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CHAPTER I

INTRODUCTION

This paper considers some of the implications of the assumption

that items in a list mutually affect each other in the course of verbal

list-learning. By a mutual affect or item interaction (or item dependency)

is meant that performance on a particular S-R pair in a list depends in

some way on the number and order of presentations of other S-R pairs in

the list. It is hardly necessary to document the fact that items do

interact in this sense; other things being equal, more errors are made to

a particular S-R pair the larger the number of other S-R pairs in

the list. Of course, these item interactions may be of a mild and uni-

form sort, such as might be produced by the subject's spreading his effort

over M items, rather than just one; or the interactions might be more

extreme and non-uniform, such as those postulated by a concept-identifi-

cation model (cf. Restle, 1961). We open the analysis by drawing some

conclusions from a brief review of the history of mathematical learning

models for verbal list-learning.

Probably the simplest mathematical model for verbal list-learning

is the one-element pattern model (Estes, 1959). This model was first

analyzed in depth and applied to paired-associate learning data by Bower

(1960, 1961). Since its introduction, the one-element model has received

a number of diverse interpretations among the are the following: (1) a

stimulus pattern interpretation (Estes, 1959), (2) an all-or-none strategy-

selection (hypothesis) interpretation (Restle, 1961, 1964), (3) a memory

interpretation (Atkinson, Bower, and Crothers, 1965, pp. 87-88), and
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(4) a response-elimination interpretation (Millward, 1964). Although the

model has been successful in accounting for some list-learning data, a

number of deficiencies in the model have been pointed out. Some of these

are as follows: (1) the model fails to account for individual differences

and unequal item difficulty (Postman, 1963), (2) learning may involve more

than one stage (Restle, 1964), and (3) improvement in performance may

take place prior to the last error (Suppes and Ginsberg, 1965).

Despite the ups and downs of the one-element model and its many

modifications and extensions, the basic research strategy depicted in

Bower (1961) has had a great influence on later invention and application

of models to paired-associate data. This strategy has been first to

state a (new) mathematical model for paired-associate learning (usually

some finite-state Markov model), derive a battery of statistics from this

model, estimate parameters in the model, and then attempt to account for

summary statistics of the pool of subject-item error-success sequences
1

obtained in a list-learning experiment (usually run by the anticipation

procedure) designed to validate the model. Among the many research paper

exhibiting this four-step strategy are Atkinson and Crothers (1964),

Bower (1961), Bower and Theois (1964), Calfee and Atkinson (1965), Mill-

ward (1964), Norman (1964), Poison, Restle, and Poison (1965), and

Restle (1964).

A few of the models presented in these references have psychological

rationals which assume that the learning of a particular S-R pair pro-

cedes independently of the states and responses of other items in the list

1 Suppose a subject learns a list of N items by the anticipation pro-

cedure. Then that subject contributes M error-success subsequences,

one for each item, to the pool of subject-item error-success sequences.
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(e.g., the one-element model (Bower, 1961) and the random-trial increments

model (Norman, 1964)). For these models it seems reasonable to study

separate error-success sequences for each subject-item, since the model

assumes that each of these sequences represents an independent sample

path from the stochastic process represented in the model. However, for

a number of other models, this independence of subject-item error-success

sequences is placed in immediate question by the psychological theory

postulated to underlie the model which is applied to these sequences.

For example, the trial-differential-forgetting (T.D.F.) model suggested

by Atkinson and Crothers (1964) and developed in Calfee and Atkinson (1965)

postulates that the more intervening unlearned items between two successive

presentations of a particular S-R pair, the greater the chance that the

pair passes out of the short-term memory state and is thus forgotten.

This assumption very definitely implies that, for a particular subject,

error-success protocols for each item are not independent. Also, the

strategy-selection theory of Restle (1964) implies that confusable items

produce very non-independent error-success protocols, i.e., if S-R1

and S'-R
2

are two such S-R pairs, the error-success process on each

should be related, since subjects may confuse S and S'.

At best, an application of these models to a pool of error-success

protocols which lack a stimulus tag or a subject tag represents an approx-

imation to the true state of affairs. When applying the T.D.F. model to

data (Calfee and Atkinson, 1965), it is assumed that the average number

of unlearned items, Fn, intervening between the n
th

and n+1
st

presenta-

tions of a given item applies to all items in a list. Under this ap-

proximation, the theory takes the form of a finite-state inhomogeneous

3



Narkov chain. This chain is designed to account for the error-success

protocols for each subject-item in the experiment. The approximation

that Restle uses to account for subject-item protocols is discussed in

detail in Chapter 5, pp.108-117 of this paper. Basically, he neglects

the interrelationships between a pair of confusable items in his appli-

cations.

The major psychological Ideas in these latter two theories are as

follows: (1) the TOD,FO model is based on the idea. that unlearned items,

when they are presented, cause items in short-term memory to be bumped

into a forgotten state; and (2) the strategy-selection theory is based

on the idea that stimulus confusion (S-R
1,

S9 -R
2

) is overcome in an

all-or-none manner. In both cases we have seen that in order to apply

the theory to a pool of subject-item error-success sequences in an anti-

cipation procedure experiment, the major new variable in the theory is

represented as an "average" quantity. However, by their nature, both

the memory assumption and the confusion assumption imply highly differen-

tial effects on response probability to a particular S-R pair as a

function of the number and order of other preceding S-R pairs, The

implications of these two assumptions can be powerfully tested by either

designing an experiment where S-R presentations are highly controlled

or by utilizing statistics in the data that relate performance on sepa-

rate items (or both possibilities together). Experiments and analyses

of this nature have been performed on the memory assumption (Bjork, un-'

published doctoral dissertation; Green°, 1966; and Atkinson and Shiffrin,

1965) and on the stimulus confusion assumption (Restle, 1964, pp. 145-160;

Ruskin, unpublished doctoral dissertation; and Sheppard, Hoveland, and

4



Jenkins, 1961). Finally, it should be mentioned that although the T.D.F.

model and strategy-selection theory were singled out as being convenient

examples of approaches to item dependencies, other models have also

attempted to handle this problem.

This paper considers both the mode of data analysis and the method

of S-R presentation for a number of restricted theoretical assumptions

involving item interactions in S-R list-learning experiments. Chapter 2

considers the problem of level of data analysis, i.e., the problem of how

to use data in a list-learning experiment to bear on a psychological

theory or to evaluate a model. By this concept is meant the following:

each subject in a list-learning experiment can be conceptualized as emit-

ting a single finite data sequence. A particular member, xn, of this

sequence consists of the stimulus presented to the subject on the n
th

trial, Sn, and his response to that stimulus, An. Thus, for a given

subject i, the data are of the form

i i i
X = X

1
X
2

xn x

SlAl S2A2 SniAn
i

where N S-R presentations are given to subject i in the experiment.

In order to analyze data in a list-learning experiment, researchers trans-

form this primary datum in ways to extract what they regard as its infor-

mative aspects. For example, for a subject-item error-success analysis,

the primary datum is separated into subsequences, one for each item, and

then the SA terms in these shorter sequences are transcribed as errors

or successes. The particular way in which the primary datum is reduced

represents the level of analysis.
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More specifically, by level of data analysis is meant the collection

of stimulus classes that define the error-success subsequences used in an

analysis. With each class there is associated a single error-success

sequence consisting of the chronological record of responses to members

of the class. The subject-item analysis or paired-associate level (P-

level) analysis consists of singleton stimulus classes, i.e., one for

each item. On the other hand, a concept-level analysis (Atkinson, Bower,

and Crothers, 1965, pp. 30-31) groups all stimuli in a list to define a

single stimulus class giving rise to one error-success protocol for each

subject. The units of a given level are the particular stimulus classes,

e.g., for a P-level analysis, the units are the individual items. An-

other level of analysis discussed in Chapter 2 is as follows. Suppose a

list of JM S-R pairs is composed of J classes of M S-R pairs,

where the items in any class of M items are interrelated and paired

with the same response. The rule level (R-level) of analysis is de-

fined to be the analysis where each group of M stimuli forms a stimulus

class which defines a single error-success sequence for the class. Thus

each subject would donate J error-success sequences for an R-level

analysis. The units for this analysis would be the J classes of stim-

uli. Chapter 2 discusses methods of drawing inferences from a model (or

psychological theory) by investigating alternative levels of analysis on

the same set of data.

Chapter 3 extends Chapter 2 in the following sense while much of

Chapter 2 concerns the one-element model, Chapter 3 presents a model

which is analogous but which allows subjects to learn either a particular

S-R pair or a collection of related S-R pairs on a particular trial.
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This model is called the all-or-none multi-level model, since it assumes

that learning can take place at two levels simultaneously. These two

levels are the P-level, corresponding to a P-level data analysis,

and the R-level, corresponding to an R-level data analysis. Alter-

natives to the paired-associate anticipation procedure (i.e., the pro-

cedure whereby random perrutations of the entire list are presented

sequentially) are introduced, and some of the implications of the all-or-

none multi-level model for these experimental procedures are presented.

The models discussed in Chapters 2 and 3 are not designed to represent

a theory of paired-associate learning but to indicate how inferences can

be made by considering a fixed model on various levels of data analysis

and in various experimental settings.

Chapter 4 establishes a mathematically rigorous basis for analyzing

a large class of modals which embody item dependencies. In this formula-

tion, each item is allowed to have a different effect on the states of

all the items in the list when it is presented for an anticipation trial;

and, further, the state of each unpresented item in the list can effect

the response probabilities and transition probabilities of the presented

item. Among the motivations for developing this general mathematical

framework are the following:

(1) The analysis of the all-or-none multi-level model in Chapter 3

is limited, owing to the difficulty in deriving properties of the

model from the axiomatization presented in that chapter. The formu-

lation of the all-or-none multi-level model in Chapter 3 is along

the lines that models are conventionally axiomatized in the litera-

ture (cf. Atkinson, Bower, and Crothers, 1965, p. 85 and p. 353);

7



namely, a particular item is singled out and the various things

which the model postulates can happen to that item are presented.

At the outset of Chapter 4, the argument is made that when a model

postulates item interactions, it might be more profitably analyzed

in the context of a set of axioms that describe the things that

can happen to the whole list of S-R pairs upon a presentation of

a particular item, The chapter then develops this analysis and

demonstrates that it helps overcome analytical difficulties that

were inherent in the single-item axiomatization,

(2) An increasing number of mathematical models for list learning

are embodying processes which involve item dependencies. Therefore,

such models might profit from an analysis in terms of a framework

designed to handle these dependencies, The argument for this case

is presented in more detail in Chapter 4, ppG 49-53-

(3) Many experimenters have argued that most current list-learning

experiments involve processes which concern interrelationships be-

tween items during the course of learning. Investigators have

discovered a variety of psychological processes which operate, in

varying degree, in such experiments. Most notable are the following

processes (i) memory and its organization (cf. Peterson, 1963)

Melton, 1963), (ii) coding processes (cf. Symposium on coding and

conceptual processes in verbal learning, articles by Battig, Cohen,

Cofer, Tulving, Kendler, Shepard, 1966), and (iii) in second-lan-

guage learning, dependencies arising either because of transfer

from English or because of linguistic dependencies that are built

into the second language (Crothers and Suppes, in press), The for-

8



mulation in Chapter 4 is designed to handle models which postulate

processes like these and others which are similar.

(4) Traditionally, mathematical learning models have not been

stated on levels that are general enough to constitute theories of

paired-associate learning. By this is meant that many of the learn-

ing models are designed to predict performance only for a particular

experimental procedure and level of data analysis. A model forma-

lized in the framework of Chapter 4 can, in principle, predict per-

formance for any mode of S-R presentation chosen for experimenta-

tion. The stochastic process which predicts performance for a

particular presentation schedule comes as a logically tight deriva-

tion from the theory and does not represent the theory itself.

Examples of how a stochastic model is derived from a general learn-

ing model axiomatized in the framework of Chapter 4 are presented

in Chapter 5, pp. 103,105,115.

(5) Another contributer to the motivation for including Chapter 4

is the bias that progress in mathematical learning theory need not

always be made by proposing a new theory of verbal learning (this

is not attempted in the paper) but by the bringing of formal tools

to the task of constructing new methods for drawing inferences from

data (for example, the correlational analyses developed in Chapter 2,

pp. 22 - 24) as well as constructing a formal framework for drawing

conclusions from a theory once it is stated.

For the reasons, it is felt that Chapter 4 represents a definite

contribution to mathematical learning theory, over and above the more

specific developments in the other chapters. Nonetheless, the contribu-

tion does not represent a final solution to the problems we have raised.

9



Of course, these problems and observations which motivated Chapter 1 had

been previously recognized by other investigators, and they are pooled

to warn the reader of the particular bent that the paper (especially

Chapter 4) will take.

Chapter 5 illustrates how the framework of Chapter 4 can be applied

to specific models. An analysis of the mixed model paralleling that of

Atkinson and Estes (1963) is presented in terms of the framework. Re-

sults for various presentation schedules are presented to illustrate the

flexibility of the framework. Next the all-or-none multi-level model

receives an additional analysis (to that given in Chapter 3) in terms of

the framework. The additional feature of this analysis is that the pro-

cess of deriving Markov models for a particular choice of presentation

schedule is illustrated (Chapter 5, pp, 103,105), Finally, Restle's

strategy-selection theory is developed in terms of the framework, and

several problems with its earlier axiomatizations are met squarely by

this analysis.

In Chapter 6, several experiments that the writer has conducted

are briefly discuLsed, in addition, possible directions for further

experimentation and analysis of multi-level processes in list-learning

are indicated.

10
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CHAPTER 2

DATA ANALYSIS ON VARIOUS LEVELS

In this chapter an analysis of the problem of levels of learning is

initiated in a somewhat restrictive situation. Suppose one has a list

of S-R pairs to be presented to subjects by the anticipation procedure.

