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I. Introduction

This note¥*is concerned with ideas and problems
involved in cross-classification of observations
on a given population., Most of the note will be
confined to the discussion of two-dimensional
cross-classifications., An example of this is the
two-dimensional cross-classification of a portion
of a deck (population) of playing cards resulting
from the classification of the cards according to
suit and according to whether or not the card is a
face card, Such a cross-classification would
congist of a tabulation of the numbers in each of
the (4 x 2 = 8) possible combinations of suit and
face-or-no-face characteristics.

The main objectives of this note are:

1) to establish & conceptual framework for .
characterization and comparison of cross-classifi-
cations; :

2) to discuss existing methods for characteriza-
tion of cross-classifications;

3) to propoée a new approach and a new method
for characterizing and meking inferences from cross-
classifications; ‘

4) to indicate how Markov processes can be
treated as cross~classifications.,

* The author wishes to thank Stephen Clark, George é
Mayeske, Richard O'Brien, and Frederic Weinfeid for ‘
suggestions made during the writing of this note.
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II. Terminology

The word "event" is the conventional probabil-
istic term used to indicate what is observed; we
will speak of observations on a given population
with the assumption that one or more events are
observed with each observation. The generic term
"avent type" will be used to specify the character-
istic being classified in one dimension of a cross-
classification. When we observe two or more events
in a single observation we are observing the joint
occurrence of the given events., The number of
(joint) events so observed is the dimension of the
cross-classification and is also the number of
event types in the cross-classification. The suit
of a card classifies it according to one event type
while the face-or-no-face characteristic classifies
it according to another event type. Within each -
event type there are two or more "event classes";
these classes are mutually exclusive and exhaustive,
i.e., each observation belongs to exactly one event
class within each event type. Within the suit :
event type the four event classes are club, diamond,
heart, and spade. See figure 1.

Event - Suit
types
Event
°13F§35-diamond heart | club | spade
Face-or- face
no-face no face

Figure 1




what are called "event classes within event types"
here are called "subcategories within attributes"

by Guttman (1), p. 258 and nelassifications within
criteria" by Mood (2), p. 274, and "classes within
polytomies" by Goodman and Kruskal (3), and "“cate-
gories within variables" by Kendall and Stuart (6),
p. 256. An extensive treatment of cross-classifica-
tions is given by Kendall and Stuart (6) in a 55-
page chapter entitled "Categorized Data." The
present paper deals exclusively with categorized
data, which are observations which identify events
(event classes within event types) in a qualitative,
non-numerical . non-ordered manner. For instance,
the suits and colors of playing cards are event
types which are based on categorized data.

Three kinds of probeoilities are distinguished
in this note: '

a) unconditional (or marginal) probabilities
b) conditional probabilities
¢) joint probabilities.

We will be assuming that we are observing elements

of a well-defined basic population and at each ob- -
servation two or more events occur. The unconditional
probability of an event is the probability of the
occurrence of that event without regard to the
occurrence of any other event. It is the fraction

of the observations in which that event has

occurred if observations have been taken on the

entire basic population.

The idea of joint probability is the same a8
unconditional probability except that we are con-
cerned with two (or moreg events occurring in a
single observation instead of just one. The joint
srobability of two events is the fraction of the
observations in which both events would occur were -
the whole basic population observed. The ampersand
will be used to indicate joint occurrences in this
note; "A&B" means the joint occurrence of events
A end B and Pr(A&B)" means the joint probability
of their occurrence.




The idea of conditional probability also
involves at least two events, say A and B, The
conditional probability that A occurs given the
condition that B also occurs means that we are
evaluating a probability within a population
regtricted by some condition which was not part
of the original definition of the basic population.
The occurrence of event A given that event B also
occurs is symbolized by "A[B" and "Pr(A|B)" means
the conditional probability of event A given event
B. The conditional probability of A given B is
often defined as the ratio of their joint probabil-
ity to the unconditional probability of B:

Pl"(A‘B) = %%2 °

This means: of all the times that B occurs, Pr(A|B)
is that fraction of the times wherein A also occurs.

When we speak of the occurrence of event A, we
imply the idea of the nonoccurrence of A. In
other words, in the back of our minds we are
considering an A-type event which includes two
event classes: class A and class non-A. Not-A
will be symbolized by "A" in this note. This |
A-type event is also known as a "binary variable"
or a variable which can take on two values, A and
K.* "Event type" is equivalent to the word
"variable" here, and the language of this note
could have been based on "qualitative variables”
instead of "categorized event types."

*Other words which are used for this kind of
variasble are: counting, indicator, dichotomous,
two-gtate, two-point, and zero-one variable or
distribution.




