Questions:

a. What is the physical meaning of the coefficients 1. 0 relative to
0. 5 of the left bronchial tube vs. the right bronchial tube?

b. Ifp,=p, how much air will enter the right lung in one second?
c. Ilfp,= 2p3, is the left lung taking in air or exhaling air? |

d. Ifp, = 760 mm. Hg., p, = 770 mm. Hg., p, = 780 mm. Hg,

Ans.:

a. The slopes of the flow (f) vs. pressure difference (Ap) curve
are the coefficients 1.0 and 0.5 and correspond to the size of
/the left and right bronchial tubes respectively.

b. f3=0.5(p2-p4)=0.5(p2-p2)=0.5(0)=0.

c. f,=1(p,-p;)=1(2p; - p3)=1ps)=ps;

therefore, the left lung is taking in air.

d. f, =f,+f

1 2 3
Z(Pl - pz) = l(Pz - P3) "' C. S(Pz - P4)
2(760 - pz) = l(p2 - 770) + 0. 5(p2 - 780)

1520 - sz =p, - 770 + 0. 5p, - 390
1520 + 1160 = 3.5 P,
2680 = 3.5 P,

766 mm. Hg. =p,

cu. cm.

f secC.

3= 0.5(p, - py) = 0.5 (766 - 780) = 0. 5(-14) = -7

f

2(p; - p,) = 2(760 - 766) = 2( 6) = - 14 S S l

1° sec.

2. Popville, Nebraska had a population of 10, 000 people":‘i'in the year
1966. A study of the population trend for Popville shows that the
town has been losing people at a rate of 1% per year. Predict the
town's population in 1968 if you assume no change in this rate.

Ans.:
Population at the end of the year 1967 is 10, 000 - (0. 01 x10. 000) =
10,000 - 100 = 9,900
Population at the end of the year 1968 is.
9,900 - (0.01 x9.900) =9.900 - 99 = 9, 801
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3. Below is a graphic model of the height-age growth function of giris

at East High School:

64| .

HEIGHT Lela e
Height (INCHES) ooe %
(inches) 60 - ... *e
s8 |- o
o. :0.. o*
56F
| 1 | } 1 |

2 13 14 15 16 (7 AGE (yrs.)

a. Place a'curve'" in the grid above that most accurately predicts
average for all the girls.
| b. "What is the average growth in inches per year for this group of
girls between ages 14 and 16?
‘c. If Sue is 12 years old and is 56" tall, what statements can be
justifiably drawn from this graph concerning her height when
? she is 177
; Ans.:
a.
¢ ]
HEIGHT .
Height (INCHES)
(inches)
|
17 AGE (Yrs.)
1 1 3 inch
b. 623 - 593 m.
-c. If Sue is an average girl from East High School, then it can

reasonably be expected that she will be approximately 64 inches
tall when she is 17 years old.
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Hi-Fi engineers often use an electric circuit model of a loudspeaker
and its enclosure. Is this model functional or descriptive?

Ans.:

A descriptive model is a verbal picture, therefore, the model
is functional - it acts in a normal expected way.

C. Discussion Questions

1.

A good balsa wood scaled-down model of the SST (super-sonic transport)

has many properties of the envisioned real aircraft, List five of the
properties of the real aircraft that the balsa wood model cannot

represent,

Ans. :

Skin temperature

‘Strength of material

a
b

c. Ratio of weight to length
d. Any internal functions

e

Effect on plans of shifting rudder and flaps (while they are
changing position)

g

Psychological effect on passengers

Automobile manufacturers make clay-wood mock-up models of their
""new'' cars while they are in the planning stages. List as many good
reasons you can think of for this modeling job.

Ans.:
Esthetic design Contour of dies
Style |

Streamlining

There are many biological limits on population growth, mainly food
and space. A tactful approach to a discussion of birth control or any
of the many other means of controlhng or causmg a limit on b1rth
would be very beneficial to discuss in Chapter B-3. '

IX, Supplementary Materials

A. Supplementary Ideas That Can Fit Into Text Exposition

1.

In developing the idea of integration under a curve (Fig. 16), one can
show how the fineness of quantization of the histogram bars influences
error. For instance if the bars are 25 years wide (instead of 10) the
coarser steps which result will produce much larger departures from
the fitted exponential curve. Conversely, as the intervals are made
smaller, the number of steps increases and the maximum distance
from any point on the staircase to the exponential curve gets smaller.
In the limit, of course, the departure goes to zero (i.e., if the
population is counted continuously there is no error).

B-3. 22
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1.

10.

An example of progressive model evolution which shows how real-

world measurements and improved theoretical models interact to

provide a converging approach to reality in exemplified by the develop-
ment of celestial mechanics. The sequence of models represented by
the ideas of Ptolemy, Copernicus, Kepler, Newton, and Einstein
illustrate the point.

Chemical models are illustrated by simple rate-dependent reactions
like mixing or catalysis, or by much more complex systems such
as the intricate molecular models for genetic structure (see DNA-
and RNA - based models which have been widely discussed; e. g.,
Scientific American within last two years). ‘

Some other examples of exponential functions are: electric light
heating or cooling (the turnoff of an automobile headlamp is readily
perceived as non-instantaneous), embryo cell division (there are
about 40 doublings for a human), crystal growth, transmission
through a series of optical or acoustic filters.

B. Suggested bibliographic references:

‘Beament, J. W. L. (ed.): Models and Analogues in Biology. (Symp. of
‘Soc. for Exptl. Biol., No, 14), New York: Academic Press, 1960.

Clough, G.C.: Lemmings and Population Problems. Am. Scientist
53(2), 199-212, June, 1965. : , |

Davis, K.:. Population. Sci. Am. 209(3), 63-71, Sept. 1963.

Harmon, I..D., and E.R. Lewis: Neural Modeling. Physiol. Rev.
46(3), 513-591, 1966.

Hesse, Mary B.: Models and Analogies in Science. University of
of Notre Dame. Press, 1966. ‘ ~

Morkert,. Clement L.: Biological Limits on Population Growth, _.
New Haven: Yale Scientific Magazine, November 1966, pp. 6-8,16. -

Rosenblueth, A., and N Wiener: The Role of Models in Science.
Phil. Sci., 12: 316-321, 1945. 5 . -

yon ﬁeumann, J.: The Computer and the Brain. Yale University
ress, 1958. .- . .

Wynne-Edwards, V.C.: Self-regulating Systems in Populations of
Animals. Science 147, 1543-1548, 26 March, 1965.

Current issues of Popular Science and Scientific American have many
good examples of modeling.
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C. More Realistic Model of Population Growth

In the 1966-67 text, an improved population model section was included
and is presented here if the teacher so desires.

We note that although the present rate of increase of world population is
2%, it will not remain constant. There are several reasons why we can expect
that it cannot continue to be the same or to grow larger indefinitely. In order
to make our dynamic model more realistic, we must include a factor which
accounts for the possibility of changes in growth rate. It then is possible to
develop a more realistic model in which the population will not grow indefinitely.

It is easy to do this if we change the form of our original expression, which
was:

P=P_+ Zpi

iees, the total population at any time is expressed as the original population
plus the sums of all the increases. An alternative way to state this symbolically
is to note that a 2% increase means that the population for a particular year is
1,02 times the population of the previous year. In the example we considered
the population in 1966 is (3, 000, 000, 000) (1.02) or 3, 060, 000, 000. Similarly
the population in 1967 is {3, 060, 000, 000) (1.02) = 3, 121, 200, 000. Suppose that
we let P_ stand for the population in the nth year. Then we can write for the
populatig‘n of any 2 successive years:

1:,n+l

The factor 1. 02 in our example is called the net growth rate. If we symbolize
this by r, then we have a general formula for our sample demographic model

= 1.02 Pn

1:,n+l

Now what we need is a way not to express r as a constant value such
as 1.02, but togive it some flexibility so that the effects of various changing

influences on population growth rate can be included. A

. What we need is a new net growth rate R which gets smaller as the
population P increases. With this the continued snowballing caused by a
constant growth rate can be pinched off. This reflects the factors such as.
those we mentioned which tend eventually to limit the maximum size of the
population. ' ,

We can introduce a hypothetical growth rate R so that

=rP
n

R=r-c(P-Po)

This means that the new growth rate is equal to the old growth rate minus a
quantity that'is proportional to the change in population. The quantity ¢ is‘ a
constant, and (P - P_) is simply the growth of the population from the initial
to the present value.” As the population grows larger the net growth rate R
becomes progressively smaller, since'c(P - Po) is subtracted from the value
of r. .

-12

For the purpose of illustration, we might assume that g 3x10 9" Then
we can calculate that as the population increases from 3x10" to 6 x10

™ " B-3,24




(hence a difference P - P o of 3 x 109) the growth rate changes from 1. 02 (our

old 2% increase) to

R=r-c(P-P)=102- (3x10"'%) (6 x 10%. 3 x10%)

R=1.02-(3x10"1% x (3 x 109
=1.02 - (9 x10~3)
= 1.011

in Fig. 22. The line plotted has a slope of -3x10"

. GROWTH,  *
. RATE R -

- 1.02

SLOPE = -3x 102
1.01F

1.00}£-2

~

0.99

Fig. 22 Hypothetical changing rate of population incrcase
as population grows. '

We can plot this new growth rate as a function of thfzcbp,;xging popn.'.ation as ahqwn

(which is the constant’
rate decrease we assumed). It starts at R=1. 02 {the old 2% rate) and becomes

progressively smaller as the population increases. When the population grows to

, 7. 2 billion the rate drops to 1.007 (i.e., only 0.7%), and at 9. 67 billion it has
; dropped to zero; no further growth occurs, and the population has become stable.

12" POPULATION P.
« +.IN BILLIONS

By substituting our new variable rate R into the expression for our
model, we have; - )
: - Fat1 = RP,
) or: R .
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Py =lr-c (P, - P Py | |
We now can construct a new graph which will predict the population growth with

a variable rate of increase. If our original population is P,=3x 109, Fig. 22
indicates a rate 1. 02 for the year. At the end of the first year the population will

be (3 x 109) (1.02) = 3.06 x 10° an increase of (0.6 x 109).
| Our equation can now be used to find the population for the next year]

_ -12
P,y =[1.02-3x10

(.06 x 10%)] 3 x 10°

This new population (Pn +1) is now used as the initial population (Pn) and
the new rate [r.-c(Pn -P o)] replaces the original rate (r). The computation is

repeated for each succeeding year until enough data are secured to complete the
graph.

»- With this new plot of the total population over the years, as in Fig.
B-23, the effect of a constantly diminishing R is clear., The increase of popu-
- lation levels off rather than grows explosively, and for the particular rate of
change we assurned, it effectively cuts down the population growth rate to zero
in less than a century. The population now stabilizes at a value of little less

- ’ |
213
91 121
;_j I
@ |0 |
< o

L
_ E T
| S 6
RS
8 ) | | |

1965 2000 - 2050 2IOO 2150
' | - YEAR

Fig. '23 With a decreasing growth rate as population goes up,
- the total grows more and more slowly, finally approaching
a stable' limit at 9. 67 billion.

L - than 10 billion. We see from Fig. 22 that if the population should happen to
increase past this value (the factors influencing growth rate may vary somewhat
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and so cause some temporary fluctuationsj, then R becomes negative, and with 1
a negative rrowth rate the population begins to decrease, back to where R= 1. !

On the other hand, if a temporary fluctuation causes a population decrease
to the point where the growth rate R becomes positive again, then there will be
once more an increase until the population levels off. R has a stabilizing ine
fluence, and the population will tend to stay in equilibrium at the 10 billion value
where R = 1 (where the birth and death rates are equal).