Assume the list is structured so that groups of stimuli paired to the

same response have inter-relationships, eog., all stimuli paired to a

certain response start with the letter Al or all stimuli in a certain

response class are names of animals.

For ease of presentation it will be assumed, for the moment, that

learning is either on the single item level (P-level), on the rule level

(R-level), or on both. Let us illustrate this with the following list:

Stimulus Response

LEBESGUE

RIEMANN

STIELTJES

FISHER

BENKO

RESHEVSKY

STICELES

PARKS

CASEY

1

1

1

2

2

2

3

3

3

Depending on instructions and whether or not the subject is familiar

with mathematicians responsible for a method of integration, contemporary

American chess players, or offensive ends for the San Francisco Forty-

Niners, respectively, the subject might learn single S-R pairs or

groups of S-R pairs. The assumption made in this chapter is that the

11



unit of learning is the single item (P- level;,, or the set of 3 items

related by the rule (13-level).

The concern of this chapter is with the properties of performance

measures, i.e,, the predictions a learning model might make for various

ways of viewing the performance data. Considering culy errors and suc-

cesses, the primary datum from a subject in an anticipation procedure

experiment is a long string of stimulus result (error or success pairs,

The two modes of data analysis corresponding to the theoretical notions

of P and R-level learning are as follcws 1 For a P-levei analysis

we abstract and pool all subsequences from the primary datum correspon-

ding to each stimulus in the listi and 2. For an R-level analysis we

abstract and pool all subsequences corresponding to a particular res-

ponse, The example list has 9 P-level subsequences and 3 R-level sub-

sequences for each subject.

In the literature, models are usually developed with a particular

level of data analysis in mind (e g,, Bower, 1961, Restle, L961;. Even

so, a model can be viewed as a stochastic process which generates se-

quences of is and Os (errors and successes If one wishes to apply

a model, viewed in tnis way, to his data, he must choose a Level tor

levels) on which to apply it (e.g , Suppes, Crothers, Weir, and Prager, 1962)

Any nontrivial learning model that data will look dif-

ferent when analyzed on different levels. As a proof consider a primary

datum as a string of is and Os, Depending on which subsequences are

abstracted for analysis, different results on such statistics as, for

LIOf course, for a trivial model producing strings of all zeros, each
subsequence would also consist of all zeros and provide a single counter
example,

12



example, the proportion of ls in the fifth place (i.e., Pr(error on

"trial" 5)) are likely.

It is a logical possibility that two learning models could agree

in predictions on one level of analysis but disagree on another. To see

this possibility consider the primary datum of strings of ls and Os,

two models might agree on the probability distributions over subsequences

but non-independence considerations might cause them to disagree on dis-

tributions over the primary datum level. For example it is possible

that a simple model could fit P-level data and yet fail to account for

an R-level analysis of the same data. Finally, it is possible for a

choice of models to be correct but a choice of level of analysis to be

wrong, Such a possibility must have occurred to Suppes, et. al. (1962)

who actually used the same model on several levels of data analysis.

Comparison of One-element P-level and R-level Models

In this section we shall investigate the implications of the one-

element model holding on either the R-level or the P-level. To illus-

trate some of the points above, both the R-level and P-level analysis

of data generated by the P-level and R-level one-element model will be

presented. In the next chapter a model allowing both types of learning

will be presented.

The one-element model to be used in this analysis takes the following

form (Estes, 1959, Boyer, 1961). The unit to be learned starts in an

unlearned state U. On the presentation of a unit in state U, the

correct response is made with probability g and an error with proba-

bility 1-g. After response) the unit shifts to a learned state L

with probability c and remains in U with probability 1-c. Units

13



in L are always responded to correctly9 and, once in L, a unit re-

mains there. These assumptions are conveniently summarized by the tran-

sition matrix for the implied two-state Markov chain:

state on
trial n

state on trial n+1 Pr(correctirow state)
L U

0

1

ri

1-ej

If the unit is a single item, we shall refer to the model as the

one-element P-level model. If the unit is a group of items paired with

the same response, we shall refer to the model as the one-element R-level

model. Logically there are four possibilities for jointly considering

the level of data analysis and the type of one-element model. These are

(P,P), (PIR), (R,P), and (R,R), where the first letter refers to the

level that data statistics are examined and the second identifies the

model.

The (P,P) and (R,R) analyses are analogous to the usual paired-

associate analysis of the one-element model (Bower, 1961) and the concept-

level analysis of the all-or-none concept model (nestle, 1961). The

reader wishing to review these analyses in greater detail is referred

to Atkinson, Bower, and Crothers (1965, Chapters 2, 3),

The (P,R) and (RIP) analyses are less usual and require some

comment. A (PIR) analysis consists of plotting data statistics on the

P-level when data has been generated by the one-element R-level model.

In other words the model implies the unit is the collection of M items

related by a rule9 the learning of this unit is governed by the R-level

57-------Restle's model has a learning only on errors assumption9 whereas, the
one-element R-level model assumes learning is equally probable after a
success or an error,
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model; however, for analysis, the unit is broken into P-level subse-

quences one for each item. Rather than present a simulation of data

generated and analyzed in this way, the derivation of P-level statistics

for arbitrary parameter values of the. one-element R-level model will be

presented. These derivations assume the anticipation procedure.

The (RIP) analysis is analogous to the (P,R) analysis except

that data are examined on the R-level and the model which generates the

data is a P-level model. In other words, several units (items in this

case) are combined into a single unit and studied.

To undertake the comparison of these four possibilities a set of

statistics was selected. These statistics were selected both because

they are among those usually considered in applications of models to

verbal learning data (cf. Bower, 1961) and because they reflect salient

points to be made in the analysis. These statistics are the learning

curve, probability of an error on trial n+1 given an error on trial

n, probability of no more errors following an error on trial n, dis-

tribution, mean, and variance of the total errors T, distribution and

mean of the trial of the last error L, and the probability of an error

on trial n prior to the last error.

To avoid future confusion a word about the meaning of "trial" is in

order. By a trial on a unit is meant any presentation of any member of

that unit, and by the k
th

trial on a unit is meant the k
th

occurrence of

members of the unit. To illustrate, consider the list on p. 11. The

fifth trial of the P-level analysis would refer to an item's performance

on the fifth cycle through the list, i.e., performance somewhere in the

trial block 37-45 depending on when the item appears on its fifth cycle.
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However the fifth R-level trial would occur somewhere midway in the

second cycle of the list; i.e., the fifth R-level trial would refer to

performance on the trial number of the fifth presentation of members of

a category. This event would be constrained by the anticipation proce-

dure to take place midway in the secoLd cycle through the list.

Before presenting the results of the analysis, a further word about

notation is needed, Define x
n

to be the error-success random variable

as follows:

1 if error on n
th

trial of unit
x =
n

0 if success on trial n

Let T be the total error random variable (T = k means k errors

made on a particular unit), and let L represent the trial number of

the last error. Then the statistics chosen for the comparison are the

following, for n > 1 and k >

1. Pr(xn = 1),

2. Pr(xn+1 = lixn = 1),

3. b
n

= Pr(no more errors following an error on n) ,

4. Pr(T = k), E(T), Var(T),

5. Pr(L = k), E(L),

6. ?r(xn = 1IL > n).

The interesting comparisons of the four situations involve fixing

the level of data analysis and varying the model, This is what is usu-

ally done in comparative studies of models (cf. Atkinson and Crothers,

1964). In Table 2.1 the (PIP) and (P,R) analyses are compared and

in Table 2.2 the (R,P) and (R,R) analyses are considered, Appendix

I illustrates typical derivations of equations presented in Tables 2.1

and 2.2. In these tables we shall refer to the parameters of the usual

16



one-element model by c and g'. c and g will be the parameters of

the model analyzed on the inappropriate level, i.e., c' and g' for

(P,P) and (R,R) and c,g for (P,R) and (RIP). We shall assume

M items are paired to each response. Those readers not interested in

pondering the tedious derivations in Appendix I may note that for M = 1,

expressions derived for (P,R) and (RIP) should take the same form as

those of (PIP) and (R,R) respectively.

Certain similarities in expressions under (P,P) and (P,R) are

evident from the table. Pr(x
n

= 1), Pr(T = k), and Pr(L = n) are

geometric distributions for both (P,P) and (P,R). Also Pr(xn+1=11xn=1),

b
n

1 and Pr(x
n

= 1IL > n) are constant over trials for both situations.

It is, however, immediately evident that a one-element model will

not fit data statistics in (P,R). There are a number of ways to demon-

strate this and one will be presented. Suppose that the one-element

P-level model does fit data statistics in (P,R). Then, from Table 2.1,

we have

Pr(P'P)(x
n

= 1IL > n) = Pr(P'R)(x
n

= 1IL > n) 1

which requires the functional identity

1-g° = 1-g

or

(2.1) g 0

Now equating expressions for Pr(x
n

= 1) yields the identity

(1-g1)(1-cOn-1 = (1-g)E1-(1-6M3E(1-6
MT-1

Mc

which, inserting (2.1), requires

(2.2)
(1..c9n-1 [1-(1-c )m]

[(1-c)
m ]n-1

.

Mc
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Table 2.1 Comparison of (P,P) and (P,R).

Statistic (P,P) analysis

1. Pr(xn = 1) (1-g1)(1-c')n-1

2. Pr(xn+1=11xn=1) (1-g')(1c')

c'
3. b

n 1-g1(1-c')

4. i. Pr(T = 0) g'b'

ii. Pr(T = k) (1-g'bi)(1-bi)k-lb'

(k > 0)

(P,R) analysis

(1-g) [1-( 1-c)
M

] ,M n-1
[(1-c) ]

Mc

(1-g) (1-c)M

1-(1-c) M

1-g(1-c)M

1 -
(1-g ;b

Mc

(1-g)b
2

(1-b)
k-1

Mc

iii. E(T)
1-g' 1-g

c' Mc

iv. Var(T) E(T) [21-D1;'' - E(T)] E(T) [%-:L - E(T)]

5. i. Pr(L = 0) 1 -
(1-g)b
Mc

ii. Pr(L = n) (1-g')(1-c')nlb'
(1-g,[1-(1-c)M]

b[(1-c)M]n-1

(n > 0)
Mc

iiio E(L)

6. Pr(xn.111, n)

(1-g') b' (1-g)

c'
2

Mc[1-g(1-c,M]

(1-g') (1-g)
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(2.2) is satisfied only if M = 1, and c' = c, but then the R-level

model would reduce to the P-level model. Thus, unless M = 1, the

(P,R) analysis can not be fit by the one-element P-level model, i.e.,

the two models are not equivalent on the P-level.

Thus similarities in equation type exist between (P,P) and (P,R);

however, the expressions are different functions of the parameters.

After presenting the results of the (R,P) vs. (R,R) comparison,

several other comparisons between (P,F) and (P,R) not depending on

the choice of a particular model will be developed. Also in Chapter 3

a model involving both levels of learning will be presented, and the

relative contribution of each sort of learning will be assessed.

In Table 2.2 the comparison between (R,R) and (R,P) is presented.

The contrasts are more striking than for (P,P) vs. (P,R), so not all

statistics will be presented in closed form. Again we are assuming a

list of size M. Finally one further convention is needed. If N is

an R-level trial we need the cycle number K(N) of an item appearing on

that trial. Since the K
th

P-trial of an item is restricted to the R-

trial interval ((K-1)M + 1, KM) we have

(2.3) K(N) = max(k: M(k - 1) < N) .

In cases where it is obvious we will denote K(N) by K. Table 2.2

now follows.

l9



Table 2.2 Comparison of (R,R) and (RIP)

Statistic

1. Pr(xN = 1)

(R,R) analysis

(1-g')(1-c')N-1

2. Pr(xN+1=11xN=1) (1 -g1)(1 -c')

3. b
N

4. 1) E(T)

ii) Var(T)

iii) Pr(T = 0)

iv) Pr(T = k)
for k> 0

5. i) Pr(L = 0)

c'

1 -g' (1 -c') b

(R,P) analysis

(1-g) (1-61")-1

.21i{(1-c)(1-g)A1(1-c)K(1-g)

{

if N Mod M = 0

(1-6K-1(1-g)

if N Mod M / O.

b*C b*+
2igb

*[1-(1-c)
K-1] 3N-m(K(N)-1)

X (gb*+(1g)b*C1-(1-c)KDM-1-(N-M(K-1))
c

where b*-
1-g(1-c)

. This function in-

creases with N.

1-g' M(1-g)

M(1-g) r-g

c'

l

c'
L -(1-2c)+1]

g'c' r gc 1M

[1-c7(1-g')] 1[1-g(1-c)]J

(1-g'b1)(1-b')k-lb' Not obtainable in closed form by the

writer

we!

[1-cql-g9]

ii) Pr(L = N) (1-g1)(1-c'

for N> 0

iii) E(L)
(1-g')

6. Pr(xN=1IL > N) (1-g')

20

r gc .1M

1(1-g(1-c)11

{

gM-N[(1-g)b*]b*M-1 N < M
Ow.

(1""C)K**1(1".g)b*LgitN tKMM1

where b*
-1-g(1-c)

and L; is the pro-

bability an item has its last error
on or before its kth cycle.

NOT DERIVED

NOT DERIVED
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There are several striking contrasts between (R,P) and (R,R).

Pr(xN= 1) for (R,P) is flat in periods of M R-trials, i.e.,

Pr(xN = 1) is equal to (1-g) for the first M trials, (1-c) (1-g)

for the second M trials, and (1-c)
2
(1-g) for the third M trials,

etc. In addition most other trial-dependent statistics take jumps on

trials kM + 1 for k = 011,21... . Finally several statistics are

not constant with trials for (R,P) but are for (R,R), e.g.,

Pr(xaia = lixN = 1),

The similarities between (R,P) end (R,R) are few. When they

do exist, they derive from the fact that the learning of each item pro-

cedes independently. This is most strikingly seen in Pr(T = 0), E(T),

and Var(T).