III. Statistical Independence

The standard definition of the gstatistical
independence of two events, A and B, is that the
probability of their joint occurrence is the
product of their probabilities:

Pr(A&B) = Pr(A) x Pr(B) .

Using this Jjoint probability definition of inde-
pendence and the definition of conditional proba-
bility we obtain the definition of independence
in terms of conditional probability: events A and
B are independant if and only if '

Pr(A|B) = 22%%'91 « Pr(A).

The Venn diagram which is Figure 2 can be used
to show the (probability domain% relationship of
the two events, A and B. We see that the domains
of the two events must overlap a certain amount in
order to be independent. The amount required for
their independence is the product of the robabil- -
ities of the events involved; e.g., if PrEA)-.G

and Pr(B)=.8 then in order for A and B to be
independent the intersection of their probability
domazgs must be Pr(A) x Pr(B), i.e., .6 times .8
or .48,

Pr(A)=.6, Pr(B)=.8,

area externa : _
to both A and B Pr(A&B), .48 for inde-
is R&B endence

Figure 2
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1f the amount of overlap is less than the product
required for independence, the occurrence of either
event has a tendency to preclude the occurrence of
the other. If the two probability domains do not
overlap, then each evant completely precludes the
occurrence ;of the other and they are mutually
exclusive. On the other hand, if the amount of
overlap is greater %than the amount required for
independence then the occurrence of either event
enhances the probability of the occurrence of the
other. If there is complete overlap with one
probability domain covering that of the other, then,
of course, the occurrence of the second is completely
dependent on the occurrence of the first.

To put the Venn diagram of Figure 2 into tabulear
form, & 2 by 2_joint probability table with marginal
(unconditional) probahilities is drawn (Figure 3).

In the body of the table a, b, ¢, and 4 are Joint
probabilities and the sums of the joint probabilities
in rows and columns are marginal probabilities.

B B
A a b +6 «—Pr(A)
Marginal
X c a 4 «+—Pr(R) probabilities

\//PI‘(B)—J

Figure 3

The probability domains (a, b, ¢, 4) of the Venn
diagram correspond to those in the tabulated form,
Pigure 3. These are, respectively, the Joint
probabilities: Pr(A&B), Pr(A&B), Pr(X&B), Pr(XeB).
Note that area d is the area external to the A&B
domains. Given two marginal probabilities in
Figure > (one of the A type marginals and one of
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the B type) and an entry in any of the four cells

of the body of the table (a, b, ¢, OT d), the
remaining cells are easily deduced. For instance,
if a i8 .5 then since a+b=.6, b=.l and since a+c=.8,
c=.3 and finally, since c+d=.4, d=.,1. Note also
that if a is .5, A and B are not independent; they

enhance each other's occurrence.

The tabular representation has the advantages

of explicitly identifying K and B and showing A

and X in a uniform manner. The tabular form also
lends itself more easily to event types which are
clagssified into several (not just two) classes.
Suppose that the type A event has three classes

Al, A2 and Ao where Ao are events which belong to
neither A, nor A, Similarly, suppose the type

B events are categorized into classes Bl' 32 and Bo.

The Venn diagram of this with some probabilities
put in as an example is Figure 4,

AO&BO = .5

Figure &4

The same joint probabilities information in
sapbuler form appears in Figure 5.




B B B A
1 e ° marginals
Al .03 06 | .11 o2
AZ 002 009 019 03
Ao 005 015 03 05
B
marginals -1 3 -6
Figure 5

Consider the independence-dependence character-
jstics of the nine joint events whose probabilities

are in the body of the table. We make the following

four observations:
1) A, is independent of all the By
2) B, is independent of all the Ai

3) A, enhances the probability of B, while
diminishing that of Ro

4) A, enhances the probability of B, while
diminishing that of Bl'

This example shows that instances of dependence
can be scattered about among various joint events
when the event types each include several classes.