This is a model which is entirely hypothetical and should not be taken as
an exact prediction of things to come. Although we have seen that with the re=
placement of a constant growth rate with one which depends on the magnitude of
the change, we do get a reasonable model that predicts leveling off to a stable
equilibrium, the model must be tested by checking it against the real world.
Unfortunately the variable rate of increase which we agsumed (Fig. 23) was
{ rot based on real data. That kind of information is not yet available in sufficiently
| accurate form, though increasingly detailed demographic studies may soon make

possible a more dependable and realistic v.lue.

Undoubtedly the many factors which influence population growth will
make necessary a still more complex model. Social, economic and political
| factors change their values rapidly and these will effect changes in the model
| as time goes on. The process of continuous testing and modification of models
to make them agree with or predict various aspects of the real worid is an
‘ important and challenging aspect of model making.

' D. Demonstrations

1. As an introdution to modeling the teacher may wish to use the
following item: (one extra day if used)

A consultant to a pipe line company that just completed a new line
over rolling hill country was confronted with the problem of the
pump motors burning out before oil was delivered at the terminal
of the pipe line., In formulating his solntion the consultant built a
model as shown below,

\ ' /CLEAR TRANSPARENT TUBING MIN 1D.=1/2"
A

Colored water is added to the open tube until it stands in equilibrium

as shown in Fig, 1. The pupils may then be asked, '"What will be the

height of the water level in tube A when the first drops are delivered to
. beaker B if we add more water to tube A?"

Aruitoxt provided by Eic:




)

The pupils may be surprised to find that the liquid level in tube
A will be more than twice the height of each "hill", ,

Fig. 3

This phenomenon can be explained by using a second model.
(Really a mfodel of a model,) Assume the tube to be in the shape of
a U with the trapped air in the right hand column. The fluids will be
in equilibrium as shown in Fig, 3,

The consultant solved the ''real life" problem by installing '""bleeder -
valves'' at the top of the hills where air was trapped in the pipes.

The demonstration apparatus can be easily assembled using approxi-
mately 12 feet of clear plastic tubing (be certain to use large, clean
tubing--at least 1/2 inch inside diameter) and a piece of plywood to hold
the tubing in the desired shape.

In discussing models the teacher may wish to show models of the DNA
molecule and comment on its structure. :

Industrial chemists use models in synthesizing new chemicals. The

_replacement of certain groups of atoms by other result in a new product

with properties different from the original.

The teacher can show some transitions using molecular models. If
these are unavailable, toothpicks and gum drops may be substituted for
bonds and atoms. A simple transition that may be demonstrated is
Methane CH 4 18 converted to methyl alcohol CH3OH by the oxidation of
one hydrogen atom

H H

. 'H—cl:—H +30, H—C—OH

H H

Transparent plastic models of bridges, airplane wings, etc., may be
viewed in polarized light. When the transmitted light is passed through
a second sheet of polarizing material, points of stress will be evident.
An overhead projector, two sheets of polarizing material and the
transparent plastic model will enable the entire class to view the areas
of stress. |
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Chapter B-4
MODELS AND THE COMPUTERS

I. Approach

1. The analog computer used in the laboratory includes integrators. Much
of this chapter is occupied with the development of the idea of integration (and of
differentiation), without the calculus notation.

2. Models are static or dynamic (have motion and undergo change). Inputs
and outputs to models are signals with numerical values and may be represented
as graphical or model forms. Signals changing with time, as velocity and accelera-
tion, may be determined by finding the slopes of the displacement-time graph and
velocity-time graph respectively (or by differentiation). Velocity and displacement
may be determined by finding the areas of the acceleration-time graph and velocity-
time graph respectively (or by integration).

3. Analog computers may be used as functional models and bv integration,
velocity and displacement may be found from an acceleration signal. The analog
computer model can represent many different systems.

II. Outline

1. Introduction

The analog computer can be used to model many systems, some in-
volving rate of change with respect to time.

2. Signals, Inputs and Outputs

Signals are the numerical values of an input or an output and can be
represented in tabular form, in graphs, or by equations. Some signals
that can change with respect to time are velocity and acceleration.

Labs XV, XVI, XVII can be started now (but see Part VI of these notes).
3. Signals of Motion

In this chapter, motion is described and confined to motion along a fixed
route (not necessarily a straight line). The position signal is called dis-
placement, ''x''. Velocity and acceleration are defined in terms of the con-
cept of '"'rate of change with respect to time.'" Both graphical and incre-
mental definitions are given, and the symbol for increment (or difference),
A is introduced. (The notations dx and dt are also introduced, but only
briefly.) This section is long and will take several days. The concept of
x — v — a is important and then poses the question: Is this relation valid

in reverse?

Labs XVIII, XIX, XXI.
Transparencies B-4. 3a, 4.3b, 4, 3c.

4., The Relation: a—v—x

We expand the important meaning of an area under a curve and apply it
to signals of motion. The concept of approximating the area under a curve
by the area of a discrete number of rectangles is developed. In the process

B-4.1
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of making this approximation better and better, the concept cf integration

is introduced. The meaning of the symbol (introduced in Chapter B-3)

is amplified as indicating a sum of a discrete number of values while the
symbol | is introduced as indicating the sum of an indefinitely large num-
of values. Some differences between discrete and continuous models are
discussed, the concept of ''initial condition'' (e.g., initial displacement and
initial velocity) is explained, and the relation x ==v— a is verified. This
section is also long and will require more than one day to fully develop. It
includes an ex.mple of acid flow in gallons per hour vs. time in hours which
is analogous to the v— x relation.

Labs XXII, XX.
Transparencies B-4,4a, 4.4b, 4.4c.
Film F-9.

: 5. A Model of Motion

A dynamic model describing the motion of a vehicle along a fixed route
is discussed. A step-by-step procedure is used to develop a block diagram
of the model where the mathematical relations among the several inputs and
outputs are described (using the relation.a — v — x and information about
the design of the acceleration control) in terms of blocks called scalors,
adders, and integrators (or area-finders).

Lab XXIII.
6. The Analog Computer

Using the motion model as an example, a programmed analog computer
is presented as a functional model which is applicable to many different sys-
tems. The schematic symbols for the analog computer components (adder,
scalor, integrator) are presented, and the point is made that ""operating"
the computer is analogous to operating the real system.,

Labs XXVI, XXIV, XXV (in that order)
Film F-8.

7. Summary

A simple restatement of the principal ideas and the key words and phrases
of the chapter is presented. It should be emphasized that the analog computer
can eliminate the need for construction and study of many full-size models.

III. Objectives
Students should clearly understand these ideas and concepts:
A. Dynamic modeling using models of motion as an example.
. Meaning and use of signals for inputs and outputs.
. The model of vehicle motion along a fixed route.

. Differences between discrete and continuous models.

B
C
D
E. Meaning of displacement (x), velocity (v), and acceleration (a).
F. The relations x— v—a, and a — v— x.

G. The programmed analog computer as a type of functional model.
H

. Use of one model to apply to many different systems, eliminating the
need for full size models,

B-4.2
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t They should develop these skills: *,
I. To read, draw and use graphs (see IX A).

J. To find the slope of a curve and (approximately) to find the area under |
a curve. 'g




_ IV. Homework Problem Solutions

Relative difficulty of questions in B-4:

EASY MODERATE DIFFICULT
%1, 3, 13. 5. 19.
%2, 9. 15. % 6. 20,
4. %11, % 16. 8. 21,
7. 12. 14 22.
10. % 17,
18.

K *Key Problems to be Attempted by All Students.

4-1. A graph of an automobile trip via an interstate turnpike is given below.

Draw a graph of the velocity of the car during this trip.

X
(MILES) 4
360}

300
240
180}
120
60

1 L 1 2

! 2 3 4 s t(HOURS)

0

Answer: The graph is a horizontal line at 60 mi/hr,

4-2, A distance-time curve for a 100-mile auto trip is shown below.
Determine the velocity:

(a) 120 minutes after the start,

)
(b) 30 minutes before the end.

(c) When the car is midway between the starting point and the des-
tination,
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X
(MILES) 4
100
80
60}
-
20}
/l § 1 1 [} [1 A_’
(o) 30 60 90 120 150 180 t(MINUTES)
Answer:
(a) v = 0 because slope is zero.
(b) =_./7\_}_<_=100-40 =60=1mi 60 mi
VT AL 180 - 120 [49) min hr
(c) _ 60 -20 - 40 mi 60 min _ 48 mi
v 0 - 60 50 min - hr hr

4-3,

4 seconds.

Answer:

(a) (ft.)" #
240

200
160
120}

80

It is found during an acceleration of a racing car that it'is 15 feet from
the starting point at the end of the first second, 60 feet from it at 2
seconds, 135 feet in 3 seconds, and 240 feet in 4 seconds. Plot these
data as a smooth curve and determine the velocity at 2 seconds and

_px _ 180 -0
(b) v =33 T
_ 180 _ 60 ft
3 sec %
_ 240 - 0 |

() v=g—2—
~ 240 = 120

2 sec

N




4-4,

4-5,

A river has a current velocity of 10 mi/hr. A motor boat on this
river moves through the water at 30 mi/hr.

(a) What will be the actual velocity of the boat when going upstream?
(b) What will be the actual velocity of the boat going downstream?
Answer:

(a) Actual velocity = 30 - 10 = 20 mi

hr °

(b) Actual velocity = 30 + 10 = 40 mi

hr °

A graph of an automobile trip via a variety of roads and highways is

given below.

(a) Draw two graphs of the velocity of the car during this trip, taking
slopes at 30-minute intervals'and at 60-minute intervals. What
accounts for the difference in the two graphs?

(b) During which period of time was the velocity the greatest?

The least?
X
(MILES) ?

300

200}

100
_./ N " L A L >
0 I 2 3 4 5 6 t (HCURS)

Answers:

(Note: both plots are given below on one set of axes, but the curves
are omitted for greater clarity.)
4

(a) "
hr
100}
+
+ +
50} + + +
+ .+
A v L v 1 —_ ) Y ' ' _“
ON THE 172 | 2 3 4 5 t {HOURS)
HOUP INTERVALS 85 50 15 [0 10 50 90 160 75 45

60MIN INTERVALS 50 i0 50 150 45
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(b) v =150mi/hr att =4 hr ; v is too small to measure at the
start, and is barely measurable at t = 5.5 hr.

The velocity of an automobile at various instants after starting time is
given in the graph.
(a) Draw an acceleration versus time curve for this motion.

(b) With a graphical construction determine the acceleration of the
car at the 8th second after the start.

(c) Describe the motion of the car between time 7.0 and 7.5 seconds.
(d) How far did the car travel between the times 7.0 and 7.5 seconds?

(e) Using the graph, determine the area underneath the curve as
accurately as you can. How far did the car move between 7.0 and
9.0 seconds?

R 4
(MVHR)BO-
60}
40
20
c | I 1 i | —
6 7 8 9 10 {(SECONDS)
Answer:
(2)
2, ¢ . ft
a (ftf sec”) cok / (b) approx. 6 Py X
" (c) It accelerates slowly
from 0 to about 2 ft
- {d) D = rate x time
20} rate is approx. 20 mi
hr
I t = 0.5 sec.
0 : L T
| & 7 8 9 0 HSEC)
D = rt = 20 mi hr 5280 ft 0.5 sec 5, 14 - 15 ft.

hr = 3600 sec % mi

4-7. If the earth is about 1.5 x 1011 meters from the sun, and is orbiting in
essentially a circular orbit, what is the velocity of the earth in its orbit

around the sun? 11 -
D _2rx1.5x 10 meters

Answer: v == 7 = = 3 x 10% meters/sec.
3.15 x 10 seconds

t
)
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4-8,

4"90

Show that the slope of the exponential curve given below is the same at
any point as the value of the curve itself at that point. Show also that
one plus the area under the curve between 0 and any time t is the same

as the value of the curve itself.
e
18

T i
2 T‘—‘/

0 04 o8 12 16 20 24 28

>
t

Ans. First solution requires determining slope of curve at a number of
points and plotting it to get (at least approximately) a replica of
the original curve. Second solution requires area determination
up to one value after another of t, in each case adding 1, and noting
that the result is (nearly) the same as the ordinate of the original
curve at that value of t.