In summary this section has illustrated that the choice of a level

of data analysis can influence the appearance of data statistics in much

the same way that a model, if valid, can influence these statistics. A

second point is that a model not only generates predictions for statis-

tics on the intended level of analysis, but it also generates predictions

on any level. This fact suggests that analyses on several levels in an

experiment might provide supporting evidence for the validity of a model.

The next section presents some cross-level analyses not restricted by

choice of model.

Model-Free Analyses of P- and R-level Learning

Next we discuss model-free methods for determining when some learn-

ing takes place at a higher level (more R- like) or a lower level (more

P-like) than the level of data analysis. What is meant by "model-free"

needs some clarification, We view performance, not learning, Thus some
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sort of theory (or model) must be assumed to infer learning from perfor-

mance data. By model-free is meant that we are assuming only that a

change in the degree of learning of a unit manifests itself in a corre-

sponding change in probability of correct to all items in that unit (i.e.,

an operational definition of "learning on a level" is desired).

In this section we parallel the structure of the preceding section.

First methods for determining when learning takes place at a higher level

than level of analysis will be discussed, and then indications of when

learning takes place at a lower level than the level of analysis will be

developed. For ease of presentation we will present these results in

the context of the P- and R-levels of the preceding section. It should

be clear how to generalize these results to the case where more levels

exist.

Now we consider methods of indicating when learning is at a higher

level than analysis. Accordingly, consider the case where some learning

takes place on the R-level. For simplicity suppose M = 2, i,e.) pairs

of related items are assigned the same response. Imagine the two P-level

protocols for an item pair are lined up one above the other. Since, by

assumption, a single learning event may have resulted in simultaneous

learning of both items in the pair, the sequences should bear a relation-

ship to each other. For example if the one-element R-level model held

with g = 0, the pair of last error trials for the two protocols would

differ by at moat one trial. Thus, if Si and S2 are the two stimuli,

their protocols might look like the followings

S
1

1111111000000.

S
2

1111111100000,1, .
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in general any tendency for R-level learning should produce "co-

variation" in protocol pairs of related items. Thus if Z' is a statis-

tic for t
.th

he protocol p should be non-zero.
Z1Z2

To illustrate, let x
i

and x
2

be the error-success (1-0) ran-

dom variables for Si and S2. Suppose the one-element R-level model

holds with c, g. free. It Is a simple. calculation to derive P°1 2.
XnXn

p

Cov(x
n
1
x
n
2

)

1 2 S S
1 2Xn X

n X
n

X
n

(2.L.) Cov(411 = ) - E(x1r;)E(x121)

= Pr(x)11". = 1, x121. = 1) - Pr(41- = 1) Pr(x121 = 1) .

Taking the two possible orders of presentation of S1 and S
2

on P-

trial n into consideration we have

1 2 (2-c)(.-4711 / 2
1)Pr(x

n
= 1, x

n
= 1) = Pr(x2 = i) .

2

Since

0
(2.5) S21 = S"

2
= Pr(xn = 1)

x x

and

(2.6)

we have

(2.7)

n n

,

) = E(x
n

2
) = Pr(x = 1) ,

12-c)(1-r0 0.-(1-c)2(n-1),

1 2 2
XnXn

The function starts at a value 0 on trial 1 and increases exponentially

to an asymptote of
(2-c)(1-)

2

Of course the sample variance of the statistic p
1 2

would in-
XnXn

crease with n as fewer errors are made. Although not presented here,



this sampling variance could be calculated from the model° Thus the

properties, including power, of a test of zero 0
1 2

could be established.
XnXn

In general, 0
1 2

should be fairly simple to compute for any R-level

XnXn

model (or even a model which allows both P- and R-level learning such as

the one-element multi-level model presented in the next chapter) pro-

vided the model is in any way tractable.

Other statistics could have been chosen for a correlation analysis.

Several experimenters have empirically correlated total errors in an

effort to ascertain relationships among units in the learning phase

(Suppes, at al., 1962; Crothers and Suppes, in press). For example in

Chapter 5 of the Crothers and Suppes' book, subjects were required to

make multiple-choice grammatical ending responses to Russian nouns.

Several grammatical classes served as the "concepts" to be learned.

Various theoretical schemes for predicting the course of learning were

presented. They were assessed on their ability to account for the pat-

tern of pair-wise part correlations of total errors to the various con-

cept classes.

This writer would suggest that matrices of part correlations of

statistics such as total errors or trial of the last error could be used

often as a device for checking whether some learning is taking place on

a higher level than analysis, This procedure can be illustrated by an

unpublished experiment by D R. Rumelhart and the writer. Only the

analysis relevant to the correlation method will be presented now.

In this study college-age subjects learned to pair 24 highly struc-

tured stimuli to 6 response classes by the anticipation procedure The

S-R pairs (which were consonant letters) had the following structure;
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Stimulus Response

1. ACE 1

2. ACF 1

3. ADE 1

4. ADF 1

5. BCE 2

6. BCF 2

7. BDE 2

8. BDF 2

9. IGK 3

10. IGL 3

110 JGK 3

12. JGL 3

13. IHK 4

14. IHL 4

15. JHK 4

16. JHL 4

17. OQM 5

18. ORM 5

19. PQM 5

20. PRM 5

21. OQN 6

22. ORN 6

23. PQN 6

24. PRN 6

It should be noted that successive groups of four stimuli have a common

letter and are paired to the same response.
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The learning data appear very complicated and their analysis is

only partially complete at this writing. It appears that learning has

taken place on several levels in the experiment. This fact was tested

by correlating trials of the last error to items in each group of four.

Without presenting the details of this analysis here, it demonstrated a

highly significant tendency for items in a 4-unit to have similar last

error trials. By subtracting each subjects mean trial of the last

error from each of his 24 items, a control for individual differences

was attempted, i.e., the data for the analysis were of the form

L
ij 1 ij

- E L

i.1

where Lid is the last error trial for item i subject j. More will

be said about this experiment in the next section of this chapter and in

Chapter 6.

Thus far we have considered in some detail the implications of

learning on a level higher than the level of analysis. The conclusion

was to compute correlations of various statistics on the units of the

level of analysis. Any significant non zero correlation could be inter-

preted as a possible indication of higher level learning.

Next we return to the question of the implications of learning at

a lower level than data analysis. The answers here are quite simple.

Consider the R-level analysis of P-level data. It is a property of P-

level learning, regardless of the model, that every M trials there

will be a jump in the learning curve, i.e., Pr(xN = 1; will be flat

in periods of M trials, This result comes directly from the antici-

pation procedure and the assumption of P-level learning which implies

that items are learned independently.
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In addition a statistic such as total errors is easy to work with.

Regardless of the model we have

Var(TR) = M Var(y

where T
R

is the total error random variable for the R-level and T'

is the total error random variable for an item. This result comes from

the independence assumption.

To illustrate these methods consider the experiment by Rumelhart

and the writer discussed on pp. 24-26. Pr(xN = 1) is plotted in Fig. 2.1

for the R-level analysis (M = 4). A definite tendency for Pr(xN = 1)

to drop within a cycle indicates some R-level learning. The sizable jumps

in Pr(xN = 1) between cycle 2 and cycle 3 might indicate some P-level

learning. 1.00

.90

.8o

.7o

H .6o

4
E..

.50

. 30

20

.10

1 3 5 7 9 11 33 15 17 19 21 25 25

R-trials, N

Fig. 2.1. R-level Learning Curve for the

list depicted on p. 25 (M = 4).

The R-level learning curve is also used to show some R-level and some

P-level learning for other experiments in Chapter 6 (p. 134, Fig. 6.12).
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In addition to the learning curve and Var(TR), Pr(x
n+1

= lix
n

= 1)

should jump on trials kM + 1, k = 1,2,0.0, and the stationarity curve

should rise over trials. Of course this latter feature could be accounted

for by other P-level models such as the two-element model (Suppes and

Ginsberg, 1963).

Conclusion

In this chapter we have discussed some of the implications of

learning on various levels. Two methods of inferring level of learning

have been developed, though not exhaustively. The first is to assume a

model and then derive statistics for analyses on several levels. In-

ferences can then be made on the basis of the fit of the model to the

data. The second method involves considering the general properties of

the assumption of learning at a certain level. These properties, which

depend on the mode of item presentation, suggest several statistical

analyses, e.g., p This chapter will have served its purpose if it

XnXn

convinces the reader that valuable inferences can be made from analyses

of data on several levels.
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CHAPTER 3

THE ALL -OR -NONE MULTI -LEVEL MODEL

The derivations and results of the previous chapter dealt mainly

with the case where learning was assumed to take place on either the

P-level or the R-level but not both. In cases where there would be any

question of which level learning takes place at the more likely possi-

bility would seem to be some learning on both levels. The question then

arises as to whether extant verbal learning models, such as the one-

element model, can naturally be generalized to allow for learning on

several levels simultaneously. In this chapter a simple generalization

of the one-element model to allow for such simultaneous learning is

developed. In the next chapter a framework is proposed for axiomatizing

other multi-level models.

The model to be developed in this chapter (the all-or-none multi-

level model) is intended to be a simple and natural extensinn of the

one-element P- and R-level models. It is not intended to represent a

theoretical stand on the issue of how paired-associate learning takes

place. So, rather than regarding this model as an addition to the

crowded literature on paired-associate models, it should be regarded

as an exercise in the synthesis of extant models.

Axioms for the Model

In the development to follow we will assume that subjects are

learning a list with a structure similar to the list on p. 11, Chapter 2.

In general, we assume that the list consists of J groups of M stimuli,

where the members of any group are mutually related and each paired with
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the same response. By the stimuli in a group being related is meant

that there is some common rule or common structure to all the stimuli

connected to any particular response. Thus in the previously mentioned

list the three rules are respectively: mathematicians are ones, chess

players are twos, and football players are threes. No particular pre-

sentation schedule is assumed, but the model will be axiomatized under

the assumption that on any presentation of a member of the list the sub-

ject first gives a response and then receives a paired presentation of

the stimulus and its correct response (i.e., any particular presentation

is like a particular presentation for the anticipation procedure.)

We wish to generalize the one-element model to allow for the possi-

bility of learning the rule on any presentation of a relevant S-R pair

and, in addition, to allow learning of that particular S-R pair if the

rule is not learned. Accordingly, we will define an unlearned state U,

an instance (paired-associate) state, PI and a rule-learned state R.

We require that each of the M' items be in one and only one of these

states on any trial. Transitions among these states are possible only

when an item is presented, and the probabilities of these transitions

do not depend on the past history of presentations and responses but only

on the current state of the presented item.

The major departure from usual models is the assumption that if any

item makes a transition to the R-state all other items on that trial

move to the R-state. Thus an item's state may change when it is not

presented. Finally performance (probability of a correct response) is

assumed to be at a level g in state U and at a level 1 in states

P and R.
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More formally, let N index presentations of items in a block of

M (i.e., R- trials); axioms for the all-or-none multi-level model are as

follows:

1. Each of the M items is represented as being in exactly one of

three states on any trial N. The states are an unlearned state

U, an instance learned state P, and a rule learned state R.

2. All items start in state U, i.e., all items are in state U on

R-trial N = 1.

3. When an item is presented it can change its state, and the proba-

bilities governing these changes depend only on the current state

of the presented item and not on the states of pla. of the other

M-1 items, the past states of any of the M items, or the trial

number.

The assumptions about transitions to new states for a presented

item are exhibited in the following stochastic matrix. The ij
th

term in the matrix is the probability a presented item in state i

will reside in state j on the next R-trial (i,j E (UIPIR)).

(3.1)

state of
item on
trial of

presentation

State of item on
R-trial after Presentation

R

U

1

c

r

0

1-c

p

0

0

1-r-pl

4. If on am. trial the presented item makes a transition to state RI

the other M-1 items immediately make a transition to state R so

that on all R-trials after this event all M items are in state R.

Other than this possibility of transition, items not presented

remain in their current states.
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This axiom can be summarized by the following rule:

a. If the presented item is in state U, the other M-1 items all

stay in their current states with probability 1-r and all move to

state R with probability r;

and

b. If the presented item is in state P, the other M-1 items all

stay in their current states with probability I-c and all move

to state R with probability c

6. Let xN be a random variable defined by

if error on R-trial N

xN if success on R-trial N.

Then

{

(1-g) if presented item in U

Pr(xN = 1) = 0 if presented item in P

0 if presented item in R

Theorems and Derivations

Some of the properties of this model will be presented in the theorems

and derivations to follow. The first theorem shows that, under appro-

priate :Bstrictions on the parameters of the all-or-none multi-level

model, the one-element P-level model and the one-element R-level model

are obtained.

Theorem 3.1

a. If r = c = 0 and p e (0,1), the all-or-none multi-level model

is equivalent to a one-element P-level model,
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1

L

b. If p = 0, r = c, and r, c E (0,1), the model is equivalent to

a one-element R-level model.

Proof

a. If r = c = 0 and p e (0,1), items can change their state

only when they are presented. Since all items start in state U, state

R can never be obtained. Thus the restriction implies the all-or-none

multi-level model can be summarized by the following stochastic matrix

for each item. Sa
1
a = 1,2, ... , M:

Pr(correctlrow state)
pna+1 Una+1

P
n

1 0 1

a
U 1-p g )

where n
a

indexes presentations of item sa (i.e., P-level trials on

any item). This is the one-element P-level model.

b. If p = 0, r = c, r, c e (0,1), all M items start in U and

any presentation results in a transition of all the items to state R

with probability r. If N indexes R-level trials, the following

stochastic matrix for all M items can be derived:

RN+1 UN

R
N

1 0

U
N

r 1-r

Pr(correctIrow state)

This is the matrix for the one-element R-level model

Some additional notation will facilitate the statement of the next

theorem. Suppose the M items in a block are ordered S1lS210,01Smo

For each R-trial N define the state variable for the block, to

be T (T
1111'

T
2111'

. 0 .