In this example with three classes in each of
two event types, there are (3-1)(3-1)=4 degrees of
freedom in the determination of the probabilities.
In other words, given the marginal probabilities,
knowledge of certain sets of four of the nine
joint probabilities in the body of the table




determines all of them. These sets of probabilities
are sets of four such that (after entering the set)
at least one cell in each row and column remains
empty and none of the remaining probabilities in
the body of the table can be determined immediately
from both its row and its column. Another way of
stating the second requirement is that if an entry
can be determined from the other entries in its
row, it must not be possible to determine it from
the other entries in its column. This can be
generalized to m event types with Nyy Npoe o o o D

classes, respectively. Then, given the marginal
probabilities, there are (nl-l (nz-l) o« o o (nm-l)

degrees of freedom in determining the joint pro-
babilities. ' -

Testing for independence in a contingency table
is a classical statistical problem discussed in
many statistical books (see, for instance, Mood (2),
pp. 273-81). A contingency table tabulates a set of
observations according to two event types (criteria).
Consider, for example, the classification of a group
of people according to the two event types of
vision and weight. The vision of each person in
the group belongs to one of the three classes:
near-sighted, normal sighted, and far-sighted; and
the weight of each belongs to one of the three
classes: underweight, normal weight, and overweight.
The contingency table for these two event types
would be a 3 x 3 table indicating the number of
observations in each of the nine possible combina-

tions of vision and weight.

Testing the independence of the two event types
in a contingency table can be done in the following

three steps.

1) Change the number in each of the cells to the
fraction it is of the total number of obser-
vations, i.e., divide each cell number by the

total number.




2) Enter the row and column sums of these

3)

fractions as marginals. (The 1339 cell now

is an estimate of the probability that the

139 row event and the JEE'column event

occur togehter (jointly). If the two events
are independent, another estimate of their
joint probability is the product of the

1¥0 row marginal and the 335 column marginal.)

Let oid be the observed fraction of the total
in the 1333 cell and Eij be the expected

fraction assuming independence, i.e., the

product of the iﬁg row and JEQ column

marginals; then compute the test statistic
for the (n x m) contingency table,

n n 2
> o5 egns
-1 =1 i3 )

Under the assumption of independence this
statistic is approximately chi-square dis-
tributed with ?m-l)(n-l) degrees of freedom.
The approximation to chi-square improves with
larger numbers of observations in the cells.
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IV. Measures of Association

The test for independence of two types of events
can be a basis for deciding whether or not the two
event types are independent; if the test leads one
to reject the independence hypothesis, one may want
a more complete explanation of the non~-independence,
One way to investigate non-independence is by
employing a "measure of association" which, in the
statistical literature, has meant a measure of the
direction and amount of departure from independence
of a given cross-classification. Goodman and
Kruskal have written three extensive (32, 40, and
54 pages) papers on measures of association (3), (4),
(5). They favor a measure originally proposed by
Guttman in (1), but they feel that the uses of
measures of association are varied enough so that
there should be several from which to choose.

None of the studies seen by the author, however,
considers analysis of departures from independence
jn detail within a cross-classification (i.e., in
the body of a joint probability table). This is to
say that the measures of association thus far
developed are meant to show (dependence) relation-
ships between event types and not those between the
event classes of one event type and those of another

event type.

If we were working with numerical variables
instead of categorized event types and we assumed
that the variables were linearly related, we would
probably consider the correlation coefficient as
the first candidate for measuring their association.
A set of three characteristics of the corrslation
coefficient traditionally has been sought in the
appraisal of measures of association for categorized

data:

1) the measure is zero when the event types
are independent;

2) the measure is minus one when they have
the maximum disassociation;

2) the measure is plus one when they have the
maximum association,
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We will consider & measure of association which, in
its immediate application, will be applied only %o

a 2 x 2 cross classification although in its

ultimate application it will appear in the assessment
of general n X m Cross clagsifications. In addi-
tion to the above set of characteristics we shall
require our measure to have another set of character-
istics related to the correlation coefficient. This

between events (claasee) and their complements.
Specifically, if 2 is the value of a measure of
the association between events A and B, then it
must also be the value between K and 8. Also, the
value of the measure between A and B and between

Kk and B must be -2,
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V. The Z-measure of Association

A method will now be shown that develops a
measure of association conforming to the requirements
specified above and applies %o jndividual cells,
allowing them to be compared with one another. BSince
each cell in the given (n X m) joint probability
table is to be treated individually, we treat each
cell as the upper left corner entry in a 2 by 2
table as in Figure 6.
This is done by letting B 5

a = the cell being studied A a b y

b = sum of the remainder of
the row entries , X

c = sum of the remainder of

the column entries and x 1ex

d = sum of the remainder of

the table (= l-a=b-c); Figure ©

x and y are marginal probabilities in both the n x m
and the 2 x 2 tables; X = 8+C and y = a+b, All

the information about the 2 x 2 table is contained
in the three quantities, a, X, and y. .