2
Plot the distance-time curve, d = ltZt fromt= 0Otot = 5 seconds,

where d is in meters. Determine tﬁe slope at l-second intervals and
plot the velocity-time curve. Using this curve, determine the area
under the curve in each l-second interval and plot the resultant dis-
tance-time curve. How does it compare with the original curve?

Answers:
4 otx‘ m)
30

20

0 —
! e 3 4 5 1(SEC)




4-10.

v{m /SEC)

10.1

'S
5 t(SEC)
4X(m)
40
30
20
10
0 | 2 3 4 5 *sEC)

The mileposts on the Garden State Parkway start at 0 at the southern end.
You have passed milepost 15 on this parkway at 12:01 P.M, Your velocity
is a steady 60 miles per hour, north.

(a) At what time should you pass milepost 25? 135? 165?

(b) Which of the predictions made above is most likely to be correct?

(c) Which is least likely to be correct? Why?

Answers:
(a) 12:13; 2:01; 2:31
(b) The first

(c) The last, because it is impossible to maintain a steady velocity of
60 mi/hr for any considerable time.

B-4.9
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4-11 A radar operator in the weather bureau at New York City is tracking
an approaching storm. The following graph indicates the distance
from New York with respect to timie.

(a) At 1:15 P. M. he predicts the possible arrival of the storm at
NYC as 3:05. On what did he base this prediction?

(b) If he made his prediction at 1:30 what would the new predicted
time be?

(c) When he makes a new prediction at 2:20, what will be the new
estimated time of arrival of the storm?

X
(MILES
FROM 80
NYC)

60

40

20} CN——

Sm———

0 | j | 1 i | | \ 1 | i 1 |

—»>
00 IS5 30 45 2:00 IS 30 45 30015 30 45 4:00 ¢4

Answers:

(Note: the student may fail to realize that the radar operator has, at
at any instant, only the graph from 1:00 up to the time in question).

(a) On extending a line between the positions of the storm at 1:00 and
1:10 until it intersects the abscissa.

(b) 2:15.

(cl) 3:05 if speed is averaged from the 1 PM distance and the 2:30 PM
distance.

(cz)After 4 PM if the slope just prior to 2:30 PM is used.
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4-12,

An airplane landing at an airport touches down on the runway at 150
miles per hour and decreases its speed linearly to zero in a thirty-
second interval, What must be the minimum runway length for the
safe landing of.this plane?

Answer:
- 150

MILES PER HOUR

Distance = Area under curve

_1 _ 30 sec 150 mi hr
Area =z bh == x " % * 3500 sec

_4500 _ 5 mi
100} 7200 8 ’
or 3300 ft.
50 F
o 1 1 ] 1 1
D 5 0 IS 20 25 30

TIME IN SECONDS

4-13. An acceleration signal generated by a spaceman repeatedly opening and

™™

closing the jet valve on the gun that propels him is shown below. What
do his velocity and displacement curves look like?

/1 /

>
0 T 2T 3T 4T 5T t
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Answer:

4-14.

-
E,
b
]
;
g

VELOCITY ————
DISTANCE —————»

SLOPE OF Dvs T CURVE
IS EVEN STEEPER
BETWEEN 4T AND ST
THEN SHOWN BETWEEN
Y AND T

Suppose a body starts from rest with a uniform acceleration of
magnitude a. Show that when the body has attained a velocity v, it
will have gone a distance d that is related to v by the formula

2
v

d=2a

(Hint: Sketch the acceleration, velocity, and displacement curves,
Derive formulas for velocity and displacement in terms of t.
Eliminate t.)

Answer:
The a-graph is a horizontal straight line; hence the v-graph slopes
upward to the right, again a straight line; v = at; and the displace-

ment graph will be a parabola: d = 1 at 2, Then

v
d=%ax 5 etc,.
a

. i » T P e ol .. - ik Sore hea



4-15. One impori'ant appiication of finding areas under curves (i.e., inte-
gration) used frequently by engineers is the determination of the
average value of some signal.of interest. By definition, the averags

value of any signal s is

- 1"‘
JRN Sy P

This equation says that the average value of s equals the area under
the curve of s versus t in the interval betweent = t. and t_, divided
by the length of the interval, t2 - tl. (This is a ge]heralization of

the averaging technique which you have learned in your mathematics
course. )

The current in a Geiger<Mueller tube is used to monitor the level

of radiation coming through the shielding around the corc¢ of a nu -
clear reactor. This current varies with time as shown in the tahle
below. We wish to determine the average value of this current in
order to determine the average radiation level, What is this average
current? (It is advisable to plot the given data to help in the calcu-
lation. )

t(seconds) current (microamperes)
0 66
80
2 76
3 78
4 80 Note: The ampere
5 71 is the internationally
accepted unit of cur-
6 59 rent. A microampere
" 50 is one millionth of an
ampere,
8 53
9 55
10 52
Answer:

Approx. 66 microamperes.
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4-17.

CURRENT
(pLa) 80

]4‘.

70}/
60
50}
aol
30}
20}

o] o

0 1 ] ] 1 1 | 1 1 15
0 | 2 3 4 5 6 7 8 9 10 t(SEC)

4-16, Just before touchdown a plane is moving at 160 mi/hr. The plane
uses 1.5 miles of runway to stop.

(a) How many seconds does it take to stop the plane? (Assume uniform
acceleration).

(b) What is the average acceleration in mi/hr sec. or ft/sec2 of the
plane? (See problem 4-15 for definition of '"average''.

Answer:

(a) Area under curve = 1.5 miles.
_ (160 + 0) mi/hr.

Average speed = > = 80 mi/hr.
e + =D _ : hr 3600 sec . .
D=vt; t =3 1°5m1x%mi x T = $?.5 sec.
V., =V
. _ 2 1 _0-160 _ -160mi/hr
(b) Acceleration = tz — t1 "85 -0 - Z =t sec
= =2,.37 mi/hr sec.

OR -2.37 mi < hr__ . 5280ft _ -3.47f ,
hr. sec 3600 sec mi sec '

A train moving across the country passes a large series of telegraph poles,
equally spaced 30 meters apart. A passenger on the train amuses himself
by determining the average number of poles he passes at 15 minute inter-
vals. The table displays his observations.

B-4.14
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Time Average number of poles passed _

10. 00 1. 0 poles per second
10,15 1.3 " | |
10. 30 1.1 "
10. 45 1.0 "
11. 00 1.2 " ’
11.15 1.4 " |
11.30 1.2 " |
11.45 1.0 " :

(a) Calculate and graph his average velocity at each instant of
observation,

(b) What was the maximum acceleration achieved by the train?

(c) From the velocity versus time graph, determine how far the
train moved between 10:15 and 11:00 A, M.

(d) What was the average velocity of the train in km/hr between
10:00 A.M. and 11:00 A, M, ?

Answers:
(2)
v |

(5es) 44

= 3Om
Sec

sec

V=D , L3pole, 30m ,
sec Pole

1 §

a0}
36|
32
28 |
24|

20} i
16 n ¢ W

12

! .
1 [ 1 1 | - | | -

000 1045 10:30 10:45 11:00 NIiS H:30 11:45
CLOCK TIME
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4-180

4-19,

b _Av _36 -30 _ 6m gommin_ _ 1 _0.02m
()a—At 5«0 5 min 60 sec 50 secl

between 10:00 and 10:05 (the steepest slope).

(c) Displac;erheht is area of v - t curve

; 8m_ , 30min 60 sec  _ 4500,
sec = 2 min

II 30x30x60 = 54000

IIT 30 x 15 x 60 = 27000

IV5:><1§5x60 = 2250

90, 450 m or 90 km.

(d) Average velocity is approximately 34 m

sec
34 m x Km x 3600 sec o 123 km
sec 1000 m hr hr

A baseball moving at 60 feet per second toward a batter is hit in such
a way by the batter that after the hit it is moving at 80 feet per second
in the opposite direction. The bat-ball interaction time is about

2 x 1072 seconds.
(a) What was the change in the velocity of the ball?
(b) What was the average acceleration of the ball in ft/ sec??

(c) If the acceleration was constant, what was the ball's velocity
1.0 x 10-2 seconds after the interaction started?

(d) After the hit, how long would it take the ball to travel back to the
pitcher's mound? (60.5 feet]

Answers:

(a) Assume negative away from the batter and positive toward the batter.
Change in velocity = -80«(+60) = -140 ft

sec
(b) Average acceleration = =140 ft % 1 - =1000 ft
sec 0.02 sec sec

(¢) v = v, +at =60 + (-7000) (.01)

=60 - 70 = -10 ft
sec

_I_)_=60.5ft = 0.75 s
r 80 ft/ sec * ec.

Assume that all of the turnstiles in a ballpark have counters which are
connected to a central device which gives a reading of p, the number of
people per minute entering the park. At noon the reading is zero when

the gates are opened. The value of p increases linearly (i.e., as a straight
line) from zero to 400 people per minute in the first half-hour, remains

at 400 for one-half hour, and then drops linearly to zero by 2:00 P, M.,;
thirty minutes after the game has started. (a) What was the total
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attendance? (b) How many people missed the start of the game?

Answers:
(a) Attendance - Area under p-t curve

I 400 people 30 min

y ‘ X = 6200
( People/ min)? min 2
300
I 40060 12006
209 30, 000 people
100 1 h14

CLOCK TIME

12:00 12:30 1:00 1:30 2:.00

(b) Area = 3 bh = 200 people . 30 min _ 3000 people
(Shaded) min "2

4-20. In June of 1966, Surveyor I landed softly on the surface of Earth's

moon and began taking a historic series of photographs. The velocity
of Surveyor, as it approached the lunar surface, was telemetered to
tracking stations on Earth. This velocity varied as shown in the
figure below. The main retrorocket fired at an instant we have de-
fined as t = o. At this time, Surveyor was 52 miles above the lunar
surface. (a) What was its altitude when the main retrorocket burned
out (at t = 30 seconds)? (b) What was its altitude at t = 50 seconds?

Answers:

Miles/Hﬁ‘\\

7000

6000

5000}

4000

3000

MAIN RETROROCKET FIRES (a) Distance = Area under vt curve
Area I (8000-1400) mi_hr x30 sec
2 hr - 3600 sec
6600 x 30 ~ 28
2 X 3600
Areall 1420 x 30 8 11,7
. mi

Altitude at burn out of main rockets
=52 =39,7% 12 mi

2000
- MAIN RETROROCKET BURNOUT
1000k VERNIER ROCKETS| FIRED
| IL i
9 ol ‘ ‘ ‘ i . (b) Area Il 300 = 20 & 1.7 mi
f 0 0 20 30 40 50  1(SEC) 3600

Altitude at burn out of vernier rockets
12 =2 810 mi
B-4,17




4.21. Dix Hills, New York,stores water for its residents in a large elevated
storage tank. Water is poured into the tank from underground wells
to replenish the supply as it is used. This added water flows in at a
rate q.. The residents drain off water from the tank.at a rate q,. I
q, and q_ (in gallons per hour) vary as shown in the figure, detefmine
tl%e volulﬁle of water in the tank at 10 P, M, if the volume at noon (i. e.,
the initial volume) is 16,000 gallons.

9
s
(10%gal/hr)

301

20r 16 /

T T T TR

T
o 1 1 | | 1 -
12PM 2PM 4PM 6PM 8PM I0PM I2AM  t(hr)
q, #
(10°gal/hr)
30
20 [22
16
Il
IOF
5 6
) ¥ o | | W | x
0 | ] 1 1 [ [ >
12PM 2PM 4PM 6PM 8PM IOPM I2AM t(hr)
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4-22,

Answer: Quantity of water stored at 10:00 PM is area under qq, t
curve minus area under qj, t curve plus 16, 000 Gallons

Areal g ooo%i-l- x2hrs = 30,000

I 11x2 = 22, 000

II1 7x4 = 28, 000

IV 16x2 = 32,000
Total water into storage 112,000 Gal.