'

T
MIN

), where
Tk,N

is the state of item S
k
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on trial N for k = 112,...,M. The preceding axioms for the all-or-

none multi-level model could easily be written in terms of the random

variable 71?
N'

but this will not be done here (see p. 45, Chapter 4).

The next property of the model to be developed has implications for

experiments involving post-learning transfer. Suppose that following an

initial learning phase subjects are asked to make "best guess" responses

to new stimuli. Suppose further that the new stimuli are constructed

similar to stimuli in one of the blocks of M items, i.e., the new

stimuli share a relationship or a rule with the other M stimuli in the

block. It is a consequence of the following theorem that the more initial

training trials on the block of M related items, the higher is the pro-

bability of the appropriate transfer response to these new items.

Theorem 3.2

If r,p,c e (0,1; and N indexes R-trials on a block of M

stimuli, then

lim Pr(VN = (R,R,. .,R)) = 1

N > 00

Proof

The theorem follows from the fact that state r= (R,R, .,,R) is

an absorbing state. Let 0 = min(c,r). By hypothesis 0 < 0 Since,

on any trial N, the block of M items has either probability r or

c of moving into state (R,R,..,,R), we have

hence

Pr(Tti = (R,R,.,,,R)) > 1-(1-0)N-1

1 > lim Pr(t = ) > lim 1-(1-e)N1 =

N ' N )no

The above inequality implies

lim Pr(t = (R,R,,, ,R)) = 1 11

N -
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The next Theorem and Lemma imply that the order in which items are

presented does not affect the probabilities of being in the various

states.

Theorem 3.3

Suppose Si and Si are presented on R-trials N and N+1,

i,j = 1,21...,M. Then, for all possible states T; --ef of the set

of M items,

Pr(V = I = T; s
N+2 N ilN'

s
j,N+1 )

= Pr(7? = = T; s
B"

s .

1
) .

N+2 N JI' 1N+1

Proof

The apparatus necessary for a completely rigorous proof of this

Theorem will not be developed until the next chapter. What follows is

an outline of the main ideas in the proof. If = (R,R,...,R), the

result is immediate, so assume c # (R,R,...,R). Either ci.2 = (R,R,...,R)

or it does not. If
N+2 ""e = (R R "R) then commutativity follows by

noting, for all real numbers, a, b,

a + (l -a)b = b + (1-b)a

Using this fact with a = r, b = c establishes the result for TN+2
=

(R,R,...,R).

If
N+2

(R,R,...,R), then a presentation of S
i

can affect

only the state of item S (similarily for S). Since these effects

are independent, the order of appearance of S
i

and Si does not

matter H
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The preceding theorem will receive more attention in the next

chapter (p. 47). Next we state a lemma which provides a strong test

for the all-or-none multi-level model.

Lemma 3.1

Suppose in the first N R-trials ki Si presentations are to

be made, where i = 112,...,M and

M
k.
1

N .

1.1

Then the order in which these stimuli are presented does not affect

the probability of beingin the various states on N 1.

Proof

The lemma follows by repeated application of pairwise commutativity

established in Theorem 503 H

The preceding theorem and lemma provide both a strong test for the

all-or-none multi-level model as well as a considerable reduction in the

complexity of derivations from the model under certain presentation

schedules. These points will be brought out in more detail in Chapter

5 (p, 100) where an additional analysis of the model (in terms of the

framework to be developed in the next chapter) is presented

Derivations for the Anticipation Procedure

The model can also be used to provide a synthesis for the results

of the preceding chapter. Under the assumption that r = c (rule

learning is equi-probable from both the P and U states) the multi-

level model reduces to a model that postulates two simultaneous all-or-

none processes one for P-level learning and one for R-level learning.
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In the next few pages statistics for both the P-level and R-level will

be presented under the assumption of an anticipation presentation sche-

dule.

It should also be clear that under suitable additional restriction

of the parameters p and r) results relevant to the four possibilities

in Tables 2.1 and 2.2 of Chapter 2 can be obtained. Table 3.1 indicates

the parameter restrictions which yield the four possibilities analyzed

in the previous chapter (based on Theorem 3.1).

Table 3.1

Conditions under which the All-or-None Multi-level Model Reduces

to the Four Analyses of the Preceding Chapter (Tables 2.1)2.2).

Restrictions on Level of data analysis

Chapter 2 analysis Multi-level parameters of Multi-level model

(P -ANALYSIS, P-MODEL) c= r= 0

(P - ANALYSIS, R-MODEL) c= r, p= 0

(R- ANALYSIS, P-MODEL) c = r = 0

(R- ANALYSIS, R-MODEL) c = r, p = 0 R .

Thus) a statistic derived for the multi-level model should reduce to its

corresponding expression in Table 2.1 or Table 2.2 of the preceding

chapter if the indicated parameter restrictions are made. Exceptions

are when r appears in the denominator of an expression) e.g.) Pr(xn=1)

for the P-level analysis (see Table 3.2).

Only Pr(xN = 1) and Pr(x114.1 = 11xN = 1) have been presented for

the R-level analysis. Some of the other results cannot be obtained by

this writer in closed form) and others seem much too cumber some and un-

informative to present. The results of the P- and analysis of
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the restricted (r=c) multi-level model appear in Table 3.2 to follow.

It should be reiterated that the anticipation procedure is assumed and

that each group of related items has M members. For selected deriva-

tions of these statistics, the reader is referred to Appendix I. Finally

K(N) refers to the cycle number corresponding to R-trial N (Eq. 2.3).

The all-or-none multi-level model is an intermediate model to the

P- and R-level models in the sense that it postulates both P- and R-level

learning. It is of some interest to compare the analyses of Table 3.2.

with those analyses of the P and R models in the last chapter ;Tables

2.1 and 2.2, pp. 18,20, respectively).

The results in Table 3.2 for the P-level analysis bear a resemblance

to the results for the P-level analysis of the one-element R-level model

(Table 2.1). Pr(xr = 1) is a geometric function of n, and Pr(T = k)

and Pr(L = n) are geometric distributions. Similarly Pr(xn+1=1Ixn=1),

bn, and Pr(x
n

= 1IL > n) are constants. Even with these similarities

(which also hold for the usual one-element model) the multi-level model

is an alternative to the P-level analysis of the one-element R-level

model. This can be shown by comparing selected statistics in Table 3,2

with those of Table 2.1.

Denote by R the one-element R-level model and by L the multi-

level model, assume both models are analyzed on the P-level. Denote the

parameters of R by c', g' and those for L by p, r, g. Assume the

models are equivalent. Then, by equating Pr(xn = 1IL > n), we have

the functional identity

(3.2)
g' =
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Statistic

1. Pr(xn = 1)

Table 302. P- and R-level Analyses of the

All-or-None Multi-level Model (r = c).

P-level Analysis R-level Analysis

(I-g)[i-U-0M] 1 /1-1
[1-p-0(1-0

Mr

2. Pr(xn+1=1Ixn=1) (1-g)(1-p-0(1-0M-1

3. b
1-(1-p-r)(1-0m-1

1-g(1-p-r)(1-0m-1

4. i. Pr(T = 0) 1
(1-g)[1-(1-0M]

Mr[1-g(1-r-b)(1-0M-1]

ii. Pr(T = k)
(k > 0)

iii. E(T)

iv. Var(T)

5. i. Pr(L = 0)

ii. Pr(L = n)
(n > 0)

iii. E(L)

b(1-b)
k-1 (1-g)(1-(1-0M]

Mr[1-g(1-r)
m

]

(1-0[1-(1-0M]

Mr[1-g(1-0M]p

E(T)E21:b
E(T)]

1 -
(I-g)[1-U-0M]

Mr[1-g(1-r-b)(1-0M-1]

f

1:g [1-r-p)+(M-1)(1-0(1-
p)K(N)]

if N Mod M = 0

(1-g)(1-0(1-p)K(N)-1

if N Mod M 0

,n-1
( g)(1-(1-0M][1-(1-p-0(1-0M-1][(1-p-0(1-0M-'L

Mr[1-g(1-p-0(1-0M-1]

(1 -g)(1

1441-g(1-p-0(1-0M-1][1-(1-p-0(1-0M-1]

6. Pr(xn.111, > n) (1-g) .
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Comparing Pr(x
n+1

= llx = 1) for R and L yields the identity

(1-g') (1-c')M = (1-g)(1-p-r)(1-r)M-1

which,. inserting 3.2, reduces to

(3.3) (1-c')M = (1-p-r)(1-r)M-1

Now comparing Pr(xn = 1) for both models yields the identity

(1-g')[1-(1-c')M] 0M]n-1
[(1-c )

Mc'

(1-g) 11-(1-0M3 M-13n-1
[(1-p-r)(1-r)

Mr

Substituting (3.2) and (3.3) yields

(3.4)
)M 1-(1-r)m

c'

This last identity implies c' = r.

Now

and

c' = r

-cf )1'4 = (l-p-r)

0

only if p = 0, but in this case model L becomes model R. There-

fore we conclude that provided p / 0, the multi-level model is not

equivalent to an R-level one-element model analyzed on the P-level.

Now we turn to a comparison of the R-level analysis of the multi-

level model and the (R,P) aualysis in Table 2.2. The two statistics

presented in Table 3.2 for the multi-level model bear similarities to

their counterparts of Table 2.2 in the preceding chapter. Pr(xN = 1)

jumps on trials kM+1 for k=1,2,0.0 for both models, and Pr(x1/41=11xN=1)

is constant in successive blocks of M trials and jumps on trials kM+1.

C



The major difference between the two models is in Pr(xii. = 1) be-

tween jump points (i.e., within a cycle). Within a cycle the one-ele-

ment model Pr(x
N

= 1) is flat; whereas, for the multi-level model, it

is geometric in shape. To see this, Pr(x
N

= 1) for the multi-level

model is plotted, for g = 1/5, r = 0.1, p = 0.3, M = 3, in Fig. 3.1

below.

1.00

.go

.8o

.7o

.6o

.5o

4o

.30

.20

.10

...e ... within cycle

sm,40. between cycles

1 2 3 4 5 6 7 8 8 1 0 1 1

Trials, N

Fig. 3.1. R-level Learning Curve for
All-or-None Multi-level Model (g = 1/5,

r = 0.1, p = 0.3, M = 3).

Next we discuss correlation of item protocols for the multi-level

model. Just as for the one-element R-level model, one would expect any

two item protocols for related items to "co-vary." In the preceding

chapter we introduced p
1 2

(Eq. 2.4) as a trial dependent measure of
XnXn

this co-variation (where x
i

is the error-success random variable for
n

item i). Assume M=2, then p
1 2

for the multi-level model (r=c) is
XnXn
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(3.5) p 1 2
XnXn

Pr(xln" = 1) 1
2

;(xn = 1)

Pr(x3n- = 1, x: 31) - Pr(xn- 1) Pr(x2 1)

Pr(x. = lix: = 1) - Pr(xn = 1)

(1-g) (2-r)
[(1-P)n-1 (1-p-r) (1-r)n-1]

2

p 1 2
is different for the one-element R-level model than for the multi-

XnXn

level model. For the one-element R-level model, p starts at 0

XnXn

for n.1 and increases to an asymptote of
(1-g)2 (2-c) as n increases.

However p
1 2

for the multi-level model starts at 0, reaches a maxi-
XnXn

mum for some n > 0, and then decreases to an asymptotic value of 00

This latter fact is true because, for large n, joint errors are only

made to pairs of items not in state R and not both in state P. Given

one item is not in P, the probability the other one is in P increases

with n, i.e., the P-level process prior to the trial of transition

into state R procedes independently for the two items.

An analysis of the general multi-level model with rc will be

postponed until Chapter 5 (p. 98). This is because analysis of the

model is greatly facilitated by a reformulation in terms of a general

framework for analyzing multi-level models. The direction of this re-

formulation (alternative axiomatization ) will be presented in the first

section of the next chapter,
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CHAPTER 4

GENERAL FRAMEWORK FOR MULTI-LEVEL MODELS

In the preceding chapter we have illustrated how a particular multi-

level model might be developed. There is a property of this multi-

level model that differentiates it from most other learning models.

This property is that, under certain conditions, the M-1 items not

presented on a trial change their states; whereas, under other condi-

tions, only the presented item changes its state. In the axiom set for

that model (Chapter 3, p. 31), it was awkward to formulate these

properties. Thus the statement of Theorems 3.2 and 3.3 was greatly

facilitated by the introduction of the random variable T
N

(Chapter 3, p. 33),

which keeps track of the states of all M items in a block. In addition

some further analyses of the model (Chapter 5, pp. 98-105) are

greatly simplified by formulating the all-or-none multi-level model in

terms of T
N

.

The organization of this chapter will be as follows. First the

direction of reformulating the all-or-none multi-level model in terms

-4
of T

N
will be indicated along with some of the advantages of this

formulation over the formulation of the preceding chapter. This work

will suggest a general framework within which many models that allow

learning on several levels (or, equivalently, that allow items in a list

to mutually affect each other in the course of learning) can be axiomatized.

Before the framework is formalized, an indication of its intended

scope will be presented. The scope of the framework will be presented

by organizing the classes of models to which the framework can be

43



applied under three headings. These headings will refer to three types,

of item dependencies (item interactions) permitted by the framework,

and several examples of extant models embodying each type of dependency

will be presented.

Finally the framework will be developed formally along with several

theorems that can be applied to the analysis of any model axiomatized

within the framework. The theorems fall into two classes. The first

few theorems (Theorems 4.1, 4.2, 4.3) concern how to compute state pro-

babilities and response probabilities for a model as a function of

properties of the model and the presentation schedule. The latter

theorems (Theorem 4.4, 4.5) concern how a model can be simplified along

the lines of the particular dependencies it postulates, i.e., the frame-

work will require that a model be stated in some generality and these

theorems will concern how to reduce the generality in individual cases.