A measure of association between two binary
variables is their correlation coefficient. The
definition of the correlation coefficient for two
variables A and B is:

E(AB) - E(A)E(B)
/ v(aIv(B)

where E(A) is the expected value of A and V(A) is
the variance of A which is E(Az) - E(A)

We are concerned here with binary variables,
specifically the Jjoint distribution of A and B, &
bivariate binary probability distribution. In this
case we can define the distribution of the A-or-not-
A type of event on i;he integers zero and one:




-15 -

- Pr(A-or-not-A event type = 0) = Pr(X) = 1-Pr(A)
and
Pr(A-or-not-A event type = 1) = Pr(A).

A similar definition of the binary distribution of
B applies. Then the following equations hold:

E(AB) = Pr(A&B) = a

E(A) = E(AS) = Pr(A) = y
E(B) = E(B2) = Pr(B) = x
v(A) = y(1-y)

V(B) = x(1-x).

This leads to a formula for the correlation coefficient

asgociated with the 2 x 2 table in Figure 6,

Phi(a,x,y) = .a-xl .
/ ¥(1-y)x(1-x)

"Phi coefficient" is the usual name for this statis-

tic, especially in psychological statistics.* It is
zero when the events are independent (a = xy). It
takes on the value plus one only when a is at its
maximum and when x = y. The maximum of a is the
lesser of x and y. The phi coefficient takes on

the value minus one only when a is at its minimum
and when x + ¥y = 1. The minimum of a is zero when
X+y4&«landx+y=-1vwvwhenx+y2l,

We want a measure of association which always
takes on the value minus one when the least possible
association prevails and always takes on the value
plus one when the greatest possible association
prevails. Such a measure is obtained by dividing
the phi coefficient by its maximum possible value
when positive association prevails and by its mini-
mum possible value when negative association pre-

vails. We now define such a Z measure of association

P A ST SN R UCO P Tt M
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* For a discussion of the phi-coefficient see Guilford

(7), pp. 333=-36.




for four possible situations which cover all the
possibilities of a 2 x 2 table.

Situation I. a>xy, x»y, the binary variables are
positively associated. Z is the ratio of phi
coefficient to its maximum:

Z( y Ry ) = o A JoXV
T Jx(1=x)y(1=y) //// Jx(1-x)y(1-y)

a=xy = —2zXY_
y(1=x) y-xy
Situation II. a <xy and x+y ¢ 1, the binary variables
are negatively associated (disassociated); Z is the

negative of the ratio of phi coefficient to its
minimum:

Z(a,x,y) = (~1)

a=xXy | -Xy
JxQ=x)y(1-y) / /x(1-x)y(1-y)

- 22Xy
xy

Situation III. a ¢ xy and x+y > 1, the binary
variables are negatively associated (as in II). 2 is
the negative of the ratio of phi coefficient to its

minimum:

Z(a,x, = (=1 a=-xy X+yodoxy
(8. X y) ( ) \/;((I-X)Y(l’y) \/X(l"x)y(l"'y)
a=xy o a=xXy
l=X=y+Xy (l"X) (1"3)

Situation IV. & = Xy, the binary variables are in-
dependent; Z = Q. |

b e e ek
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In situations II and III, the sign is made negative
to indicate disassociation.

Horst (8), pp. 238-39, points out that this
Z-measure is the ratio of two covariances, an
observed covariance over a maximum (Sit. I) or a
minimum (Sits. II and III) covariance. He uses it
as a measure of the homogeneity of test items.,
This is an interesting case in which the event
classes are not mutually exclusive.

The 2 x 2 table which is Figure 6 can be written
solely in terms of a, x, and y. Such & table
equivalence is shown in Figure 7.

B B
A a y-a y a| b |y
l+a =
K | x-a —x-y l-y c | d |l-y
X l-x X |l=x

Figure 7
Assuming a >xy and x>y, we now find the Z-measure

for each of the four cells in the body of the table.
An arrow (—») is used to mean implication.

Z(a,x,y) = %fﬁﬂ

8> Xy —> l48=X=y > 1+Xy=x=~y = (1-x)(1l-y). Thus since

l+8=x=y > (1=-x)(1=y), the computation for the lower
right cell, d, is done using the Situation I formula.