V 11x2 = 22, 000

VI 56x2 = 10, 000

ViIiIé6x2 = 12, 000

VIII1é6 x 2 = 32,000

IX22x 2 = 44, 000

120, 000

Quantity of water stored at 10:00 PM
112,000 - 120, 000 + 16, 000 = 8, 000 Gal,

Shown in the figure is a velocity curve that represents the motion of
many physical systems, some being the motion of a pendulum, the
swaying of a bridge, and the movement of electronic charges in the
lamp on your desk. Determine the displacement and acceleration
curves associated with this velocity curve. What is the most signifi-
cant comment you can make regarding your results?

‘s
ANV VA N

-

L L) | L \ t

Answer:

All three gurves are the same shape. The displacement curve is
shifted 90° (or 3 wave length) to the right (note that initial displace-
ment is negative because of the part of the curve to the left of the
v-axis); the acceleration curve is shifted 90" to the left. Of course
there is no particular relationship among the amplitudes of the three
curves, because they are plotted with different ordinate scales.
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V. Development

1. Introduction
A brief discussion of rate of change with respect to time as related to

‘models of moving systems will be sufficient here. The basis for develop-

ing models that undergo change in motion rather than static models should
be brought out and discussed.

2. Signals, Inputs and Outputs

Emphasize that signals are the numerical values of an input or an out-
put. Refer the student to the references listed, namely: the table, the graph,
the equation. Many signal data change with time. In this chapter we spe-
cialize in the signals of velocity and acceleration, Emphasize that they are
signals of motion and will be modeled by use of the analog computer.

3. Signals of Motion

Although the signal of position is a complicated one (six are required for
a car), we concern ourselves with the simplest situation, displacement in
one direction. The reference of the signal value refers to the point at which
the signal is zero, and the positive sign indicates a direction to the right
(East) or up (North). We call this displacement signal "'x'"" even though it
will be plotted along the vertical axis (usually Y in graphing!)

When the signal ''x'' varies with time, we have a model of velocity. The
displacement signal in Fig. 3 also describes the velocity of the body: its
speed and also the direction in which it is moving. Students should be asked
to indicate (read) from the graph how rapidly and in what direction the dis-
placement signal is changing. Sketch quickly on the board several other
curves for them to practice on.

Fig. 4 should be discussed and developed carefully with several examples
of the determination of velocity. The velocity is the slope of the straight
line and represents (for example) a car moving along in a fixed direction at
a constant speed.

Fig. 5 is an example of a displacement that changes smoothly but at a
varying rate. Here the concept of change in x (Ax) and change in t (At) is
used in the construction of the tangent to the curve and the slope of this tan-
gent at any instant of time is the instantaneous velocity. From any graph of
displacement versus time we can determine all of the instantaneous velo-
cities and draw the velocity versus time graph. We can now take this v, t
graph and by using small intervals of time, we can calculate the change in dis-
placement, add these to the original displacement and determine the new
position of the moving object. The teacher may want to explain that the first
process is differentiation, the second integration. In the second process we
reverse the first and find the displacement-time curve from the velocity-
time curve. The smaller the time interval, the more accurate the repre-
sentation,

Acceleration can be found by finding the slope of the tangent of the
velocity versus time graph at any instant of time. This is the instantaneous
acceleration and acceleration is related to velocity in the same way that
velocity is related to displacement, ''Deceleration'’ is sometimes used when
a body is slowing down but negative acceleration is more appropriate. In
the Man-Made World, the application and understanding of acceleration is a

very important concept because the acceleration of a body is directly pro-
B-4o 20




portional to the force acting on the body.

In summary, knowing the displacement versus time curve we also know
velocity and acceleration and we have developed the relationship between
displacement, velocity and acceleration (x— v— a)! The seeds are sown
for finding the reverse process in the next section.

4, The Relation: a=rv—x

Figure 11 shows the obvious fact that the area under the velocity-time
graph will give the displacement. When the velocity-time graph is not at
a constant velocity and the velocity curve is irregular, an approximation of
the curve is developed where rectangles and triangles are drawn to closely
resemble the curve. With more and narrower rectangles we can approxi-
mate mqre closely the true area to get the displacement. The summing
symbol ),is introduced again to signify the sum of the individual areas.
The teacher may remind the class that this is integration and is the prac-
tical tie-in with the analog computer. (It is left to the discretion and ability
of each teach~r to develop fully or simply explain the process of integration
and the statement, ''the integral of velocity with respect to time is the dis=-
placemnent'),

In many examples, there may be an initial displacement which must be
added to computed area to find the total displacement. The acid flow ex=-
ample is analogous to the initial displacement problem. In the acid prob-
lem the initial volume of acid is added to the area under the quantity (gal-
lons/hr) versus time curve to find the total volume of acid produced.

Velocity may be found by determining the area under the acceleration
versus time curve just as displacement was found from the velocity-time
curve. Thus we have established that the Displacement «— Velocity «— Ac-
celeration transition is complete.

5. A Model of Motion

Before deriving a model of a system, the operation oi the system must
be understood. The simple motion system is developed using acceleration
as the input signal and getting displacement as the output signal. The con-
cept of a scalor is introduced as the scaling coefficient and is necessary to
simulate (model) the system. The acceleration is related to the position of
the accelerator pedal and corresponds to the input signal. Put the input
signal into the scalor and its output into an integrator (area-finder) to find
the velocity and this signal into another integrator (2nd area-finder) to find
the displacement.

6. The Analog Computer

Once the model has been developed as in the previous section, a func-
tional model using the analog computer follows directly. The inputs and out-
puts must be analogous to those of the system under study. All that remains
to complete the picture is to introduce the initial conditions of velocity and
displacement if given in the problem. Emphasize that time affects the output
signal from moment to moment exactly as velocity or displacement changes
in a real vehicle. All that remains is to program the computer. The inputs
may be varied and different systems may be operated rapidly without build-
ing the real system.
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7. Summary

The summary includes a review of the key words and their interrelation-
ships. Emphasize that the one model (the analog computer) may apply to
many systems.

VI. Laboratory Experiments and Placement

There are twelve laboratory experiments pertaining to this chapter, all in-
volving the Polylab, the Analog Computer, or the CRO. It is left to the discretion
of the teacher and his individual schedule and laboratory situation to place the lab-
oratory experiments to suit his individual needs. Experiment XX can be done when-
ever convenient before XXIV, XXVI should precede XXIV and XXV. When you
run over the Lab Manual you will see that XV through XXII are concerned merely
with using the hardware. The detailed directions have value as a reference
manual, but it will deaden the interest of most students to plod through them com-
pletely. A better plan is to show what controls are for, mention the chief pre=~
cautions (e.g., not grounding ''hot'" outputs, not losing the CRO trace completely
by random twisting of the H POS and V POS controls), and let them experiment
until they feel happy with the instruments. Suggest that the last four experiments
are pretty fascinating, and the goal is to be able to manage them as soon, and as
painlessly, as possible. The laboratory experiments are as follows:

Expt. # Expt. Name

XV Introduction to Polylab

XV1 Familiarization with the EVM

XVl Introduction to the Analog Computer
XVII ‘Scaling on the Analog Computer
XIX Adding on the Analog Computer

XX Analog Solution to Equations

XX1 Integrating on the Analog Computer
XX1I Integrating with Initial Conditions
XXII1 The Cathode Ray Oscilloscope

XXIV Analog Simulation of Falling Ball
XXV Simulation of Falling Ball with Air Resistance
XXVI Boat Docking Simulation
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VII, Transparencies
TB-4.3a Fig. 4

x (meters)

1S+
2 +
9+

6t
45-F———-
53.

b L
14 L]

[

2 4 6 8

Fig. 4. A displacement signal when velocity is constant,

10
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TB-4.3b Figures 5, 6 & 7.

x (meters)

A_TANGENT TO

ACTUAL CURVE
AT t=1 SECOND

ACTUAL CURVE

—

t
Fig. 5, An example of a displacement Fig. 6. Magnified portion
signal which varies smoothly at a of x vs t graph near t = 1

varying rate, second,

x (meters)
X ,

DISPLACEMENT
SIGNAL

t (gs’econds)
At <

C D

Fig. 7. Determination of velocity,
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TB-4.3c

X
il

—=NUHLOD NDWOWO

-
N

{
o

(b)

Fig. 8 Displacement signal {(a) and corresponding velocity (b).
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|
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TB-4.4a

(mi/hr) 4
ACTUAL v-t CURVE

o~
APPROXIMATE v-t CURVE F

6
: ! : —h >
6 07 08 09 10 t (hours)

Fig. 13. Approximation to actual v,t curve of Fig,

B-2.12.
TB-4.4b
q(gallons/hr)
)
;APPROXIMATE ¢
3000 +
2000 +
I
1000 1 /|
I
| |
(0 | + 4 1 } ' —*L , —
8AM 9AM IOAM 1AM 2PNV IPM t( hours)

Fig. 16, Rate of flow of acid into tank of Fig, B-2,15
on a typical day,
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TB-4, 4c

t |
vi
Vo +O'At;::—— -~
Vo /T
ta tb (b) 1

Fig. 17. Conversion of a~t into v-t graphs.
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VIII. Quiz, Test & Discussion Questions
A. Quiz Questions and answers (Text section in parentheses):

1. (1) . Give two examples not mentioned in the text up to this point of
dynamic situations.

Answer:

For example: flow of water over a dam spillway; winds; weather in
general; alternating current; waves.

2. (1) A coiled spring which is fastened to the ceiling and stretched by
pulling the other end can be described by a mathematical model:
F = -kx, where x is the increase in length of the spring, k is a con-
stant (different however, in general, for different springs), and F is
the force exerted by the spring, The negative sign merely shows that
if the spring is stretched downward it exerts a force upward. Is this
a dynamic model? Defend your answer.

Answer:

There will be a change in the increased length of the spring if there is
a change in the amount by which it is pulled; but this will always be
true no matter when the experiment is performed, there is no need to

make adjustments for the passage of time, the model is static. (For
some classes teachers may care to point out that one can take the

space derivative of F in this case rather than the time derivative,
and in that sense this can be treated as a dynamic model.)

3. (2) What " signals" were employed in the model of the population of the
world?

Answer: The population year by year; the successive years.

4. (3) A boy is bouncing a tennis ball against a wall 15 feet from him.
a) What is the displacement of the ball, with respect to the boy's
position, at the instant it strikes the wall?
b) What is the displacement of the ball at the instant when he catches
it again after it has bounced?
c) If the boy catches the ball exactly 1 sec after throwing it, what
was the average speed of the ball?

Answers: a) + 15 ft; b) 0 ft; c) 30 ft/sec.

5. (3) In the previous problem, what was:
a) the average velocity of the ball between the thrower and the wall?
b) its average velocity during its return from the wall to the boy?
c) its average velocity during the round trip?

Answers: a) + 30 ft/sec; b) - 30 ft/sec; c) O ft/sec.
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6. (4) (1) In each of the cases graphed below, what is the average velocity
of the moving body?

(2) Find the acceleration in each case,

(a) ﬁff) (b) x(ft) (¢) x(ft) (d) x(ft)

20 10 ZOt 5&

104 / NG 111
° 10 OL | 23 4 5 HSEC)

ol 1 1 1 L -5

01 23 4 wse®0 12 ysec) 0 I 2 3 H(SEC)

] ]
-0

Answers:
(1): a) 0 ft/sec; b) - 5 ft/sec; c) + 3.3 ft/sec; d) - 3 ft/sec.

(2): a =0 in every case, since in no case is there a change in velocity.

7. (4) The graph depicts the displacement of a X
body which is dropped into a denser 4
liquid.

a) Give a qualitative description of the ; tt : nd
body' s motion, C I 2
b) What is the body's velocity at the

instant t 1 ?

c) During what interval is the velocity
positive? Negative?