The next chapter will present applications of the theorems to the analysis

of the mixed model (Atkinson and Estes, 1963), the all-or-none multi-

level model of Chapter 3, and a version of Restle's strategy-selection

theory (Restle, 1962; 1964, Chapter 4).

To recapitulate the organization of this chapter, we will first

reformulate the all-or-none multi-level model. This reformulation will

suggest a general framework within which several models can be analyzed.

Before presenting the formal aspects of the framework, an indication of

the types of models which can be axiomatized in terms of the framework

will be presented. Finally the framework will be 0.:..eveloped along formal

lines, i.e., definitions and theorems. Now we turn to the reformulation

of the multi-level model.
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Reformulation of the All-or-None Multi-level Model

Let us reconsider the all-or-none multi-level model. Suppose the

M items in a block ordered Si,S2,...,Sm0 Let T be a possible

M-tuple of states for the M items, e.g., T = (R,R, ...,R). Define g

to be the set of all possible states of the M items. The axioms on

p.31 of the preceding chapter imply

M
(4.1) = )( (U,P) U ((R,R,..0,R))

k=1

where PIP) is the M-fold Cartesian product of the set (U,P).

k=1

has 2M + 1 members.

It is a property of the axioms for the model that, if the current

-4
state of the M items, T

N'
is known, and the presented item, Si

N,

is known, for N=1,2, 0.0, then the probabilities of being in the various

2 +1 states in g on trial N+1 are determined and are independent

of past presentations, past states of the M items, and the trial index

N. Suppose that the 2 +1 members of V are ordered, eJ = (T
1' 2

2 +1
'

. )

then it is convenient to summarize the preceding remark by noting that

the model implies that each of the items, Si, Las an associated set

of transition probabilities from 1 to (g, where, for i=1,2,..0,M

and for all V, i-7)1 e V,

is determined (independent of N). It is desirable to represent these

probabilities of transition from states in to to states in °S by a

stochastic matrix Pi for each item Si, i=1,2,0..,M. Then, Pi is a

(2 +1) x (2M +1) matrix of the probabilities of transition from states
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L

in to states in V given Si presented. Thus, if item Si is

presented on some trial N, then the associated matrix Pi determines

-4

the probabilities of being in the various states, T e g given the

currentstateoftheseteMitems,TheP.matrices are analogous

to the stochastic matrices used to represent Markov learning models,

e,g., the one-element P-level model has an associated stoclastic matrix

Pn+l Un+1

P =
P
n

1 0

U
n

c 1-c

As will be seen in Theorems 4.1, 4,2, 4.5, these matrices, Pi, will

be used to compute the probabilities of being in the various states

given certain item presentation orders in much the same way as P is

used to compute these probabilities for the one-element P-level model.

The major difference in the two cases will be that the P
i

matrices

are used to compute the probabilities of being in various states of the

entire list, whereas, P is used to compute the probability the pre-_
sented item is in various states,

A reformulation of the all-or-none multi-level model can be accom-

plished in terms of the state space 6C1 and the M stochastic matrices,

Pi, defined in the preceding paragraph An additional discussion

of this reformulation is presented in Chapter 5, pp, 98 -105r, When the

reformulation is done, it is much easier to state properties of the

model than for the more conventional axiomitizaticn of the preceding

chapter. To Illustrate, suppose M=2, Then elf = OU,U),(UIP)1(P,U),

(P1P),(R110) If the items are S
1

and. S
2

we have
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(4.2) p

(4.3) P2 =

(R,R) (P,P) (P,U) (U,P) (U,U)

(R,R) 1 0 0 0 0

(P,P) c 1-c 0 0 0

(13,U) 1-c 0 0

(U,P) r p 0 1-r-p 0

(U,U) r 0 p 0 1-r-p

(R,R) (P,P) (PIU) (U,P) (U,U)

(R,R) 1 0 0 0 0

(PIP) c 1-c 0 0 0

(P,U) r p 1-r-p 0 0

(U,P) c 0 0 1-c 0

(U,U) r 0 0 p 1 -r -p

Now, for example, to verify commutivity for the model with M=2 (Theorem

3.3, p.35 ), one merely needs to show that Pi. P2 = P2. Pi. The result

is as follows:

Pi. P2 = P2. P1 =

1

MN,

1-(1-c)2 (1-c)2 0 0 0

c +(1-c)r p(1-c) (1-c)(1-r-p) 0 0

c+(l-c)r p(1-c) 0 (1-c) (1-r-p) 0

r(2-r) P
2

p(l -r -p) p(1-r-p) (1-r-p)2_

The basic idea of verifying that the Pi matrices commute provides

the substance of Definition 4.7. Models which have this commuting pro-

perty are much easier to work with than non-commuting models.



In addition to facilitating analysis of the model, the preceding

formulation has another possible advantage, . This advantage is that the

model is stated in terms of the theoretical quantities QCS and the M

matrices, which depend in no way on boundary conditions such as the pre-

sentation schedule or the level of data analysis, In other words, the

stochastic process used to account for data in a particular experiment

is not the model itself but a derivation from the model coupled with the

particular presentation schedule and the level of data analysis, A

model stated in this way can receive support from two sources; 1) its

ability to make detailed predictions in a fixed situation (fixed sche-

dule and level of analysis), and 2) its ability to account for the

data in a number of different experiments in which both presentation

schedule and level of data analysis vary One illustration of the way

boundary conditions are coupled with a model to derive a stochastic pro-

cess for a fixed level of analysis is reported in Chapter 5 pp, 104-105,

Theorems 4 2 and 4 5 are used for the all-or-none multi-level model

(M=2) The anticipation presentation schedule is assumed and the level

of data analysis is chosen as the error-success process on the first

appearing item in a cycle, i,e,, regardless of which of the two items

is presented first on a cycle, the result of that trial is entered in

the error-success protocol.

The preceding development is designed to preview the framework to

be formalized in this chapter It turns out that the framework is

applicable to the analysis of many extant models which postulate item

dependencies in the course of list learning, Before presenting the

framework, the classes of models which can be axiomitized in terms of
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the framework will be organized around the types of item dependencies

they postulate. This digression into other models has several motiva-

tions. First it is designed to show that the framework to be developed

has wide applicability to extant models. Second it is the writervs

feeling that more and more of the recent mathematical learning models

are embodying some item dependencies in their assumptions (e.g., memory

models). Thus it is becoming less and less often that models assume the

learning of S-R pairs proceeds independently. It appears that one con-

sequence of this tendency is that some methods of model analysis other

than the traditional P-level analysis for the anticipation procedure

are in order. With the knowledge that the case for this trend in mathe-

matical learning theory can be made only by weight of evidence; we turn

to this tabk.

If learning a list is presumed to take place on the P-level (level

of individual items)) then it is convenient to view each separate sub-

ject-item error-success (1-0) protocol as a sample path from some sto-

chastic process whose sample space consists of all strings of is and

Os (cf. Atkinson, Bower, and Crothers, 1965, pc 82-83)0 If, on the

other hand) the assumption of subject-item independence seems unrealistic,

then this analysis is, at best, only approximately correct. A survey

of some of the literature on mathematical learning models reveals that

there are at least three distinct types of item dependencies postulated

by models. This section presents a discussion of the three theoretical

types of item dependencies) and then the framework, which is designed

to incorporate the possibility of all three, io formalized

The first type of item dependency postulated by some models is fhat

response probabilities for a presented item may not depend solely on the
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state of the presented item, but also on the states of the other items

in the list. The mixed model of Atkinson and Estes (1963) provides an

example. In this model transitions among states for the presented items

are independent of the states of unpresented items, but response proba-

bility to items in the unlearned state is determined by the states of

all items in the list. The work. of Friedman is related to the mixed

model (Friedman and Gelfand, 1964 B Friedman et ale, 1966) . In the

Friedman, et al., paper, a three s, 'e Markov learning model on stim-

ulus patterns is postulated, and a number of complex response rules in-

volving stimulus components are developed,

Ruskin (unpublished doctoral dissertation) has analyzed the learning

of concept stimuli composed of three two-valued dimensions in terms of

models which assume that learning proceeds independently for each item,

but that response probabilities to items in unlearned states depend on

the states of all items in the list, He has had some success in account-

ing for differential numbers of errors to each stimulus in such problems.

The second type of item dependency postulated by models is that the

state of an item can change on. trials when it is not presented, The

concept learning model of Restle (1961) fits into this category. Strictly

speaking this hypothesis model has the property that the states of each

item may or may not change when a new hypothesis is sampled, The usual

all-or-none two-state model presented by Restle (1961; and also by

Bower and Trabasso (1964) represents the process of concept learning in

a much more simplified manner than their theory implies They accomp-

lish this by lumping the states of certain Markov chains implied by the

theory. Even this simplified model has the property that items not pre-

sented can shift to the learned state,
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More recently Restle (1962, 1964) has proposed a strategy-selection

theory for paired- associate learning. The theory supposes that two simi-

lar items requiring dissimilar responses may become confused. Confusion

is represented in the theory by certain mnemonical devices or strategies

which the subject might use to retrieve an S-R pair from memory, i.e.,

if two S-R pairs in a list were AB-1, AC-2, then the strategy A-1 would

result in confusion between AB and AC. It is a consequence of Restle's

theory that an unpresented item, say AC in the above miniature list,

can change its state when another item, AB, is presented. In Chapter 5,

PP108, Restle's model will be analyzed in detail using the framework

to be developed in this chapter.

The all-or-none multi-level model presented in the previous chapter

is another example of a model that allows states of items to change on

trials when they are not presented. An additional analysis of this

model in terms of the framework will be given in Chapter 5, p. 98.

A fourth example is the trial-dependent-forgetting model (T.D.F,

model) of Atkinson and Crothers (1964) and Calfee and Atkinson (1965).

In this model an item in a short term memory state can be bump into a

forgotten state as a consequence of the presentation of another unlearned

item.

The third type of inter-item dependency postulated by models is

that the state of a particular unpresented item can influence the tran-

sition probabilities for the presented item as well as other unpresented

items. One example of this dependency is the Buffer Models of Atkinson

and Shiffrin (1965). In these models the probability that an item will

enter the short term memory buffer depends on the number of other items
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already in the buffer. Similarly whether or not an item in the buffer

is dropped on a certain trial depends on how many other items are in

the buffer, In most applications, however, the buffer is assumed to

be full,

A second example is the two-person game situation discussed in

Suppes and Atkinson (1960) Player A can be in response state Al or

A2, and the transition probabilities depend on the response state of

player B in the sense that the states of both players determine the pay-

off probabilities, and the payoff determines, in turn, the transition

probabilities.

A third example comes from a slight generalization of the all-or-

none multi-level model presented in the last cnapter, Suppose the pro-

bability of rule learning when all items are in U is r, but the pro-

bability of rule learning when any item is in P is c r. Then a

presented item in state U would have rule learning parameter r or

c depending on the states of other items in the list

In each of the examples presented, the probability of a response

A. to a presented item Sj on trial n, Pr(A. IS. ), depends not
iln jln

only on the number of previous presentations of the item but also in

some way on the number and positioning of presentations of items other

than Sj. This seems to suggest that a useful testing ground for models

embodying item dependencies is in experiments where the presentation

orders are manipulated and predictions of the probabilities of various

responses are made. It seems to this writer that the ability of a model

to account for various patterns of response probability as a function of

controlled presentation orders is every bit as strong a test of a model
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as its ability to account for subject-item error-success protocols in

an anticipation procedure experiment. Of course the preceding remark

assumes that the model makes differential predictions of response pro-

bability as a function of presentation order.

This presentation order approach to testing models which imply item

dependencies has already been used by many, e.g., the miniature RTT

paired-associate experiments (Estes, Hopkins, Crothers, 1960; Izawa, 1965;

Young, unpublished doctoral dissertation), the work on optimization

(Suppes, 1964; Crothers, 1965; Groen and Atkinson, in press); and work

with memory models for paired-associate learning (Green°, 1966; Atkinson

and Shiffrin, 1965; Bjork, unpublished doctoral dissertation).

The Framework

A. History of Major Ideas

In this section a framework providing a possible synthesis of

models which permit any of the three types of dependencies is developed.

A number of general theorems for predicting state probabilities and res-

ponse probabilities as a function of presentation sequence will be pre-

sented. The main theoretical quantity in the framework will be the

state of the entire list rather than the more usual state of an item°

The state of the list will be represented by a vector of states of the

items in the list. Each item in the list will be characterized by a

matrix of transition probabilities from states of the list to states of

the list. A matrix associated with an item will be effective whenever

that item is presented on a trio.), i.e), to compute state probabilities

on trial N+1 one applies the matrix operator associated with the item

presented on trial N to the vector of probabilities of being in the
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various states of the list on trial N A trial is defined to be the

presentation of an item for a response, followed immediately by the

item paired with its correct response, i e a trial here is equivalent

to a usual anticipation procedure trini.