Z(d’ l-x, l-y) = Z(l"'a"x*‘yg 1“'}(, l-y)

. lta-x- =(l-x)(1-y) a-
(1-x) [1-(1-y)] Feo
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For the upper right cell, b,

ay xy — y=-a <y{l=x)

x>y —>l=x<ley —=(l=x) + y<1 .
Using Situation 1I,

Z(b, l=-x, y) = 2(y-a, l-x, y)
~a=(1l-X)y . a=x
= z'§r§:x = y(I-x) °
For the lower left cell, ¢,
8> xy —»X%=a < x(1-3) |
X5y —wlex<lay —(1l=y) + x> 1,
Using Situation III,
2(c, X, l-y) = 2(x-a, x, 1-y)
_X=a=x(1-y) . a=x -
(1-x) 1-(1-) y{I=x) -

Thus Z2(a, X, y) = z(d, 1l-x, l-y) =

"’Z{b, l’x’ y) = -Z(C, x’ 1“'y)
or in terms of the binary variables & and &,
Z(A’B) » Z(I’ B) = -Z(A’ ﬁ) &3 “"‘Z(K’B) e

Thus we have a measure of association for a pair of
binary variables which has the desired characteristics:

i. zero when variables are indepsndent (Situation
1v) ‘

¥

, minus one when variables are as comnpletely
disassociated as possible (in Situations Il
and. I1I)

%, plus one when the variables are as completely
associated as possible (in situstion I

4, 2(A,B) = 2(K,B) =-2(%,B) = -Z(4,5}
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Zz(a,x,y) is a function which maps points in a
vhree~dimensional space to points in a one-
dimensional space. Figure 8 shows one aspect of
this mapping: 2 as a function of a with x and y

fixeu.

Z and Q

A
+1

¢(a) domain extends
down to zero in Sit.
II; but only to.

x+y-1 in 8it, III

\z%--;

>

|
:
'
|
|
|
3
:
|
|
|
:
!
1
y

Y<x

a is a Joint probability
x and y are its marginals

Sit. II

Figure 8

The hivariate binary correlation coefficient, é(a)or
phi(a), is plotted as a dotted line. It has "the
same domain (set of arguments) as Z but is linear
throughout its domain.
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One should keep in mind that, although the
7Z-measure is related to the correlation coefficient
it differs frem the correlation coefficient in
fundamental ways. The Z-measure is not linear at
72=C except wken one or both of the marginals is .5.
It is a two-part linear function of the correlation
coefficient such that the coefficients of the
function are non-linear functions of x and y. The
Z-measure should be judged, however, in its own
right, and not as a replacement for the covrelation
coefficient which fails to behave for bineuy
variables as it does for linearly related continuous
numerical variables. It is hard to find a common
situation with less favorable conditions for
establishing linear relations than that of the
bivariate binary distribution with point-masses of
probabilities at the four corners of a square, The
perfect correlation condition there is when all the
mass is on diagonally opposite corners. As we saw
earlier, thiz can occur only when x =y (for perfect
correlation) or when x + ¥y = 1 (for perfect negative
corcelation). In all other cases the correlation
coefficient cannot attain 1.

The advantage of Z over the correlation coefficient
is that it has the range of values minus one to
plus one for ell x and y combinations. This allows -
one to compare Z measures based on different x and y
combinations and say that the amount of interaction
vetween two svent classes is greater or less than
that between another pair.

Additionsl insight into the nature of the Z-
measure is gained when considering it from the set-
theoretic point of view using the Venn diagram
approach of Section III. Z-measure essentially
shows the relationship between the amount of ob-
served overlap and the maximum or minimum potential
overlap of two probability domains. It may be
rhought of as the attraction or repulsion force
axisting between the probability domains of two
events. 1In this sense it is considered to be
sweasuring a symmetric force such as gravity or
magnetic rorces.




There have been several discussions of the
Z-measure in psychclogical statistics. The Z-
meagure i. uguslily ve.led QY / ¢ max" with little
mention of "¢ / ¢ min"., Carroll (9), pp. 363-64
discusses this measure in terms of 2 x 2 tables
derived from the division of continuous bivariate
distributicns into four parts; observations are
classified as being above or below a point on the
scale of one merginal distribution and above or
below a point on the scale of the other marginal
distribution., Carroll particularly refers to the
"tetrachoric correletion coefficient" (which
assumes a bivariste normal underlying distribution)
as the ideal one and finds the Z-measure does not
approximate the tetrachoric correlation coefficient
very well. He rather emphatically dismisses the
Z-measure on this basis. Guilford (7), pp. 337-38,
8lso warns egainst the use of the Z-measure as
an "indicator of intrinsic correlation." In general,
the psychometricians discount the use of the Z-
measure in lieu of a (Pearson) correlation co-
efficient. The mathematical treatment of the Z-
measure, however, needs more development than is
given in the psychometric literature in order to
understand enough about the measure to make proper
use of it. Cureton (10), p. 89, for instance,
states that Z2 can be +1 only when x = y = ,5 and
Z can be ~1 only when x = l-y = .5; whereas 2 = +1
if and only if x = y ~a and 2 = -1 if and only if
X = l=y and a = 0.