(Take the direction of the arrowhead on the displacement axis as
positive, )

Answers:

a) The body descends deeper and deeper into the liquid, but with ever
diminishing speed; comes to momentary rest; and starts back toward
the surface,

b) Since the tangent is horizontal, vy = 0.

c) The velocity is positive when the slope of the curve is positive,

or from t] to t2; v is negative from t, to t;. (Of course, the instant
t itself is excluded from both these intervals.)

8. (4) a) Sketch a graph showing (approximately) the velocity of the body in
Question 7 plotted against time.
b) Sketch a graph showing approximately the acceleration of the
same body plotted against time.

(@) v (b)
é
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9. (4) Find the acceleration (including algebraic sign and unit of measure)
in each of the following:

a) Initial velocity (v1) = 0 mi/hr; final velocity (v3) = 30 mi/hr:
elapsed time (t) = 1/60 hr.

b) vy = 0 mi/hr; v2 = 30 mi/hr; t = 1 min,

f c) vi = 0mi/hr; v, =30 mi/hr; t = 60 sec

d) vi=0 mi/hr; v, =44 ft/sec (which = 30 mi/hr); t = 60 sec.

A sprinter leaves his marks with an acceleration of 50 m/secz.
e) What is his acceleration in m/min2?

Answers:
?) Y2 V1 _ (30-0)mi_ _60 _+ 1800 mi
time hr hr hr
b) (30-0)miX 1 - 1+ 30 mi
hr 1 min hr min
c) (30'0)9-1-ix 1 _+ 0.5 mi
hr * 60 sec hr sec
d) (44 - 0) ft x 1 _ 0.733 {t
sec 60 sec sec 2
¢) 50m _ 3600 sec ° _1.80x105m
secé min & min 2

10. (5) The speed at which an automobile is moving is indicated by its speedo-
meter., What instrument indicates to the driver the distance through
which his car has traveled, thus saving him the difficult and time-
consuming procedure of finding the area under the v,t curve? In other
words, what instrument located on the dashboard carries out the inte-
gration of automobile velocity?

Answer: The odometer or mileage indicator.

V(M/SEC)
11, (4) a) What was the acceleration of ﬁ
the body whose motion is represented 40
by this graph? 30

b) Determine the distance covered
in each successive second. 20
c) Find how far the body went in 2 sec; g
in 3 sec; in 4 sec.

d) Plot a graph of displacement against 0
time for this case.

Do you know the name of the curve you have drawn?

*(sec)

i

B-4,30




Answers: E

(a) Acceleration is the slope of the v-t graph. :
_Av _40-0_+10m |
Y 4 -0 sec?

(b) Displacement is the area of the v-t graph.

Area =10 m 1 sec _ .

Sec X —m— = 5 m in first second.
Area =10+5 =15m in second second.
Area =20+ 5 =25 m in third second.

Area =30+5 =35m in fourth second.

(c) Distance covered is sum of the above displacements:
5+ 15 = 20 m in 2 seconds.

| 5+ 15 + 25 = 45 m in 3 seconds.
5+ 15 + 25 + 35 = 80 m in 4 seconds.

d) The curve is a parabola (part of one arm):

X {m)

8 Ot-

60

40

20

» t(SEC)

12. (4) a) What was the acceleration of the V(M/SEC)
body whose motion is represented
in this graph?

b) What was the displacement
betweent = 0 andt = 2 sec?
c) What was the displacement

betweent = 0 andt = 3 sec? » t(SEC)
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Answers:

(a) Acceleration is the slope of the v-t graph.

a =&V - 0-20 _ -10 m (negative slope)
At 2 -0 secs

; (b) Displacement is the area of the v-t graph

Area =20 m % 2 sec

=+ 20 m.
sec 2
(c) Area=20x2 10x1 .30.5=+15m.

(Area below t-axis or negative velocity is negative displacement)

13. (5) The proprietor of a village candy store found that his sales of lolli-
pops in the week of September 10 were as follows:

Monday: 12 Thursday: 18
§ Tuesday: 10 Friday: 28
! Wednesday: 12 Saturday: 42

a) Plot these points on a suitable graph, labeling the axes.
b) Is it proper, in this case, to connect the points with a smooth
curve? Explain why or why not.

c) Does the area under such a curve give the magnitude of his total
.sales for the week?

Answers:
a) b) No: this is a record of discrete
SALES : cases, not a cont‘nuous change,
& (LOLLIPOPS) c) No: the total sales = the sum of
40} + the daily sales, obviously.
30 +
20 +
+
I0+- +
(o) | i | |

M T W Tn F S DAYS

14. (4) A motor boat is made fast to a buoy in the middle of a river which is
flowing at a constant rate of 8 mi/hr.
a) The line to the buoy is cast off, but the owner fails to get the
engine to start for half an hour. Where is the boat, relative to the
buoy, when the engine at last decides to run?
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b) If the boat can make 20 mi/hr in still water, how fast (relative
to the banks) will it travel upstream?
c) How long will it take to return to the buoy once the engine was started?
d) If it keeps on upstream at the same rate, where will it be at the
. end of 2 hr after the engine started?
e) How long would it have taken to reach this point if the engine had
started when the boat cast off from the buoy?
f) Show that your results agree with the equation (B-2.15): x = x +D.

Answers:
(a) -4 mi or 4 mi downstream.

(b) Speed relative to the river bank =20 - 8 = 12 mi .

hr
(c) t=2 =4mix-1-2}%i— = 1/3 hr or 20 min.

(d) D=rt=lz%?i x 2 hr = 24 mi - 4 mi

= 20 mi.

_D _ . hr -
(e) t-—r— 24m1xm 2 hr. {

15. (6) Assume that you can obtain electrical signals analogous to the acid
flow and volume signals, and show an analog computer solution for
the hydrochloric acid example given in the test. Complete the block

diagram below representing the input by U and the initial volume of
V, (Gallons). Use correct units.

?
? ?
U—+= 2?2 > ? — g
Answer: N
Vo
U—f c |FSALZHR f [} GAL V GAL
™™ B-4. 33
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B. Test Questions and answers:
(Use 1 (a) or 1 (b), not both)

(a) A car is stopped at a red traffic light, As the light turns green the driver
accelerates, the car travels toward another red light and then stops at it.
Below is a speed vs. time record of this short trip.

SPEED S0
(MizHR) 40

30

20

10

] 1 1 1 T
1.00 : .02 103 104 (HOURS)
Questions:

a) How far did the car travel in the first .01 hr. of this trip?
b) Estimate the value of the acceleration for the first . 01 hr. of this trip.

c) During what time interval did the car experience an acceleration of
zero for more than an instant?

d) Estimate the distance between the two traffic lights.

e) Describe the acceleration of this car between 1.02 and 1.03 hrs.

f) What was the average speed of the car for the entire trip?

Answers:
a) Distance = Area = %ll = 2—(1%18- x 40 {anl = 0.2 mi.

_— _Av _40 -0  _ 4000 mi
b) Acceleration = Slope = -0 o0rT-0 " T2
OR 4000 mi 5280t  hr___ 2 _2.11x107 _1.634t
‘ hr 2 mi 3600 sec 1.3 x 107 sec?

c) From time 1.01 to 1.02 hrs. (Slope is zero.)

d) Distance between lights is the sum of the
Areas: I = 0.2 mi.

II 40mi .4 o) phr =0.4
hr

11 (1%&)};0.01%0.09

IV 21x0.012 = 0.25

YV 24 x0.008 = 0. 19

1.13 mi.
B-4.34




1.

e) Acceleration varies from a high negative value to zero.

f) Approximately 25 mi ,
hr

(b) The graph below is a velocity versus time graph of a car traveling
from town A to town B.

(a) How far did the car travel during the first hour?
(b) How far is town A from town B?

(c) In what parts of the trip would you find the car traveling with
constant velocity?

v
Mi7hR) 4
8ol

60}
a0}
20

>
2 t(HOURS)

®)
~ -
Wl
D
Y
ol
~
ol
ol

0 It

Answers:

a) Distance = Area =%13 =1 éur x 30 r}r:: =15 mi.

b) Distance between towns is the sum of the areas:
15 + 8 + 15 + 30 + 200 + 40 + 20 + 20 + 10 460 mi,
c) Fromt=1tot ®3.7;t=5tot=8;t= 10tot =11 hrs.
A truck traveling at 40 mi/hr passes over the crest of a hill. The
‘driver coasts down the hill and finds that at the bottom of the hill his

‘truck is traveling at 60 mi/hr and it took him only 15 seconds to
accelerate this much.

(a) What was his average acceleration? (mi./hr. sec.)
(b) How far did the truck travel in going down the hill?
(c) After 5.0 seconds while on the hill the truck was traveling about

? miles per hour.
Answers: |
a) Acceleration = slope = EL = %‘g—:# = %'g' or 1.33 hr mslec

At
50 mi
hr

b) Average velocity = x 15 sec x?’?)bo—rﬂ_-s'gc- = 0.21 mi.
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The pit log of a ship utilizes a small propeller for which the number
of revolutions per minute n is directly proportional to the speed
through the water. A certain device rotates at 200 revolutions per
minute for a velocity of 10 knots (1 knot = 1 nautical mile per hour;

1 nautical mile = 6076 feet). In one short trip n increases from 0 to
300 and then decreases to zero in the form of a semi-circle, as
sketched below. (a) What was the maximum speed attained? (b) How
many revolutions did the pit log make? (c) What distance in nautical
miles did the ship travel?

n 4
(REV/MIN)
400
300
200
100
—>
ol 10 20 t (MIN)
Answers:
a) 200 rev. x 1 - _20 rev
min 10 knots knot min.
300 rev _ knot min. _
m X —m-v— 15 knots
2
b) Revolution = Area =@ r _
—5— (oner =300rev. ..  ither r = 10 min)
min
=17 300 rev x 10 min
2 min

= 15007 =4710 rev.
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(Check results by approximating the semi-circle with a rectangle of
about 240 rev % 20 min)
min

c) 4710 rev. x knot min. _ 1 nautical mi. hr . .
~Z0rev. ¥ Tnot hr.  *%0min _ -- )2 nautical mi.

In the model of an experimental electrical system shown below, various
batteries may be put between point N and P, and resistors R of different
values may be substituted between points C and D, The ammeter at A
reads the current in this series network.

¢ ® o

——|| |
N P

A student conducts a series of experiments with this circuit and the data
from his experiments are shown in the table below. Throughout this
experiment the same resistor is used.

BATTERY CURRENTS
VOLTAGES
[ VOLTS] [ AMPERES]
2.0 .010
3.0 .016
4,0 . 021
5.0 . 025
8.0 . 041
10.0 . 049
16.0 . 080

Questions:

a) . In the graph grid below make a free-hand graphic model of the relation-
(slhlp between voltage (VOLTS) and current (AMPS) from the experimental
ata.
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VOLTAGE 10~

(VOLTS) 8
6—
j; 2 |- CURRENT
| e |
0l 02 .04 06 08

b) From your free-hand plot of volts vs. amps estimate the approximate
numerical value of the SLOPE of this curve.

c) What is the approximate numerical value of the area under this curve
from zero amps to 0. 05 AMPS?

d) Write an equation that gives the relationship that exists between the
voltage and current as determined from this experiment.

e) Estimate the amount of current that should pass through the resistor
if it wus connected in series with a 6. 0 volt source of electricity.

Answers:
. _ AVolts. _ 16 - 2 _ 14
b) Slope* = Txrs = 0082 -0, 01T - 0,071 ~ 297
]

c) Area =b7h- =0'0152§10 & 0.25

d) k===o0or V=klorV =1971

e) Approximately 0.03 amps.

*Slope of voltage - current graph is resistance (k).

;
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5. A passenger in a car records the time the car passes exits along a high-
way. These data are shown in the graph below. The car speed is con-
stant at 50 mi/hr for the entire trip.

!