One precursor to the idea of defining a state of a list in terms

of the states of the items in the list is found in Fstes (1959), In

developing general properties of component and pattern models, Estes

suggests that one could define a state for e one.lement paired-asso

ciate model in terms of the numaer of unlearned items in the list. The

derivation on p. 36 of his chapter assumes the anticipation procedure,

He shows how one can derive the probability of a correct response at

the beginning of cycle n from a matrix whose states are the number of

unlearned items, i e , if the list has M stimuli, the states are

011,,,,M. Estes' idea ftr treating the state of the list for the one-

element model is generalized in this paper to apply to any model in the

framework (Theorem 4,5)

A second example of the idea of smblhing states of various items

into a single state is found in Atkinson and Estes Y1.963) In section

502 of their chapter on stimulus sampling theory, they develop the mixed

model for a two item list The items, ab and ad, are assumed to be

either in an unlearned state U or e learned state L They develop the

theory for a four-state process with states (U1U), (U,L), (LIU), and

(L,L), where the first position refers *o the state of item ab and

the second to item ac More will oe add about this work in chapter 5,

P. 91.
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The idea that presentations of different items can be represented

by different sets of transition probabilities among states of the entire

list of items has been, in part, adopted by Restle (1962, 1964). His

strategy-selection theory of paired-associate learning assumes that

items in a list can be confused in the course of learning. This confu-

sion results in a discrimination problem which is solved by discarding

strategies that confuse items requiring dissimilar responses. Restle

does not allow for different items to have different transition proba-

bilities in his applications of strategy-selection theory (cf. Restle,

1964, Sec. 5, pp. 132-144); however, he points out that his applications

are at best an approximation (Restle, 1964, pp. 168-171). In the final

pages of the chapter, Restle suggests the direction necessary to take

in order to square the models he uses with his theory. It is these sug-

gestions of his, rather than his original model, that resemble certain

deirelopments in this chapter. A more detailed analysis of strategy-

selection theory will be presented in Chapter 5 (pp.108) of this paper.

B. Definition of Model in Framework

In the development to follow each item in a list will be required

to be in one of a number of finite states on any trial of the experiment.

The generalization from usual formulations of models will be to allow

for the possibility for some or all of the items which are not presented

on a certain trial N to do any of the following: (1) affect response

probabilities on trial N; (2) change their own states of conditioning

on trial N; and (3) to affect transition probabilities of other items

in the list on trial N.
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Suppose a list of M S-R pairs (items;, denoted by

93 = (Si, S21

and a set of Q responses, denoted by

(A1, A2,
AQ)

We will adopt the idea of a state as a primitive notion in the frame-

work States U and L in the one-element model, tne number of patterns

connected to response Al in a two response pattern model) and U, PI

and R in the one-element multi-level model are all states in the in-

tended usage of "state" in the framework In Definition it.1 :he notion

of an item sate space is presented It, should be noted that, since the

item state space is an ordered set of states, it is possible for a par-

ticular state to appear more than once with a different subscript) in

the item state space

Definition 4 1

By a state space, T
I

of an item is meant a finite ordered

set of strtes

T
I

= CT

Examples of item state spaces are iU,L) for the one-element

model, (C
j 0

N
for the N-element two-response pattern model, and

j-e

(U1131B) for the all-or,none multi-Level model presented in the

preceding enapter Next we , rmaleize in Definition 4 2 the notion

of the state space for a list of items

Definition )4 2

By s state space Q.) of ,A list of M items with item state

space T1 is meant the M-fold Cartesian product
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= xT

where "x" is the Cartesian product of sets.

For the one-element P-level model with a list of M items

(1.5) = CT' t. E (U)L)) I = 1, 2, . , M)

Thus if the item state space T1 has L states, the state space for a

list with M Items will have LM members.

We will next define a model for the learning of a list (Definition

4.3). This definition will require that the stochastic process governing

state-to-state transitions among CS be Markov in a certain sense. The

Markov restriction is not thought to be too severe because in many non-

Markov models the state space could be expanded to make the model satisfy

the Markov condition. Disregarding the restriction of a finite state

space for the moment, the identifiable state theory developed in Greeno

and Steiner (1964, p.317) illustrates one way in which this expansion

can be accomplished.

Although the restriction to a finite-state model and the Markov

condition rule out certain models, like the linear model which requires

an infinite state space to satisfy the Markey condition, generalization

of the present approach to include these models should be possible.

We next present Definition 4.3.

Definition 4.3

Suppose PS CS S
2'°°°'

S
m

) is a list of M items with asso-

elated response set O. of size Q° Then 111= (U,6613,g..) is a

4/
-J For example response probability might be used to define a state, and

operators for each item could be postulated°
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model for the leacning of list in case;

1. There is an item state space

(T11
T
L

)

such that

g T x TI

is a state space for the list Agf

2, / is a set of M LM x LM square matrices, P P PM,
M'

such that, for all i) J = 1221.. ,,L
M and a = 1,2,.0,M, the

ij
th

term of [Fliu, namely az,6 1 is the probability of transi-

tion from state t
i

of the list to state on a trial whentj

item Su is presented. These transition probabilities depend

only on 1, j, a, and not on the trial index or preceding

states of the list, ioe, for all trials N; stimuli Sia e

-4 -4
V e V, and past histories of presen-states of the list U.,
j

tations, responses, and states, h, we have

ij -4 -4

= PriV
j,N+1

s
a,N'

u1,N N

3, t is a function which specifies, for each stimulus

response A3 Q= a , and state of the 14 st t c )

pr(AimiSi,A)

independent of the trial number N 1, 2,

Naturally if °M.. is a model we have, for all a = 1,2, ,M, i = 1,

TM
LM

2,

ij
Pry =

j=1
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and, for all j = 1 21..,M and t e

Q
Pr(A. IS = 1

1,N j,N' N
i=1

Consider, as an example, the one-element P-level model for a list

of M items. The state space for this model is defined in Eq. 4.5, and

the model specifies that transitions are possible only for the presented

item. Denote by .0 the ath component of T; where T'e J. Suppose

e 0S is presented on some trial. Then the model implies for all I;

U with ti3 = J3 for p a,

1P=L

-4-3

(4.6)
tw

IF:ce =

1 if

0 if

1-c if

= L

t ° 4 = L

4.C4 U

e = U

and

and

and

and

IP = U

aw =L

U 1

and, if --E> and. Tr) do not agree in any coordinate p with p a,

-44
tw
P = 0

The response rule for the one-element model is generally stated in

terms of a correct response and an incorrect response. Let. Au be the

response associated with sa and = 0.- (1101). Then, for all a = 1,

2,...,M,

a

t> V and N = 1,

(4.7)

and, of course,

Pr(Aa,NlSa,N,t)

1 if

g if e m U
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To further clarify these abstractions assume the one-element model

for a list with M=2. The members of °J are (U,U) , (UIL), (LIU), and

(L,L), where the first member is the state of S
1

and the second is

the state of S2. According to Definition 4.3 we have

(408)

and

(409)

P
1

=

(L,L)

(Llu)

(U,L)

(U,U)

(L,L)

1

0

c

0

(L,L)

(L,L)

(LIU)

2
(UIL)

(UIU)

(lily) (u1L) (u,u)

0 0 0

1 0 0

0 1-c 0

c 0 1-c y

(141u) (u,L) (Ulu)

1 0 0 o 1

c 1-0 0 0

0 0 1 0

0 0 c 1-c 0

One effect of the preceding definitions is to allow us to view a

theory for list learning as a set of M matrices of transition prdba-

bilities among the LM states of zo The device of dealing with

1= ND
1'

0 0 0

M
) permits one to handle the possibility of simultaneous

learning on various levels. To illustrate, suppose the all-or-none

multi-level model is written for a list with M=2. Then the implied

matrices P1 and P
2

are given by Eq.s. 4.2 and 4.3. The response

rule for the all-or-none multi-level model specifies that response pro-

babilities are completely determined by knowing the state of the prJ-

sented item. In general, item dependencies implied by multi-level learn-

ing are recorded by their effect on t
-4
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C. Definitions and Theorems for Presentation Schedules

Now that the notion of a model in the framework has been formalized,

we move to the task of stating theorems for computing state and response

probabilities as a function of the presentation schedule. These theorems

are motivated by the idea that a multi-level model can be tested by

manipulating presentation sequences and predicting response probabilities

as a function of this manipulation. Before stating the theorems of this

section, one more definition is needed.

The formulation of the notion of a model in the preceding section

did not include a specification of the probabilities of being in the

various states of the list on trial one, i.e., Definition 4.3 did not

include a start vector. In order to apply a model to a particular ex-

periment a start vector must either be assumed by the model, or the

probabilities of starting in the various states must be regarded as

parameters of the model. The notion of a start vector is formalized in

Definition 4.4.

Definition 4.4

-4
By a start vector pi for a model 7.-= (crI(plaz) is meant an

L dimensional row vector of the probabilities of being in the LM

states in <7 at the start (trial one) of an experiment.

-4
In general, denote by the row vector of probabilities of being

-4

in the various LM states on trial N of an experiment. p
N

can be

viewed as a random variable whose value depends on the start vector '4

the matrices IP P and the presentation schedule.

Next we present Theorems 4.1, 4.2, and 4.3 which give general

methods for computing p
N

as well as response probabilities on trial. N
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under some frequently employed presentation schedules. The first theo-

rem shows how to compute pNla for a fixed presentation sequence of

stimuli for the first N trials. Theorem 4.1 should be regarded as a

fairly obvious extension of a standard theorem in Markov chain theory.

The theorem from Markov chain theory asserts that if P is the transi-

tion matrix for a finite state Markov chain, the probability of being id

state j N trials after being in state i is given by the ij
th

term

of LPN (cf. Kemeny, Mirkil, Snell, and Thompson, 1959, p. 386). Theo-

rem 4.1 is a special case of the analogous theorem for inhomogeneous

finite state Markov chains (i.e., chains whose parameters are trial

dependent).

Theorem 4.1

Suppose a list, J, of M items, a model =

-4
with an associated start vector p. Also suppose the presentation

sequence Sa Sa , ... Sa for Sa e J, i = 1, 2, ... N,

1 2

is aLninistered for the first N trials. Then

probabilities of being in the various states of

N + 1 is given by

(4.10)

Proof

N
-4 -4

P P PN+1 tai
i

the row vector of

the list on trial

The proof proceeds by induction on N. Clearly for N = 1

-4 -4
P2 = P1 Pa

1

Assume for N 1 that
-4 -4
p
N

p
1

Pot IPa
1 N-1
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,

fl

Then the k
th

term of V
N+1

is given by

Hence

-(k) LM jk
PN+1 = PN aN

J=1

L
M

= E Ei 1 Plog
1

]

(i)
Pi

k
a

j=1 N-1 N

= EVI V'clt ... a j(k)

1

N

=N+1 1 Pa
1 i

Although the preceding theorem is not suited

of any but the most simple models with M and L

vide a useful tool in computer simulation of more

models.

Although this theorem and the ones to follow concern how to derive

the probabilities of being in the various states given various presen-

tation sequences, it is quite easy to use these results to get response

probabilities. Suppose sN..1 is the sequence of presentations for the

firstY-1-trials;therilforallS.604 Aj 6 a V eq7, and

for hand computation

small, it could pro-

complex multi-level

N = 1, 2, ... ,

L
M

Pr(AiINISiIN, sN..1) = kEi Pr(Ail N'
sN-1 )Pr(Elc, NI sN-1)

L
M

-4 -<
. 2: Pr(A. I1 tkIN) pN

k)

k=1
J1N Si3.1B

-4

The first term is given by oe and the second is the k
th

component of p
N
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calculated by Theorem 4.1. In later theorems E(VN) will be computed

under various presentation schedules. If J is a presentation schedule

(see Definition 4.5), we have

(4.12)
LM

Ej(Pr(A. NISI,N
)) = Pr(AiN1Si,N, EkN)vV ( N

k)t
J,

k=1
,

Next we define the notion of a presentation schedule generator

(p.s.g.) and state a lemma from Theorem 4.1 for finding E(IV under an

arbitrary p.s.g.

Definition 4.5

Suppose a list of M items, By a presentation schedule

generator, J, is meant a rule which specifies the following prob-

abilities:

1. For all presentations on the first trial, Sa c4P, Pr(S01) is

specified.

2. Let IN denote ix ... xis and let hN denote the history of

N-times
the first N presentations and responses. Then, for all

s
N

A,
N'

all histories hN, and all S e ,r

Pr ( Sa,N+11 sN' hN)

is specified.

Thus a p.s.g° is just a rule for determining the probability of any

sequence of presentations through the first N trials (possibly contin-

gent on the subject's responses) for N = 1, 2, ...

Lemma 4.1

Suppose a p.s.g. J for a list of M items and a model

-4
with associated start vector p

1
. Then the expected probabilities
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of being in the various states of the list on trial N (expectation with

respect to LT) are given by

(4.13)
N-1

EJ(1-51d = (Al IT [P.)Pr(Soc Sa
N-1

)

s 1.1 1
N-1 N-1

where s
N-1

is expressed as

sa
) ) sa

1 N1 .

Proof

-4
With Theorem 1 and the treatment of p

N
as a random variable in

mind, the lemma follows from the fact that if X and Y are discrete

random variables

E(X) = E E(xi Y=y)Pr(Y=y)

y

where the sum is over y such that Pr(Y=y) > 0

Next we introduce the notion of a "Bernoulli presentation schedule."

A theorem is then stated for computing EB(511.) for a Bernoulli p.s.g. B.

It turns out that for computational purposes it is useful to test a

multi-level model with a Bernoulli presentation schedule. If this sched-

ule is used, an expected operator or average transition matrix can be

used to get state probabilities (Theorem 4.2), and a theorem which per-

mits lumping of the average matrix (Theorem 4.5) under a further restric-

tion greatly reduces the number of states in this matrix. These two

theorems are used together to derive stochastic matrices for the all-Jr-

none multi-level model and for Restle's strategy selection theory (Chapter

5, p. 103 and p. 115, respectively).
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Definition 4.6

Suppose a list of M items By a Bernoulli presentation

schedule is meant a rule J which selects item Sae .1 to be pre-

sented on Trial N with probability Ito/ independent of N and

the previous item presentations and responses, a = 1, 2, , M.

That is, for all a = 1, 2, M, N = 1, 2, ...

Pr(S
iv

) = 7Caot,

independent of N and the history hn..1. Of course

M
E =a

1.