Comparing the joint probability (a) with the
Z-meagure for a given joint event, and generalizing
over the four situations we see that

whers
e = nin(x,¥) - xy if2 >0
= XYy if 2 ¢ O and x+y & 1
=z (l=x)(1-y) if 2 € O and x+y 1.

Z is thus seen to show the reiationship between the
joint probability and the associated marginal
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probabilities, x and y. The nature of c¢c is further
elaborated in Section VII.

There aie also two conditional probabilities
associated with a joint event and these show,
respectively, the relationship between one marginal
and the joint probability and the other marginal
and the join% probability. Conditional probabilities
are used to improve one's ability to predict the
oceurrence or non-occurrence of an event by obtaining
information about the occurrence or non-=occurrence
of another event. Such a prediction operation
sorietimes tends to lead to the imputation of causality
petween the two events. The Z-measure is symmetric
in the marginals and thus avoids such an imputation.,
A conditional probability without the appropriate
unconditional probability does not tell one whether
the event being conditioned is more or less likely
when it occur: jointly with the conditioning event.
Thus the ccnditional probability by itself is not a
measure of association whereas the Z-measure is.
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VI. An Application of the Z-measure

A contingency table which has often appeared as
an example in textbooks and articles involves the
cross-classification of 6800 males according to
their hair and eye color.* Four classes of hair
color were observed: fair, brown, black, and red.
Three classes of eye color were observed: blue,
hazel or green, and brown. Figure 9 shows the
original observations (contingency table); Figure
10 shows the corresponding joint probabilities
table; Figure 11 shows the corresponding values of
the Z-measure of association; Figure 12 shows
conditional probabilities of hair color given eye
color and eye color given hair color.

Phis cross-classification fails the classical
chi-square test of independence at the .000001
jevel. Some of the details brought out by the .
7-measure are that red hair is essentially indepen-
dent of eye color for this population while a
general correlation of eye and hair pigment holds.
The disassociation of fair hair and brown eyes (=.678)
and of black hair and blue eyes (~.626) are, however,
much more pronounced than the associations of fair
hair and blue eyes (+.365) and of black hair and brown
eyes (+.,190). The weakness of the black hair and
brown eye association is surprisingly less than
that of both black hair and hazel eyes (.277) and
that of brown hair and brown eyes (.201). |

* E.g., see Goodman and Kruskal (3).




HAIR COLOR |
fair brown black red é
ovE blue | 1768 807 189 47 | 2811 |
COLOR hazel 946 1387 746 55 3132
brown 115 438 288 16 857
2829 2632 1223 116
FIGURE _9 4
JOINT PROBABILITY TABLE -
fair brown black red
blue 26 «119 .028 0069 | (4134
hazel «139 204 110 .0078 - 4606
brown «017?7 064 o042 0024 | ,1260
416 «387 1799 0171
Figure 10
-* Z MEASURE OF ASSOCIATION
fair brown black red
blue ¢ 3565 -e258 - 626 -o02
hazel -.274 .084 277 -.008
brown -.678 .201 «190 0l4
Figure 11
) CONDITIONAL PROEABILITY TABLES
fair EYErgEXEN gtiﬁk red fairHAIgrgEXEu Eifck red
. blue  .625 326 154 405 629 .287 0672 .0167 1.0
é hazel 334 525 610 457 302 443 238 0169 1.0
| é browna .041 ,166  .235 .138 134 511 336 ,0187 1.0
1.0 1.0 1.0 1.0
Pigure 12
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VII.The Reverse Inference: Joint Probabilities From
Z-measures

Heretofore we have been considering the derivation
of the Z-measure from a joint probability table. We
now consider the derivation of a joint probability
table given a set of Z-measures and marginal proba-
bilities. We may be given the marginal distributions
of a cross-classification, for instance, and
(perhaps subjective) estimates of some of the
associations between various states. We can specify
no more Z-measures than the degrees of freedom
jnvolved. The joint probability table and the
Z-measure table of a three by three cross-classifica-
tion are shown in Figure 13.

811 212|813 | N1 211 | %12 | %13
821 | 822 823 | V2 Z21 | %22 | %23 |
831 | 832 B33 | 3 231 | %32 | %33
xl x2 83
Figure 13

. . from the specifi-

We derive definitions of the ala

cations for Z's on page 16,
= X3V if 2 « O and xd+yi£1 ]
= (l-xd)(l-yi) if 2 « 0 and xd+yihl Zé
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Theorem: C, ¢ .25
°id is composed of two factors, say fl TNV f2. ine
of the factors, say £y is no greatciy then O 84

f. = .5-u, u » O, Then £, ¢ .5+u. Suppose (at worst)

1
- .5+u. Then £f, = (5=u)(L5+u) = 2502 & .25.