6
EXIT 5| °
NUMBER
4qr- °
3 °
er o
I~ o
1 | 1 1 L 1 i | ] pa—
0 20 30 40 50 60
TIME
MIN
Questions:

a) HoWw long from the start of the trip did it take before passing Exit 1?
b) How many miles between Exit 1 and Exit 5?

c) The greatest distance between adjacent Exits is found between
Exit and Exit

d) What is the average travel time between Exit 1 and Exit 5?

e) Why is it not valid to draw a curve on this graph?

f) If the car continues to travel at 50 mi/hr along this highway, what
statement can be made about predicting your time of arrival at
Exit No. 6?

Answers:

a) 10 min.
b) 41minx50%1?ix hxrnin & 33 mi.
c) Exit 3 and Exit 4.

d) 41 min _ 10 + min
! exit

e) Discrete function

f) (1) No prediction or

(2) If we assume 10 min and No. 6 is average distance, then arrival
Exit

at & 60 min.
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C. Discussion Questions

1.

A distance-time curve is given by the equation d = 3()t2 - 6t3, where

d is in meters and t is in seconds. Draw a graph of d versus t and
find the velocity at t = 2 seconds and t = 4.5 seconds:

Answer: Set up a table of values of d for intervals of 1 second.

d
t

>

for t = 2 seconds, velocity is the tangent to the line; velocity =

89 - 0 _ 89 ., 44.5m
2.3 -0.3 2 7 sec

- . - 0-100 _-100 _ -45.4 m
for t = 4 seconds; Ad 71395 =22 ° -

>
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The graph of positions of an enemy plane is determined by a radar
operator on the ground, 3000 miles from Washington, D, C. At

12:00 the plane was 3000 miles from Washington, D. C. At 12:10

the radar operator prediced its time of arrival over Washington, D. C.
(a) What would that predicted time be?

(b) At 12:20 he makes a new prediction. What is the new predicted
time?
(c) What would his prediction be if he made it at 13:00?

(d) How do you account for the discrepancies in these predicted times?
X

?(MILES FROM WASHINGTON)

3000

2500

2000}

1500 1 ] | | | 1 | | | ] ] |
20010 20 30 40 50 I13:00 !0 20 30 40 50 l4=00*t

Answers:
(a) 17:40
(b) 14:40
(c) 13:45
(d) As the curve available to the radar operator grows longer and

longer, he has a greater spread between its extreme points and
hence a more reliable average value of the plane's velocity.

In addition to its use as a dynamic functional model, the analog com-

puter is also useful as a device for solving simultaneous linear alge-

braic equations automatically. For example, suppose we wish to

solve the following set of equations with an analog computer:
x=y+3

y=3x-1
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The first equation modeled on the analog computer is:

4+
y é - X

The second equation modeled on the analog computer is:

Now we see that if we had y we could get x and if we had x we could
get y, so we combine the above results as follows and read the values
of x and y with a meter.

yéxﬁsxé‘ﬁ

Using the above technique, prepare an analog computer solution for
the following set of equations:

4x + 3y = 6
3.5y = Tx
Answer:

Rearranging the equations into the standard slope - y intercept form,
y =mx + b:

=-2x+2

S - 3 3

y = 2x

. T™ B-4.42
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You are standing at 40° north latitude. What is your velocity in mi/hr.
as a result of the earth's rotation about its axis? The earth's radius
is about 4000 mi.

Answer:

' %x = 4000 Cos 40°

X = 4000 (0. 766) = 3060 mi.
.40°

Circumference at 40° north
40° =2nrx = 273060

velocity at 40° north latitude
D _ 273060 mi _ 794 mi

V=Y " 27 nr hr °

4000 mi

Because of our space and military programs and because of the large
increase in mobility of all Americans in recent years, a great deal of
engineering effort has been expended to develop systen:s which are
useful in the navigation of vehicles of all sorts.

If the vehicle moves on or close to the surface of the Earth, navigation
is a relatively simple matter since measurements with respect to the
ground are comparatively easy to make. Vehicles now exist, however,
where contact with the ground for the purpose of position measurement
is difficult or impossible.

One such example is the Polaris submarine which may travel sub-
merged for weeks without ever surfacing., In this submerged condi-
tion, it is impossible to check position by sighting on the sun or the
stars, and radio aids such as loran (long distance radio ngvigation)
cannot be used. In such cases, inertial navigation, in which the in-
strumentation is completely contained in the vehicle, is applicable.
This technique requires no external observations and so is useful in
submarines, space vehicles, and other vehicles where external ob-
servation is difficult or impossible.
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The heart of the inertial navigation system is the accelerometer, an
electro-mechanical device which is capable of measuring acceleration
with high precision. It produces an electrical signal which is pro-
portional at every instant to the acceleration of the vehicle on which it
is mounted. This signal is fed to the input of an electronic integrator
which continuously calculates the area under the a, t curve. The out-
put of this integrator is thus equal to the velocity of the vehicle at
each instant. This output is fed into another integrator. This second
integrator calculates the area under the v, t curve, and its output is
at every instant equal to the displacement of the vehicle. (Of course,
in order to compute present position using the accelerometer output
signal, it is necessary to feed initial velocity and displacement in-
formation to the integrator. )

Draw a block diagram of the model of an inertial navigation system.
Such a system consisting of an accelerometer and two integrators pro-
vides us at every instant with the values of the acceleration, the velo-
city, and the displacement of the vehicle, and this is all the informa-
tion we need to navigate the vehicle. Inertial navigation systems of

this kind have been used in many applications. For exampie, the sub- .

marines that have gone to the North Pole under the polar ice cap have
used inertial systems for navigation under the ice cap. An inertial
navigator is also a vital part of missile guidance systems.

Answer:

TS

In this problem we seek a technique for determining area under a
time-dependent curve hydraulically, i.e., we want to construct a
hydraulic integrator. Assume that we have a speedometer available
which is calculating the velocity of a moving vehicle. We would like
tc integrate these data continuously to yield a continuous indication
of distance traveled as shown in the following block diagram. The
operation indicated by the block labeled '"hydraulic integrator' can

—» DISPLACEMENT

SPEEDOMETER HYDRAULIC
OoUTPUT INTEGRATOR

be accomplished crudely by attaching the speedometer pointer to a
valve which controls the flow of water into a U-shaped tube as in-
dicated in the figure below. Can you further explain how distance
is found with this hydraulic device?
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TO SPEEDOMETER

DISPLACEMENT

Answer:

Since the volume of water per unit time which escapes from the valve
is directly proportional to the velocity of the vehicle (at least to a
t first approximation), the total volume of water caught in the U-tube
is a measure of the distance covered. Since the cross-sectional area
‘ of the U-tube is constant, the upward displacement of the float gives
a number proportional to the distance, and the scale could be cali-
brated to read miles directly.

7. For the vehicle motion system as described in the text, determine the
output displacement when the accelerator control is moved abruptly
one unit and then held constant (in other words, the signal C is zero
for t nr gative and unity for t positive.)

Answer:; 2
d = 3 t° (or a parabola)

8. A boat is traveling upstream on a river at a speed relative to the
water which varies with time as shown in the figure below. The water
flows downstream at a constant speed of 10 miles per hour. (a) How
many miles has the boat traveled at the end of the first hour? (b) the
fourth hour? (c) the fifth hour?
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Vv
(MI/HR)
20l ANSWERS: REGION MILES
END OF IST HOUR
I 225 ) |2425-10=14.3mi
o 1.75
m 2.00 END OF 4TH HOUR
v 22.0 67.5—-4(10)= 27.5mi
o5} Y 4.25
1 744 7.50 END OF 5TH HOUR
vII 7.50 ) 82.8-5(10)=32.8mi
I 8.50
xr 6.75
20
| 22.5 mi
[ hr  1f
I5F = 22 5mi
10} x
I
5 -
| AV "1 vt
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10.

Velocity and acceleration are not the only signals of motion we might
consider. Just as velocity is the rate of change (or derivative) of
displacement and acceleration is the rate of change (or derivative) of
velocity, we might expect that the rate of change of acceleration has
some physical meaning. This signal, however, is usually of much
less interest in our study of man-made systems. It has been given a
name: jerk or jerkiness, since the rate of change of acceleration

measures in a very general sense the extent to which the passenger

in a moving body feels that the motion is " jerky. " Very rapid changes
in acceleration are 2 major source of discomfort! The laws of nature,
however, tell us that rapid changes in acceleration occur only if there
are rapid changes in force applied to the body. Hence, in an automo-
bile, for example, we can avoid excessive jerkiness by depressing
the accelerator at a moderate rate.

If you encountered a motion problem in which you were required to
find the vehicle displacement which resulted from very violent, jerky
manipulation of the acceleration control, how would you program the
analog computer to find a solution?

Answer: Use three integrators in series.

An electron is thought to orbit around the nucleus of an atom in a circular

orbit, according to one model of the atom. This model also states that
the radill.bs of the electron orbit is 1 Angstrom (0. 0000000001 meters or
1 x 10"*Y meters) and it orbits the nucleus 1 x 1015 times each second

(1, 000, 000, 000, 000, 000).

a) What mathematic equation can we use to find the average speed of
this orbiting electron?

b) Estimate the speed of this orbiting electron.

Answers:

a) v =21.}.R = 2t Rf

b) v = 2nRf = 2n (10-10) (1015) = 6.28 x 10° _m
sec

IX. Supplementary Materials

A. Notes on Graph Construction

In constructing a graph for a measured or tabulated signal, the following

steps are taken:

(1) The horizontal scale is chosen. Here it is usual to measure
time in any convenient units, and we determine the total
time duration of interest.

(2) To select the vertical scale, we observe the given data, and
find the minimum and maximum values of the signal. The
vertical scale is then made to cover this range.

(3) We next draw the horizontal and vertical axes, mark on each its
scale, conveniently subdivided, and labed appropriately.

(4) The data points are plotted and a smooth curve is drawn.
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While these steps sound trivial, the construction of an attractive and
readily interpreted graph is an essential step if we are to capitalize on
the potential of a graphical portrayal of the signal. In order to illustrate
the four steps above, we consider the following example.

We are attempting to teach a 16-year-old to drive a car. One of the
tasks we present to him is to bring the car to a stop at a chalk line drawn
on the straight driveway of his home. In other words, he need not turn
the steering wheel at all, but we are asking him to move the car front-
ward or backward until he has stopped at the desired position. Measure-
ments are made of his actual position with respect to the mark (if he is
5 feet in front, we say his position is + 5 at that time; 4 feet behind the
mark is denoted - 4). The data are measured every 5 seconds with the
following results: +5, +6, +3, -1, - 6, - 14, -19, =22, -23, -21, - 16,
We wish to plot these 11 data points covering an interval of 50 seconds.

(1) We first determine the horizontal scale. Since we wish to
cover 50 seconds, we can let t be measured in seconds and vary
from 0 to 50. If we use graph paper, we can select 10 segments
along the horizontal direction, with each segment representing 5
seconds; if we make our own graph paper by drawing lines on plain
paper, we will wantat leastl0 segments (11 vertical lines),

(2) Next we consider the range of signal values (from + 6 to -
23). It is convenient to plan to plot the range + 10 to - 30 (a total
range of 40). If we want 0 in the middle of the page, we might de-
cide to plot + 25 te - 25. The choice between these two alternatives
is largely immaterial; we can use whichever appeals to us aesthetic-
ally. In order to proceed, we arbitrarily decide to cover the range
+ 10 to - 30, If we have eight segments vertically, each represents
a change in signal of + 5 feet.

(3) We now are ready to draw and label the axes. We select
10 segments horizontally and 8 vertically, Fig. 1 (a). The hori-
zontal axis is drawn 2 segments from the top since the signal axis
is to go from + 10 to - 30,(b). The vertical axis is drawn at the
left of the granh because time runs from 0 to 50, (c). Once the
axes are drawn, the labels can be added (d). '

=t

(a) - (b)




(c)

+10
+5

0
-5
-10
- 15
-20

-25p
-30%

DISTANCE
(FT.)

for the example.