1

Theorem 4.2

Suppose a list of M items, a model 27= (gr,F,d() with

associated start vector vi and a Bernoulli p.s.g. B =

(gi, g2, gm). Define

M

A` gk!
k

k=1

to be a matrix of "average" transition probabilities effective on

any trial. Then

(4.14) E (5>N
) > AN

B +1 = -1

Proof

The proof proceeds by induction on N. For N 2,

EB(17')2) /11PM

M

17> A
P1

k=1
/tek 1
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Assume

AN-1
B(`lj..;;) N) P1

Then for all strings a = (a a2, aN) of the first M integers

we have

EB(VN+1) ;; -151(Pla
1

Pa
N 1
)na

N

=
( )Ci->$1(Pct1 N-1
1"." N-1

.7>e.21 7,AN
YIP.

)310/ 1Pct nOC )
1 N-1 aM N N

This theorem could alternatively be proven as a consequence of the

theorem which states that the expectation of a product of independent

random variables is the product of their expectation. Then the work

would be to show that the conditions of this theorem are satisfied for

matrix random variables and a Bernoulli p.s.g. along with the model OA

TY he mathematical learning theory literature; the two most fre-

quent experimental paradigms for list learning are the anticiprItion pro-

cedure and the R-T procedure. The anticipation procedure presents no

difficulty for the framework. Thus an anticipation procedure for a list

of M items could be defined in terms of a p.s.g. which selects any of

the M! orders of the M items with probability 1/M! at the start of

each cycle.

The R-T procedure; however; presents slightly more difficulty for

the framework. The problem is that a trial in the R-T procedure does

1-61.

not fit the definition on p. 54 of this chapter. Instead of the stimulus

being presented for a response followed immediately by a presentation of
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the S-R pair, the R-T procedure groups the R-trials (presentations

of S-R pairs), groups the T-trials (presentations of the S members

for a response), and alternates blocks of R and T trials.

There is a fairly simple and natural way to extend the framework to

handle the R-T procedure as well as several other situations to be

mentioned. Suppose an event, Ey, is defined to be any occurrence in

an experiment which a theory says may affect the state of the list. Thus

far, theories have been restricted to those which specify that the only

events are presentations of stimuli for an anticipation trial, i.e., thus

far, transitions among states of the list are permitted only upon the

presentation of a stimulus. We could associate a transition matrix ff
'N;

with each event Ev. Then, if event Ev occurs at some time point N

in the experiment, Pv would be applied to PI to give i.e.,11

(4.15)
-4 -4

N+1 = PNIPv

Now the R-T procedure can easily be accommodated within the frame-

work. Associated with each type of R-trial, Rv, is a matrix IF
'1,)

and

with each type of T-trial, Tv l, a matrix Pv,. Thus during a T

cycle the associated item matrices for T-trials are effective, and dur-

ing R-trials the matrices for R-trials on items are effective. Viewed

in this way, the issue of learning on test trials is whether or not the

transition matrices for T-trials are diagonal (ls on the diagonal and

Os elsewhere).

Other places where this generalized notion of event might prove use-

ful are as follows. Peterson and Peterson (1962) had subjects count

backwards between an R-trial and a T-trial to study memory. If models
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for the Petersons' experiment were written in the framework of this

chapter, one could define a counting event, Ev. Presumably the associ-

ated matrix IP
V

would tend to shift an item into a forgotten state.

A second possible use of the generalization of event in the frame-

work would be in the optimization work of Crothers (1965). Crothers

considered two types of trials (modes of presenting material to be learned)

and the paper concerned finding a solution to the problem of the optimal

scheduling of these trials under various constraints. To solve this

problem, he associated a transition matrix with each type of event; a

matrix was assumed to be effective on any trial when its associated event

occurred. The members of the state space, however, were not the states

of the list but were states of a particular' item.

It would lead us too far astray to develop additional properties of

presentation schedules within the multi-level framework. The preceding

comments should indicate the way to incorporate a p.s.g. into the frame-

work.

Before leaving the section on computing state and response probabil-

ities for multi-level models, there is another property of come models

that can simplify derivations. If the matrices in commute, computa-

tions from a model are simplified (Theorem 11.3). First, we formalize

the notion of a commutative model in Definition 4.7 and then state Theo-

rem 4.3.

Definition 4.7

Suppose a list of M items and a model 27. 21 is said to be a

commutative model in case, for all ce,f1 1, 2, ...



Examples of commutative models are the one-element P-level model

and the all-or-none multi-level model. The former is commutative as a

consequence of the property that each item in the list is learned inde-

pendently. To see this effect on the matrices, consider the P-level

model for M = 2. We may compute P1.P2 and P2P11 where Pl and 1P2

are given by Eqs. (4.8) and (4.9) respectively. The result is

1

c 1-c 0 0

IP IP IF
'2
4' =

1 2 1
c, 0 1-c 0

C2 c(1-c) c(1-c) (1-c)2 .

Theorem 3.3 suffices to prove that the all-or-none multi-level model is

commutative. The appropriate matrix multiplication for M = 2 is pre-

sented in Eq. (4.4).

Commutative models make a strong prediction that the order of pre-

senting stimuli does not matter. This is shown in Theorem !i.3.

Theorem 4.3

Suppose a list of M items, a model 2/ with associated start

vector VI. Suppose 2/ is a commutative model and that, for

a -., 1, 2, ... M, ka Sa items are presented in the first N

trials, i.e.,
M

kcy = N
a1

Then 17,1/4.1 is independent of the order of presenting the items.

Proof

From Theorem 1 and repeated use of commutativity of the members of

we have, for any presentation order,

(4.16)

kl k
2-4

p p P ,P ,..P
N-1-x 1 1 2
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D. Reduction of the Cardinality of Models

Before turning to specific applications, one more aspect of the frame-

work needs to be developed. As the size of the list, M, and the size

of the item state space, L, increase, the size of Ojc the state space

for the list, increases as LM. Even for a three-stage model for a twenty-

item list g7 would have
320

= 3,486,78)4,401 possible states in its

representation within the framework. Also, working with matrices of the

order of 3.5 x 109 by 3.5 x 109 would tax the abilities of the strongest

computer.

There are, however, several ways to reduce the cardinality of objects

in the framework. Three of these will be developed in the next few pages.

By way of preview, the first will be to drop inaccesbible states, the

second will be to break down a list into sublists such that no item de-

pendencies (or mutual interactions) exist between members of -eparate

sublists, and the third is to usu the notion of lumping states in a Mar-

kov chain (cf. Burke and. Rosenblatt, 1958) to effect computational sim-

plicities in determining

The first of these has already been used in this chapter for the

all-or-none multi-level model with M = 2. Stator (R, P), (P, R), (R, U),

and (U, R) were dropped in the matrices in Eqs. (4.2) and (4.)). This

is because none of those states is obtainable from other states and fur-

ther have zero probability in "15),. vlith this in mind we state the follow-

ing definition.

Definition 4.8

Suppose a list Jr of M items, and a model (g7

-4
with associated start vector p

1
. Define the class of null states,
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/1, to be the largest subset of a such that:

1. For all t
-4

E /7

p = 0 .

1

2. For all t
-->

E 9, E t1- and a = 1, 2, M,

jk
p = o .a

For the all-or-none multi-level model,

lt C(R, P), (P, R), (R, U), (U, R)) .

It should be fairly obvious that if the state space of the list is taken

as

the preceding definitions and theorems are unaffected in content; hence,

from now on, when a model 2k= w, (0,X) is considered, it can be

assumed that 9 has been dropped from Zr.

Dropping null states would be very important in situations where

learning takes place mostly at high levels, i.e., where the model speci-

fies that large collections of items change states at once or not at all.

For example, consider the one-element R-level model for M = 20. 41 in

the associated model would be of size 2
20

; however, :7 - 2? would have

only two members: (U, U, U) and (R, R, R).

The second method of reducing the cardinality of 47 (or 41 -9)

is illustrated by a typical P-level analysis of a paired-associate ex-

periment. In effect, a list of size M is reduced to M lists of size

one. This is possible since the transition probabilities and response
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probabilities for a particular item are assumed not to depend on the

states of other items in the list or even the number and order of previous

presentations of other items. Thus, items that depend in no way on each

other in their course of learning can be analyzed as though they came

from separate lists. This observation is formalized in Theorem 4.4.

First, Definition 4.9 concerning the classes of item dependencies which

a model mi-'ht postulate is stated.

In the definition to follow, the notion of the set of items depen-

dent on an item is developed. This idea is then used to define "level of

learning," and finally, a theorem about breaking a list into independent

sublists is stated.

Suppose Sa is a particular item in a list By Da is meant

the set of items in Al dependent on item Sa. An item Sp is said to

be dependent on Sa in case any on of three possibilities obtain:

i. response probabilities to Sp depend on the state of Sa, ii. the

state of Sp can change on trials when Sa is presented; or iii. the

transition probabilities for Sp, when Sa is not presented, depend on

the state of Sa. These notions are formalized in Definition 4.9.

Definition 1..9

Suppose a list of M items and a model 217. (ni, tP,X) with

4
associated start vector p . For each X = 1, 2, ... M, the sets

Da, D
2

and D3 are defined as follows:

1-1)1.--(so .sp eiamithereexistsa.A.Ea and u .7c j

differing only in their a
,th

position such that

Pr(AllSp) u) / Pr(AllSp, .
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_3
ii. D2 = 0

P
s ej and there exist a), s with u fir such

that
-->-->
t ' V j

iii. D3a = (s
13'

s 6,1 and there are u v E d differing only in

their
ath

position, S a with y / a, and T E TI such

that

pre3) Tis
y

N)
N

/ Pre° = T1S
7 N N

)1 .

N+1 N +1

Then the set of items dependent on an item Sa is defined to be

D
ce a a= Di U D2 aU D3 .

D
1 in the preceding definition is just the set of items whose re-

sponse probabilities can be affected by the current state of item Sa;

D
2

is the set of items whose states can change when S
Ot

is presented;

and D3 is the set of items whose transition probabilities can be affec-

ted by the state of Sa. Da, then, is the set of items dependent on Sa

in any of these senses.

In the next section, Definition 4.9 will be used to define a depen-

dency relation on AY. This relation will be extended to an equivalence

relation in order to define level of learning in terms of the partition

of 4F induced by the extended dependency relation.

Let us define a binary relation, D, on J in terms of the Da'sa

We say Sp depends on Sa, written SpDSa in case Sp e Da for

p = 1, 2, ... , M. Anticipating the development to follow, it would be

a desirable property if tDa: a = 1, .., NO forms a partition of

i.e., if the Da are mutually exclusive and U Da = ,e Put another way,



it would be desirable if the relationship of item dependency was an

equivalence relation, i.e., reflexive, symmetric, and transitive. In this

case, as a later theorem will show, the list could conveniently be broken

into sublists, and each subject learning the list would provide one set

of data for each sublist.

Examples are the one-element P-level model where Da = (So) and

the all-or-none multi-level model where the equivalence classes are the

groups of M related items.

It would be unduly restrictive to require (D) to be a partition

of I. Consider the mixed model (Atkinson and Estes, 1963) for the

following list:

stimulus response

ab 1

be 2

cd 3

For this case D
ab

= (ab, bc), D
bc

= (ab, be, cd) and D
cd

= (be, cd) --

certainly not a partition of AZ These results come from the fact that

the conditioning axioms for the mixed model require, for all stimuli x,

D2 = (x) and D3 = (x); however, D1 is the set of all stimuli which

share components with x. The dependency relation is reflexive and sym-

metric for the mixed model, but not necessarily transitive. (Parenthet-

ically, one could test transitivity for such a list by manipulating

presentation sequences and observing whether preceding presentations of

ab affect response probabilities to cd. Although this experimental

question is of interest to the author, it will not be pursued in this

paper.)
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Since it is too restrictive to assume that the dependency relation

D is an equivalence relation, we define an extension of D to an equiv-

alence relation and base an operation of breaking a list into sublists

based on this extended equivalence relation.

Definition 4.10

Suppose a list Alf of M items, a model with associated

start vector 51, and the dependency relation D induced by

Define D*, the levels extension of D, to be the minimal equiv-

alence relation containing D, 1.e., D* D has the fewest members.

Strictly speaking, the preceding requires a result from set theory

to be a proper definition. Clearly, ix AP is an equivalence relation

containing D. Hence, setting D* equal to the intersection of all such

equivalence relations containing D, which is easily shown to yield an

equivalence relation, suffices to establish the existence of D*. Since

of is assumed finite, D* can be easily obtained by construction. One

simply adds to D all pairs from ixj necessary to satisfy symmetry,

transitivity, and the reflexive property. Denote by .04 the partition

of induced by D*.

To illustrate the preceding process, consider the mixed model for

the following two lists.

LIST 1 LIST 2

stimulus Et§22n2t.

ab 1

bc 2

cd 3

ef L.
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stimulus response

ab 1

bc 2

cd 3

de 4

ef 5



For List 1 we have

D' = ((al, ab), (be, be), (cd, cd), (ef, ef), (be, ab), (ab, be),

(cd, be), (be, cd)) ';

D'*= Cab, be, cd) x Cab, be, cd) U ((ef, ef)) p

in other words the pairs (ab, cd) and (cd, ab) have been added to D' to

satisfy transitivity; and finally

ati'* = (Cab, be, cd), (ef)) .

However, for list two,

D" = D' U ((de, de), (ef, de), (cd, de), (de, ef), (de, cd))

D"* = Cab, be, cd, de, ef) x Cab, be, cd, de, ef) ;

and

,dif* (Cab, be, cd, de, ef)) .

In other words the addition of item de to List 1 is sufficient to tie

all the stimuli in the list together in the sense of Definition 4.10.

We are finally in the position to offer a possible definition of the

notion of "level of learning" used extensively in Chapters 2 and 3. By

a level of learning is meant a partition of j, i.e., a collection of

subsets of ,f which are mutually disjoint and exhaustive. By the high-

est level of learning for a list and model 21 is meant the finest par-

tition (one with the most equivalence classes) of f for which items in

different subsets are mutually independent, that is, if Sioe e A ef and

St3 eBc:Ael and if A V B, then not SapS and not SeSou. It will turn

out that pi. is the appropriate partition.