2
cid is the maximum possible diffeience between
aij and xdyi given the information about whethex zaxi'j
is larger or smaller than xdyi; Zij indicates how
much of this maximum deviation is attained by aid’
One possibility is that aid = xjyi; then for each row

and each column Zaid = ijyi. Howaver, the row and

column sums are the same (i.e., the marginal probabilities

are fixed) for all permissible sets of a4 Thus for
any permissible configuration of the aij for each row
and column, Zaid = Zx'jyi and Zai.j ® Z(x,jyi"ci;]zia)'
Therefore, for each row and column'E:cijzljso. For
convenience, let did a °ijzij' We now have the
following set of six equations defining the raelations

among the did for a 3 x 3 joint probability table:
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2) 4,5, + d22 + dyz = O | row sums

3) d}l + d32 + d33 = 0

4) 41y + dy) + 45y =0

0 <°i,j 4 ,25 and =1¢€ Zij 4 +1 means that -=.,25 4 di;j £ +.25.

Earlier the number of degrees of freedom associated
with a cross-classification table were discussed
(pp.9,10). If we decide certain sets of four dij"

the remainder of a 3 x 3 table of dij'g are determined.

. Phere are 126 ways of selecting four cells from among
nine; only 81 of these ways conform to the degrees
of freedom requirements stated earlier, Each of
those 81 provides us with a different configuration

of four cell choices in a 3 x 3 table, If we
specify one of these configurations, the did for

the remaining five cells can be stated in terms of
our four initial didc For instance, suppose we are

given dy4, doos d33 and d31 (see Figure 14). Using

the row and column sum equations we obt%ain the re-
maining dij in terms of these four:

32 = =43y - dj; N
- -a dip 9;3

-d;,

1o = -85, + d5) + 4y | 921 23
dyz = =d)y + dyp = d3) - 455 a5, %

Aoz = dy) - dyy + d5

Figure 14
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VIII The Inter retation of Markov Processes as Cross=
Slassifications
A Markov chain (or process) is generally defined

by its probablility transition matrix and its

jnitial distribution. Figure 15 is an example of

a transition matrix of a 4-state Markov chain; it
shows the probability of the occurrence of event

E. at time k+l1 given that event Ei occurred at time

k (i and § are the row and column indices respectively).

Time k+l
Ey E, E} B,
Ey .6 o4 0
Time E2 0 o6 ol 0
k E3 0. 0 o6 U4
B, 2 | of o | .8
Figure 15

Phis transition matrix is a table similax to
that associated with a cross-classification. It is,
however, a table of conditional probabilities
whereas for the complete specification of a cross-
classification a joint probability table is needed.
A conditional probability table can be deduced from
an underlying Joint probability table but a joint
probability table cannot be deduced from either or
both of its corresponding conditional probability
tables. A Jjoint probability table can, however, be
deduced from one of its conditional tables and one
of its marginal probability distributions. 1In &
Markov chain, an jnitial probability distribution
vector (hereafter PDV) is given; this PDV is one
of the two marginal probability sets in the under-
lying joint probability table. The initial PDV
completes the gpecifications needed for a cross-
classification interprzuation of a Markov chain.

We will often gubscrirt the PDV's with their assoc-
jated time index, €e¢fe» the initial PDV will be PDVy e

ot ek Y
B
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Continuing with the example in Figure 15,
suppose: we are given a PDV of (.1, .2, «3, .4)
for events El to E,. Then the joint probability

table becomes that shown in Figure 16.

E, | B | BEy| E,

E, 06 | 04| O 0 .1
E, o |.12] .08] o0 .2 | Time
E, 0 0 a8 1 12 | .3 Kk
E, 08 | 0 | 0 | 32 | .4
A4 | 416 | 26| .44
Time k+1l
Figure 16

The joint probabilities in the body of the table
are obtained from the conditional probabilities in
Figure 15 by multiplying the probabilities in each
roWw by the corresponding probabilities of PDVk.

The event types are events observed at the two
times, k and k+l while the event classes are El to

B, for each type.