(d)

Fig. 1 Preparation of the graph paper

T (SEC)

(4) Finally, we plot the eleven points given as data and connect
by a smooth curve -- Fig. 2.

10

5

DISTANCE © 5
(FEET)

10 20

40

S0 T(SEC)

-25

-30

Fig. 2 Plot of automobile position

The curve indicates at once what the neophyte driver has done.

He started 5 feet ahead of the mark and moved forward to about

+ 6 feet, Here the car was put in reverse and gas applied. Unfor-

tunately, the driver greatly overestimated the need for gas and the

car sailed far behind the chalk mark, By the time he had applied the
brake and shifted to start forward again, he was about 23 feet behind
the line, We can only hope that his performance improves the next

time.

™
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Our primary purpose in this example, however, is not to study
the behavior of untrained drivers. Rather, we wish to illustrate the
systematic approach to the rather trivial task of constructing a graph-
ical portrayal of given signal data.

B. Optical Method for Determination of Tangents

To determine the slope of a tangent to a curve at a particular point
accurately, place a small plane mirror across the curve at the point.
Rotate the mirror about the point until the curve and its image form a
smooth path with no cusp. Then the plane of the mirror is perpendicular
to the tangent at that point,

MAGE CORRECT
RQTATE \\ROTATE \POSITION
N \
N
REFLECTING
SURFACE N
\ \
N \

CURVE

A front-silvered mirror should be used if possiblec.

C. Resource Material

" Electronic Analog Computer Primer" by S, J. Edward and
B. S. Swanson, Blaisdell Publishing Co., New York, 1965. An inexpen-
sive paperback which discusses the analog computer from an elementary
and thoroughly readable viewpoint,

Theory of the Analog Computer

The "heart" of every computational unit in the Analog Computer is the elec-
tronic or solid state amplifier. These amplifiers have very high gain (we will see
the reason for this later on) and are generally referred to as high gain or OPERA-
TIONAL AMPLIFIERS.

To understand the operation of the Analog computer we must first realize
that an amplifier is a device which produces an electrical signal whose magnitude
is some negative constant multiple of the magnitude of the signal which is fed into
the amplifier: We can represent the operational amplifier by the triangular shaped
symbol shown below, and we express the operation of the amplifier by the equation:

e, = -Ae1

— >

i -0
Fig. 1 Symbolic representation of operational amplifier
B-4.50

™




] B wv—j

If resistors are connected to an operational amplifier as shown in Fig. 2,
we will see that the device becomes a Scalor, where the scaling factor depends on

the relative size of the two resistors.

Rf
e AW\
R Rf
o—w— o A@——J» eg =— = e,
e és |

o)

s

Fig. 2 Analog Scalor

To derive the relationship for the Analog Scalor we can use Kirchhoff's law
at point a. The law states that the sum of the currents leaving a junction must
be equal to the sum of the currents entering that jurction. In Fig. 3, we have
assumed the presence of three currents: il’ i‘a’ i |

Rf if
A\ °
Ry
o-awv_.' : &——o
el " 6g ‘a es
T °.

Fig. 3 Current directions identified
Since across any resistor i = -%- we can say that:

i, +i. =1 or
a

17

e,~C e =€

lR o =i
1 f a

Now, operational amplifiers have a second characteristic; that the current
into them for any magnitude of input signal is extremely small. (It is on the
order of 107 amperes). We say that the operational amplifier hdis a high Input
Impedence. This input current is so small that we can for all practical purposes
assume that it can be neglected with respect toi, and i.. (i, and i; are on the

-3 1 f 1 f
order of 10~ amperes).

We are then left with the expression:

e,-e e_-e
1

a S a
—_—t ——= 3 0
Ry Ry
™ B-4.51
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We know from the gain characteristic of the amplifier that e, = - Ki If
we substitute this into the above equation we obtain:

°1 ., Ss ®s . %s
= + + == + 0
R1 AR 1 R¢ KRf
e
If A is very large, as \ze have stated, then the term fR—f will be very much
smaller than the term 'ﬁi ‘and can be neglected. A is generally on the order of
104 or 105. £
e e
Similarly the term -A-%- will be much smaller than the term ﬁ% since Ry and
Rf will, in general, differ at most by a factor of 10.
We are then left with the equation:
| °1 s
: + =— =0 or
; R, R
I
s Rl 1

The operations of summing and scaling are combined by simply connecting
additional resistors to the input of the operational amplifier. This arrangement
is shown in Fig. 4.

R} ' R¢
¢ o—wW AN
e HRAZA,_

2 R A
e, o—wir ngn |~

Ry

0, O—A~d

-0

O O
€ |
Fig. 4 Summing-Scalor

If we were once again to sum the currents leaving and entering the junction
""a'"' and make the same two assumptions (ia = 0, and A very large) we should ob-
tain the expression:

R R R R
f £ f f
8 [Rl 1 R2 2 R3 3 R4 4]

# You can see that if Rf = R1 = R2 = R3, we have the negative adder.

In order to obtain a Ten Scalor, we simply let one of the input resistors
be 1/10 of Ry.
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A simplified diagram of the negative adder on the AMF Educational Com-
puter is shown in Fig, 5,

SO00K S00K N.

Oy *
500K l

C—MN D——o

50K

TEN SCALOR oO—wWA—
INPUT TERMINAL

O T "

Fig. 5 Analog Adder

Note that the operational ampiifier we have been discus sing only produces a
Negative Adder. If we want, in addition, a (positive) adder we could take the sig-
nal from a negative adder and put it through a circuit that would change its sign.
This sign change could be accomplished by the circuit shown in Fig. 2 with Rf=R;.
One can purchase, however, an operational amplifier which has two inputs, one
which processes the signal in the normal manner and one which multiplies the sig-

nal by a minus one. These are used in the computer to obtain the functions of the
adder and the negative adder.

The function of the Variable Scalor is obtained by connecting the output sig-
nal from the optional amplifier across a variable resistance element. This ele-

ment is called a potentiometer and is shown together with the ne gative adder in
Fig. 6.

& o——  ——

8o O~ A= . .
2 ' =>_ Potentiometer slide
630"%— es Gl
| %o

r -0

Fig. 6 Summing-Scalor (negative)

The ratio of the output signal e, to the input signal es depends on the posi-

tion of the slider and is always equal to or less than one (i.e., e, = Ceg where
0<C«<1l.)
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The Analog Integrator circuit looks very much like the Adder circuit except i
that a capacitor is placed across the operational amplifier as shown in Fig. 7. |

cC i *
- e ﬁ
|

IA\

?—r-—fi—.l/
a

i' eo

.

lll—?— 2

Fig. 7 Analog Integrator
The analysis of the circuit is as follows:
Once again we can say that
i + i =1, .

If we again assume that ia is very small:

Now i1 =®1"% anda capacitor has a voltage-current relationship such
that: R1

(e;~e,) =1/C [ idt or .
= . - 1 "a ...
(e,-e,) =1/C [ -iat=-1/C [ TI—dt,

if we substitute the operational amplifier relation, e, =

- es ’ We
obtain: <

' - 1
es+es--—R—1-6f(e1+es)dt.
K -y

If we again assume that A is large, we obtain the final expression for the
Analog Computer.

e =~
s

R11C feldt




The summing integrator is made by simply adding additional resistors as
shown in Fig. 8.

C
Ry
e|l"\’ "] = 1fdt+1fdt+1fdt
ez O-Né »——O eS - R].E e]. ch eZ R3C e3
R3

f O

= Fig. 8 Summing Integrator
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I. Approach:

II. Outline:

Chap_@er‘ B-5
PATTERNS OF CHANGE

Chapter B-5 deals with the study of systems that change with

time. These systems are called dynamic systems and can -
be studied by using dynamic models. The concept of dynamic
modeling is important because most real world situations of
significance are dynamic in nature.

The chapter begins with the discussion of the importance of
dynamic systems and how they can be used for prediction. Then
the study of signals (physical data) generated by dynamic systems
are analyzed. This leads to the realization that many man-made
systems may be represented by the same signal. One of the
most important signals is the sinusoidal signal, which is dis-

| cussed in detail.

This chapter is an extension of both Chapters B-3 and B-4. In
B-3 there is a brief discussion of dynamic models and B-4 is a
study of a specific dynamic model. Chapter B-5 shows that
dynamic models are applicable to most real world systems. The
study of dynamic systems also further develops the overall theme
of Part B (decision-making) by showing that real world problems
can be solved with dynamic models. |

Some of the material in Chapter B-5 is optional. The essential
sections needed to give continuity to the text are seciions 1, 3 and 4.

Section 1 - The Importance of change:

This introduction to Chapter B-5 sets the stage for the study of
signals which change with time. The importance of change is
illustrated by many examples from everyday life. Although the
central theme is changing signals, there is a brief discussisn of
the relationship between probability and the sending of information.

Section 2 - Prediction:

This section illustrates the use of changing signals for prediction
via two examples. They are:

(A) U.S. solid waste disposal problem.,
(B) Evolution of a new product.

The first example illustrates the use of a system signal for pre-
diction merely by extending the signal into the future. The second
example illustrates a somewhat different use of system signals
for prediction: if we know the dynamic behavior of the system in
the past, we can predict the behavior in the future under similar
circumstances.

Section 3 - Types of Signals:

™™

The development of a model for the automobile ride has a two-foid
purpose:
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(A) To show how a simple model can be made from a complex
system and still retain the basic characteristics of the sys-
tem.

(B) To serve as an introduction to the study of nscillatory motion
and sinusoidal signals,

Section 4 - Sinusoidal Signals:

This section deals with the nature of simple harmonic motion.
This type of motion occurs whenever a mass departs from its
rest position and is restored to its original position by a force
which must be proportional to the displacement.

Several important properties of sine waves are discussed. They
are:

(A) amplitude
(B) frequency

(C) phase

(D) sum of sine waves

The section ends with a discussion of other origins of sine waves
(e.g. musical notes)

~ Section 5 - Signals Related to Sinusoids:

Sinusoids are important because they occur during the normal
operation of various systems. They are also significant be-
cause many signals of importance are derived from sinusoids.
The first idea will be developed further in Chapter B-6, while

the main concern of this section is the second concept. Radar and
sonar are examples of signals that are derived from sine waves.

Section 6 - Conclusion:

This section starts with the two main reasons for studying the
sinusoid as an example of dynamic signals. It then goes on to
point that not all signals are sinusoids via three examples. The
section and chapter ends with three brief questions indicating some
uses of sine signals. :

Section 7 - Appendix A - The Environment

Chapter 1 of ''A Strategy for a Livable Environment, ' the report
by the Task Force on Environmental Health and Related Problems
to the Secretary of Health, Education and Welfare.

III. Objectives:

1.

2.

™™

To develop the realization that most of the interesting and worth-
while situations in life are the ones that change with time.

To introduce the concept of dynamic modeling as a tool for the
study of dynamic systems.
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To illustrate to the student that one of the most important outcomes
of studying dynamic systems is the ability to predict the future be-
havior of a system.

To show how the engineer, by reducing a system to its most ele-
mentary model is able to make predications based on this model
which will approximace the actual performance of the system being
modeled.

To show that sometimes many real world dynamic systems have
the same basic signal. In other words dynamic models of systems
can be classified. In ascending order of complexity they are:

(a) Linear extrapolation in time - the slope of the curve is constant.

(b) Exponential growth or decay - the slope of the curve changes
with time.

(c) Oscillatory system (sinusoidal signal) - the slope of the curve
changes from zero to negative to zero to positive, etc.

To develop the awareness that even though many dynamic systems
are oscillatory in nature, there are many others with more com-
plicated signals.