The present discussion tends to be in terms of
the transformation of PDV's in contrast to the usual
emphasis on probabilities of going from one state
to another in a certain number of transitions (e.g.,
from E, to E, during time k to k+m). Thus the

usual approach is based on powers of the transition
matrix whereas this is based on sequences of PDV's,
A large portion of the problems couched in terms of
Markov chain theory are problems which assume that

the process is ergodic. A Markov process is
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ergodic* if it converges to a steady state as k :
gets larger. A Markov process is in a steady state
at time k only if FDV, = PDV]N1 . For practical

purposes we could say that a process is in the
neighborhood of a steady state at time k+1 if PDVk

differs from PDVk+1 by less than a specified small

amount. This neighborhood might be defined in terms
of the accuracy of the estimates of the probabilities

in the PDV's,
The bottom marginal (or PDV) in Figure 16 could

be obtained by multiplying together the right
marginal probabilities and the transition matrix

of Figure 15 thus:
(o1, ¢2, ¢3, o4) 6 4 0 O

O .6 .4
O 0 .6 .4
2 0 O .8

2 (o184, .16, 26, J44)

Such a multiplication indicates fhe transformation
~ of the PDV between time k and k+l. We can obtain
PDVk+2 by multiplying the result by the same

transition matrix. In repeated multiplication of

the previous result, the difference between successive
PDV's is seen to diminish; the process is approaching
the steady state. The process is in a steady state

if the input PDV is the same as the output PDV, i.e.

(xl, Xas Xz x4) 6 4 O O
O .6 4 O

O O .6 .4

2 0 0O .8
TFETgodlc" 1In defined by reller (11), Pe. 353. A
different definition is given by Kemeny & Snell (12),
p. 99; they include periodic or cyclic Markov chains
in ergodic chains, Feller does not,

= (X)) X5 X35 X,)
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Figure 17 is the joint probability tabls of the
steady state of the process, the transition matrix
of which is shown in Figure 15.

E, | B, | B5 | By
E, 12| 08| O 0 |.2
E, o | 2| .08| 0 |.2
E, o] o .12 | .08 .2
B, 08| > 0 032 | o4
2 | 2 | 2 | o4

Figure 17

Figure 18 is the corresponding Z-measure table.

) 25 -1 -1
"1 05 025 "1
"1 "“1 05 0
0 "'1 "1 0666
Figure 18

As an ergodic Markov process progresses toward
the steady state, the transition matrix remains
invariant. The following items generally change as
the time index (k) changes:

1. Both sets of marginal probabilities (the PDV's)
2, The joint probability table

3., The Z~-measure
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4, The conditional probability table which reverses
the effect of the transition matrix, i.e., that
which would take PDVk+1 to PDVk.

The table in (4.) is that obtained by dividing the
Joint probabilities associated@ with the k to k+l
transition by the marginal probabilities in the margin
below. The transformation from PDVk+1 to PDVk

could also be accomplished with the inverse of the
transition matrix if the transition matrix is non-
singular; such an inverse is invariant with respect
to k.

A special kind of Markov chain which is an
exception to the above characterization is that in
which the transition to each state is independent
of the state from which the transition began. Then
the following conditions prevail:

l. All rows of the transition matrix are the same

2. The joint probabilities are products of their
marginals

3, All Z-measures are zero

4, Given any initial PDV the convergence to the
steady state is immediate and complete at time
k+l and all further transitions do not change
the PDV's,

This special kind of Markov process suggests
a potential basis for the comparison or character-
ization of Markov processes: the rapidity of convergence
to a neighborhood of the steady state. Apparently
the farther the Z-measures of the joint probability
table of the steady state are from zero, the slower
is the convergence. Notice, however, that zeroes
and ones in the transition matrix indicate cells
whose Z-measures are invariant during convergence
80 that such cells should be treated differently
(perhaps excluded) from the cells which change
during convergence. The theory needs further
development in this area. -
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The steady state joint probability table and
Zz-measures are fixed for a given transition matrix
and are independent of the initial PDV. Thus they
are obvious choices for characterizing a Markov
process. An infinite number of transition matrices
converge to each steady state PDV; they all have
different joint probability tables and different

Z-measures.

If one is altering a Markov process in order to
have it converge to a target steady state one method
would be the comparison of the Z-measure matrix of
the process at present with that of the target steady
state. This will show which transitions must
become more likely and which ones must become less
likely in order to attain the target. It may well
be, however, that the transition matrix which
maintains the steady state PDV does not matter,
i.e., only the PDV itself matters. Then many
21Ternative Z-measure configurations could be
compared to see which would be the preferred target
based perheaps on time, cost, and other criteria,

The Markov process defined in Figures 15 to 18
has a 4 x 4 joint probability table co it has
3 x 3 = 9 degrees of freedom. There are eight
zeroes in the joint table which remain there
throughout all transitions; these lead to corres-
ponding fixed Z-measures of minus one. By choosing
any one of the non-negative Z's one can determine
the entire process, This is a special (flow
process) case and illustrates the method of reverse
inference discussed in the previous section.
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