To have students become aware of the fact that most of the environ-
mental problems that they read about in the newspapers are dyna-
mic in nature and that the decision making techniques discussed in
Part B are also being used in this area. (e.g. refer to appendix A)

? IV. Development:

Section 1 and 2 - Importance of Change; Predictions

A brief class discussion should be enough to get students to realize
the significance of studying changing signals. It might be helpful

to have students read this section (Section 1) before class discus-
sion. The idea that the amount of information contained in a mes-
sage depends on the probability of that message can be gotten across

by assigning the problem which follows section 1.

The slightly changed phase ''An example is worth a thousand expla-
nations' is appropriate for the development of the introduction to
the study of dynamic systems. The first example in Section 2 can
be used to really get across one of the most iraportant reasons
(Prediction) for studying changing signals. The U.S. solid waste
example illustrates the importance of prediction. Via the following
two techniques the amount of solid waste in 1980 is predicted:

(A) graphical analysis (extension of curve)
(B) algebraic analysis (exponential)

The second example in Section 2 is another illustration of studying
dynamic systems for the purpose of prediction. Some of the more
important reasons for studying profit-loss signals are:

(A) management can have objective criteria for making decisions.
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(B) management can detect un-anticipated deviations from normal
performance

(C) Understanding of the data is the basis for logical decisions
about where to focus the investment of resources.

Section 3 - Types of Signals:

(A) A complete lesson should be devoted to the development of
the automobile ride model. To capture the students attention
use the mass-spring demonstration model from AMF. More
detailed use of this piece of equipment will come in the next
chapter.

Make sure to einphasize each step in the simplification of the
model (from car ride to mass-spring system).

Hanging different weights on a spring and measuring the amount

(B)
(C)

(D)

Section 4 - Sinusoidal Signals:

(A) The discussion of the signal generated by a mass-spring sys-
tem (end of Section 3) can be used as an introduction to the
more detailed study of simple harmonic motion,

Demonstration: Use a long spring (e.g. slinky) on the floor
outside your room to generate sine waves which may be help-
ful in giving students a physical example cf sine waves. The
ideas of amplitude and frequency can be demonstrated at the
same time. | -

Two laboratory experiments should follow the study of 'this
section:

(1) Wave forms produced by the signal generator (Exp. 28).

(2) Pictures of other electrical signals and sound waves on
the CRO (Exp. 29).

The important properties of sine waves should be summarized
for students. They are: |

(B)

(C)

(D)

Section 5 - Signals Related to Sinusoids

Modification of sinusoidal signals is the central theme of this sec-

tion. Two examples are developed in great detail:

™

e e ———— - A A= e 4 e e e e -

of elongation might help to explain Hooke's Law.
The end of this section which deals with the signal generated

(1)
(2)
(3)
(4)

amplitude - displacement of mass A
frequency - cycles/sec (now referred to as hertz)

by the model should be used as an introduction to Section 4.

Phase - position on sine wave.

Sum of sine waves of a given frequency is another sine
of the same frequency.
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(A) Radar signal: a burstor pulse of sinusoids for a short duration.

(B) Bat's acoustical signal (form of sonar): a pulse of sinusoids
of continuously varying frequency.

Since this section is a quantative development of the above ideas,
unless ample time is available for full development of the ideas,
the section should be omitted. (Application of optimization to
curriculum planning). On the other hand, the students may find
this section quite interesting, so here are some teaching tips:

(1) Make sure that the four uses of radar for sensing and deter-
mination are developed showly with sample problems.

(a) Range

(b) Azimuth angle

(c) Elevation angle

(d) Rate of change of range.

(2) An experiment which uses the principle of the sonar is ."Sound
displacement transducer''.

(3) Section 5 will take at least two or three périods.

Section 6 = Conclusion:

(A) Except for the first few pages of this section where the impor -
tance of studying sine waves is summarized, the section can
be considered optional. : | |

(B) Most of the material is qualitative in nature and covers three
main ideas. : ' -

(1) Nature and importance of sine waves.
(2) Not all signals are sinusoids.
(3) Other uses of sine waves.

Appendix A may be assigned for home reéding to give students an
‘example of how systems engineering is being applied to social

problems.

B-So 5

|
|
|
|
!



V.

1.

Answers to Questions

Use the data from figure 1 of section 2 to predict the solid waste production
in the year 2000,

Answer:

(A) Graphical solution

600~
n /
S 400} ‘ /
- /
L /
O
/7

g; 7
200 //
> -~
p-3 /

0 ] T ‘ | T

1920 1940 1960 1980 2000

In the year 2000 there will be approximately 480 million tons 'of solid waste,

(B) Algebraic solution:

A =100
t/12 ¢

50

y = A (3/2)

50/12

y = 100 (3/2) =100 (3/2)4' 1l 520 million tons.

The prediction is as valid as the model.

Use figure 5 from section 2 to answer the following questions:
(A) Why is there no profit for over three years?
Research and development costs are high during the early stages.

(B) What is the significance of tA?

At time t, the first sales are made.

A

(C) Why is it important to minimize tB?

Time tp is the time needed for full production and sales. The shorter ta

is the longer the life of the product.
_Bs576




3. Why is the problem of a car bouncing on a bumpy road being studied in this
chapter?

The reasons for studying the automobile ride are:

(A) It serves as an illustration of simple harmonic motion or sinusoidal motion.

(B) We can model the system on a simple analog computer.

(C) We can make measurements in the laboratory to observe chanjes in output
as the variables are changed -i.e., stiffer springs or more mass.

(D) In the next chapter, we wish to consider similar problems in greater
detail.

4. (A) Graph of force vs. elongation

30

25 F

FORCE 290 |
(NEWTONS) L5

)

/ 1.0 |
I
5 |
|

] i g L ] i

.02 .04 06 .08 .0 .2

ELONGATION (METER)
(B) k = Af/Ad = —%Z = 25 newtons/meter

1.3 nt,.
4 nt.

(C) f =
f=

d = .052 meters
d =.16 meters (if spring stretches that far without

exceeding the elastic limit).

If

If
_ 1

5. (A) frequency -m

(B) £f=1/T =T7'176 = 20 cycles/sec
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Resultant sine wave

-+

-

7. Maximum target range = 100 miles
Radar signal travels 10,75 micro sec/mile

(A) Calculation of minimum time

(a2
il

10.75 x 107 sec/n)le x 100 Mile

min

t 1.075 x 10”3 sec/pulse

min

(B) Calculation of maximum speed of rotation

total time = 7200 piNses/rev (1.075 x 10'3sec/p‘\)}se)

total time = 7.74 sec/rev

speed of rotation = 1/7.74 sec/rev = .13 rev/sec

8. (A) Calculation of time for radar to return from the moon. Assume that
the average distance to the moon is 240, 000 miles.

¢ - 2 (240, 000)_mi1es
moon 186, 000 miles/sec

(B) Calculation of time for radar to return from Venus. Assume that the dis-
tance to Venus when it is closest to the earth is (25.7 x 10" miles)

51.4 x 10 miles
.186 x 106rni1es/sec
B-5.8
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= 276 sec.
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This is basically a problem using the equation for the Doppler shift.
Given: f=3x 10 cycles/sec (hertz)
V. =80 miles/hr

3% 107 (2 x 80)
£ 2V_ /< = T82-5003-600)

716 hertz

Af

H

Af
For + 2 % accuracy in speed the Af can vary from 0.98 (716) to 1.02 (716)

*, 702 hertz to 730 hertz
or + 14 hertz

For 2% accuracy at f = 3 x 10 10 hertz the range can be from 7020 to 7310

2
For 2% accuracy at f = 300 hertz the shift in frequency: ix_lov = ﬁ;‘-
3x10

X = 14~ " hz

or an accuracy of 1.4 parts/million

10. (a) distance = 18 feet

_2d _ 36 feet

t === 1700 ft/sec _ 0033 sec

(time delay)

(b) Since speed of sound is about 1100 ft/sec,in 0.1 second sound travels
110 ft. Therefore the maximum range is approximately 55 f{t.

(c) Aaf =¢ e = 3% l(ﬁ_}lzjz 10ft/ sec)
¢ Vs 1100 ft/sec )
Af = 545 hz/

‘. Received freq = 30,000 + 543 = 30, 545 hz.

11. A changing frequency is used so that the bat can recognize the echo from his

own signal. The frequency change also could permit the bat to recognize
precisely which part of the transmitted pulse generated a particular part of
the echo.

References:

An article in Fortune magazine discusses the use of modern prediction tech-
niques in planning for the future.

"The road to 1977" January, 1967.
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2, More detailed discussion of simple harmonic motion and sinusoidal signals
can be found in most physics textbooks. A good one on the high school level
is:

‘ Physics by Alexander Taffel.

3. "'Similarities in wave behavior'' by Dr. John N. Shive

This booklet explains the use of the wave machine developed by Dr. Shive.
If the machine is not available, a PSCC film on waves demonstrates the use
of the Shive machine,




Chapter B4
DYNAMIC MODELS

1

I. Objectives and Prerequisites
A. Objectives
1. To introduce the concept of dynamic modeling.

2. To introduce the concept of a cyclic process.

3. To show how the engineer by reducing a system to its most
elementary form is able to predict its characteristics.

E 4. To illustrate that by refining an elementary model, predictions
: based upon its performance will approximate the actual per=-
formance of the system being modeled.

5. To show the importance of natural frequency in the Man-Made World.

6. To discuss the amplitude response=excitation curve and its
applications.

B. Prerequisites

1. The pupil should be familiar with the units of measurement intro-
duced in Chapter B-3.

. 2. The pupil is expected to be versed in the principles of algebra and
the arithmetic processes associated with the solution of simple

equations.
II. Major Ideas

'A. This chapter deals with the mechanism of change so that models may be
constructed to yield data which will be the basis of predictions that will
be valid for a period of time.

B. Classification of dynamic models
1. In aséending order of complexity

a. Linear extrapolation in time - the slope of the curve is constant.
5- b. Exponential growth or decay - the slope of the line changes with
. time.
c. Oscillatory system - a cyclic process - the slope of the curve
changes from zero to negative to zero to positive etc.

C. In dynamic models, a model of how change occurs is required.
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D. Modeling the automobile ride

1. A complex system is analyzed by considering the mass of the car as

one lump, the suspension system as a spring, the bumps in the road
as input and the deflection of the car as output.

a. Bold idealization such as this enable the engineer to solve very
complex problems.

Forces exerted by the spring on the mass follow Hooke's Law
F = ks

The bumps on the road are considered to be a series of "els mental'
bumps. By studying the effect of one bump, the total effect of all

bumps can be determined by the process of addition., (The super-
position principle)

E. Simple Harmonic Motion (Sinusoidal Motion)

1.

Amplitude is defined as one-half of the total excursion.

2. Frequency is defined as the number of oscillations per second.

F. Natural Frequency

1,

Defined as the frequency' at which a mass will vibrate or oscillate
when abruptly excited and then left free.

a. Natural frequency (f.o) can be calculated from fo = 2-1- "kﬁ
where k is the spring constant and m is the m3ss ™ V!

When a mass is excited at a frequency equal to its natural frequency,
the amplitude of the output or response is many times greater than

the amplitude of the input. This magnification of the input is known
as resonance.

G. The Amplitude Response=Excitation Curve

1.

Regions of the chart.

a. Ratio of input to natural frequency < 1
b. Ratio of input to natural frequency = 1
c. Ratio of input to natural frequency > 1

H. Damping
1.

Eusential to curb violent or extreme excusions of a vibrating system

when the ratio of the input frequency to natural frequency approaches
unity,

The model of the automobile suspension system can be refined to
include damping,
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Multiple Resonances

1. Vibrating systems may oscillate in several ways or modes, and

different modes may be driven into resonance independently.

a. The lowest natural frequency is known as the fundamental or
first harmonic.

b. The next frequencies are known as the second harmonic or the
first overtone, etc.

Resonance

1. May result in violent agitation of a system and its destruction.

Ol R deh 4

a. The designer must be careful to avoid designs which will be
subjected to frequencies near their resonan