In the theorem to follow we will base a method of breaking a list

into sublists corresponding to the equivalence classes of 4*. At the

same time the list is broken into sublists the model can be broken
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into corresponding submodels. The procedure is analogous to breaking one

long string of errors and successes into a group of short sequences, one

for each item, as is done in P-level analyses. The important property,

captured in the theorem, is that presentations of items outside of a

fixed cell in .6* act as "dead trials" relative to changes of state

probabilities and response probabilities of members of the equivalence

class.

Unfortunately, the theorem, although fairly intuitive, becomes very

cumbersome from a notational standpoint. Therefore, some of the notation

used in the theorem will be defined as follows.

Let be the set of all possible presentation sequences through trial

N. Then

4, = xAer

N-times

For each B. '644 define to be the set of all sequences of presen-

tations from B
i

for the first N trials. Then

= B x 0. xB
iN

N-times

Each sequence sN e 4 can be decomposed into subsequences, such that a °'

i
..

particular subsequence, sN, represents all presentations of members of
,

a particular B
1.

Thus, for each s
N

e s
i

N
is a subzequence of

length p, 0 < p < N, consisting only of the members of Bi listed in

s
N.

Finally, for each c VI define EW to be the set of all

-4 -4
u e t which agree with t in coordinate positions corresponding to the

states of items in Bi, i.e,,
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ri

L

-> a --, a
= Cu c and. u = t for all a such that Sa c B.) .

II: should be clear that for each B FEW: -re 01 forms a parti-

tion of cY.

With these notational devices in mind, we are prepared to state the

major theorem of this section. Theorem 4.4 asserts that the response

probabilities to an item in a particular equivalence class, B
i

depend only on the order and number of preceding items in that equiv-

alence class.

Proof

Theorem 4.4

Suppose 47 is a set of M itms with model 9,1?= N71 X, -e)

and associated start vector . Let 0* = (B
1

1 B
2'

... , B
V

) be

the levels partition of induced by the equivalence relation D*.

Then, for all Bi c0041 N = 1, 2, ... 1 sN a ,g, and responses

E a

i)
Pr(AilnialSaIN+11 sN) = PrUli,p+11Salp+11 sN 1

for i = 1, 2, ... , V and S

sN) Pr (Aj 1 N+1 Sall1+1' ;+1)1DIA"
tee

By assumption of Sae B1, response probabilities to Sa depend only on

the states of items in B
i'

hence we have

Pr(AiIN+11SaIN+11 sN) Pr(AJINial
all1+1/ C11(1))Pr(c-1(91sN)

where the sum is over the equivalence classes :CAI) induced by Bi,
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i.e., the subsets gy corresponding to each sequence of states of items

in B1. The next step involves noting that for all s
N

Pr(i'ma(i)IsN) Pr(tp+1(i)ls)

This is established by summing over members of the set T)114.1(i) as followss

Pr(1VT +1(1)IsN) Pr(..) s )N N
Tier( )

= E [VI tpk

irer( )
Ices

N

E Cpl
'Pk,

Titer(i) k'es

= Pr(tp÷2. (i)Isi) O

The last two steps follow, since the states of items in B
i

can change

only on presentations of items in Bi, and, further, the transition

probabilitiesforiteminB.do not depend on the states of items not

in Bi. The reader not convinced of this should note that, for all

So ti Bi, and any Sae Bi, and u -1,16V with Te/

ipuv
= o .

Putting these results together yields

Pr(Ai1N+11SaIN+11 sN) = Pr(Ai,p+11Salp+11 41) II

The gist of this theorem is that presentation of items not in a

cell B ce* do not affect the states or response probabilities of items

in Bi. Consequently, each cell of td* can be studied as an independent
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sublist of The associated model for the sublist corresponding

to Bi eeft4 will have state space gr where

= {t(i): t e .

M
If B has Mi members, then 07i will have L members. Finally,

the transition probabilities,

are determined from 1? since

a
t(i)t(i)
a

1puv

4 at

is the same for all pairs u e 7-1/1 eXj).

Thus far we have discussed how inaccessible states in if (namely,

the I/ states) can be eliminated. Also we have considered how, in cer-

tain cases, a list of M items can be partitioned into shorter sublists

with a consequent reduction in the number of states needed to characterize

the learning of each sublist. A third possibility for reducing the size

of Ill (or gt - 7( or gr for B
i

e.04) is to reduce the number of states

in the item state space TI. This operation would reduce L and hence

LM. In this section we consider briefly the notion of lumping (combining)

certain of the states in 41. "Lumping" is a technical topic in the Markov

chain literature (cf. Burke and Rosenblatt, 1958; Kemeny and Snell, 1960,

pp. 132-140), and its use within the framework is a highly model-specific

question.

The basic idea of lumping (or combining) the states of a Markov

chain is as follows. Suppose M is a Markov chain with state space



X = txilx21 x
n
) . Let Y = (yily2, ... , yrA ) be a partition of X,

i.e., Y consists of pair-wise disjoint subsets of X whose union is X.

If the state space Y forms a Markov chain, then Y is said to be a

valid lumping of the states in N. A sufficient condition for the lumped

process Y to represent the state space for a Markov chain is as follows

(Burke and Rosenblatt, 1958) Y is a valid lumping of X in case, for

each yilyj E Y

Pr(x-yi) = Pr(x1-yj)

forallx,xleyi,wherePr(x-Yj )is the probability of transition

from state x e X to the class of states y c: X. It should be noted

that if this condition is satisfied Pr(Y.-Y.) is well defined--otherwise

it is not.

Depending on the model, this condition can be used to lump the

states in each p e 4 in such a way as to reduce the size of V. In

most cases this method of reducing i7 depends on the particular model;

however, there is one case for which a somewhat general condition pep-

mitting lumping of the states in t can be established. In the case

where all M items in a list are similar in a sense to be establishes.

in Definition 4.11, it is possible to lump the states of tr if each item

is equally likely to appear on any trial. This condition is established

in Theorem 4.5. First we formalize the notion of a "symmetric model"

which plays a role in this theorem.

Definition 4 a 11

Suppose a list AP of M items and a model /4 =

/1? is said to be symmetric in case r is left unchanged by
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permuting the order of stimuli listed in the state space c/°.

A symmetric model has the property that all items are treated alike

by the model. By this is meant that the same set of matrices, would

be obtained for any ordering of the items in the definition of the state

space of the list, i.e., there is a matrix in t6 associated with the

first listed item in the state space, one associated with the second, ;

and further, these matrices do not depend on which item is listed first,

second, . As an example, consider the one clement P-level model

for a two-item list. Let S and S' denote the two items. Eqs. (4.8)

and (4.9) give the two members of r for the S'S order of listing the

states of the items. It should be clear that if the items were listed

as SS' in the state space, the same two matrices would be obtained,

except Eq. (4.8) would apply on S trials and Eq. (4.9) on S' trials

instead of the reverse set-up for the S'S order of listing states of

items in g
All of the models considered in this chapter are symmetric models

in the sense of Definition 4.11. One type of consideration that would

tend to make a model asymmetric would be items of unequal difficulty. To

illustrate, consider the aforementioned one-element P-level model for

the list 1= SIS'); however, suppose S is an easier item to learn

than S'. Accordingly, let c be greater than c'. Suppose the state

of the list is listed in the SS' order, then the resulting matrices are

as follows:

(4.17) iP

1 0 0 0

0 1 0 0

c 0 1.c 0

0 c 0
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and

(4.18) IF'

1

c'

0

0

However, if S' is listed before

(4.19)

and

(4.2o) P

1

0

G'

0

1

c

0

0

0 0 0

1-c' 0 0

0 1 0

0 c' 1-c' 9

S in 0,

0 0

the

0

resulting matrices are

1 0 0

0 1-c' 0

C' 0 1-c'

0 0 0

1-c 0 0

0 1 0

0 c 1-c

Since these two sets of matrices (Eqs. (4.17) and (4.18) vs. Eqs. (4.19)

and 04020)) are not the same, the model is not symmetric. One important

thing to note about requiring a model to be symmetric is that it places

no restriction on what types of item dependencies are possible, e.g.,

the all-or-none multi-level model is a symmetric model.

If a model is symmetric and is tested by a Bernoulli presentation

schedulewithn.=1/M for i = 1, 2, 000 M (see Definition 4.6),

it is possible to lump the states of the average matrix (see Theorem 402),

(4.21) Al =
i=1

171
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The lumping permitted by these conditions produces a partition of

defined as follows. Suppose a list, 44 of M items with item state

space T1 = II). Then b, the counting partition of esr,

is defined as follows:

(4.22) = (-J). (el, e2, en): ei is a number between 0 and M

representing the number of items in state Ti for

L

i = 1,2, ... L; and 1:e. = M).

1=1 1

Actually 5 itself is not a partition of al; but corresponding to each

-->

e e 4 there is a subset e of J whose vectors have e. items in

state T. (i = 1,2, ... L). It is these subsets, e, which form a

partition of ze and correspond to the states of the lumped process pre-

sented in Theorem 4.5.

Proof

Theorem 4.5

Suppose 91= (p°r, 05,t) is a symmetric model for a list of M

items. Suppose that items are presented with a Bernoulli presenta-

tionschedulewithTc.=1/M for i = 1,2, ... M. Then the

Markov chain with state space 41 and stochastic matrix given by

Eq. (4.21) lumps to a Markov chain with state space 4.

The proof proceeds by using the Burke-Rosenblatt criterion discussed

on p. 82 of this chapter. Let e and e' be any two sets in 4 Then,

for all
> --->

j
e, we have

(4.23) PrCE3.1 -el = Pr(E'-e')
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Eq. (4.23) comes from the fact that 11? is symmetric. That is

M
Pr(E).-e') :E Pr(E).-ellSk)Pr(Skic)

k=1

1
2, )

k=1
k

= M
Pr(t

_.
-e IS

k
) 1

k=1

where t
-4

>
is the vector corresponding to t

i
when the order of items

in the state space 47 is permuted to list items in state Ti first, in

T
2

second, , and items in T
L

last. Since the model is symmetric,

the resulting set of matrices r* is the same as alG and hence the above

equation holds. A similar argument implies

M _4*
= Pr(t -e'IS

k
)

k=1

and hence Eq. (4.2f)) follows. This result establishes that the Burke-

Rosenblatt criterion holds; and hence, the lumping of 1 to 6 is

valid.

Next, we indicate how this theorem, along with Theorem 4.2, might

be used in the analysis of a particular symmetric model. Theorem 4.5

and Theorem 4.2 are used in several places in Chapter 5 to derive parti-

cular models from a general model in the sense of Definition 4.3 (see

pp. 112-117 for Restle's strategy-selection theory). Consider the one-

element P-level model for M = 2. The two matrices, pi and 1P2, are

given by Eqs. (4.8) and (4.9). Suppose a Bernoulli presentation schedule

with n
1

=
2 2

= (see Definition 4.6), then Al, for Theorem 4.2, is

as follows:
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(L,L) (L,u) (um (Ulu)

(L,L)
r

1

(L,U) 1
.c2 l -2c 0 0

(4.24) Al =
2 (U,L) lc2 0 1ic 0

2 1,-C](UW
'ffe

1- c) 0 1

Since the model is symmetric (see p. 82), we can use Theorem 4.5 to

lump the state space (IT= C(L,L), (L,U), (U,L), (U,U)) . The counting

partition, el is given by

(4.25) = (C(L,L)), C(L,U), (U,L)), C(U,U)))

(denote these three sets by e2, el, and e0, respectively). Using

Theorem 4.5, we obtain the following stochastic matrix for the lumped

process with state space

(1!..26)

e
2

e
1

e0

e
2

1 0 0

e1 2c 1-ic 0
2

e
0

0

This derived matrix can be used as a Markov model to describe the

error-success process on the pair of items (S1,S2) under a Bernoulli

presentation schedule with it

1
= g = 1/2. A model for error-success

sequences is conventionally displayed as a transition matrix among theo-

retical states along with a column matrix of the probability of a correct

response given a particular state (cf. Atkinson, Bower, and Crothers,

1965, pp. 89, 253, and 305). Accordingly, the model for error-success
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sequences on (S1lS2) derived from the one-element P-level model is

displayed in Eq. (4.27) as follaws

e
21n

e
lln

e
Oln

Pr(correctlrow state)e
2, n+1

e
1, n+1

e
Oln+1

1 0 0 1

(4.27) in 1-2c 0 i(l+g)

0 1-c

where g is the probability of a correct response for a presented item

in state U. It is cf some interest to note that the model in Eq. (4.27)

is formally identical to the two-element pattern model axiomatized by

Suppes and Atkinson (1960, pp. 14-17). The equivalence comes from inter-

preting the stimuli S1 and S2 as the two patterns. The Bernoulli

schedule employed guarantees that each stimulus (pattern) Is sampled on

each trial with probability 1/2. It is interesting to note that Suppes,

et al. (1962) lumped the four-state matrix for the two-element model to

one equivalent to Eq. (4026). The preceding observations suggest that,

if the particular stimulus giving rise to an error or success on trial n

is suppressed in the level of analysis corresponding to the analysis of

the error-success process on M items for a Bernoulli presentation sched-

ule, then the resulting model bears a resemblance to an M-element pat-

tern model. However, in the case of more complex multi-level models

than the one-element P-level model, it is possible for "patterns"

(stimuli) to change their states when not "sampled" (presented).

One final comment about the model represented by Eq. (4.27) is

needed. Transitions from state e
1

to e
2

have different probabilities

following an error than following a success. This is because an error in

11110 I Ili MENNIMM..
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e
1

implies the unlearned item has been sampled; whereas, a success In

e
1

does not determine the state of the presented stimulus. This feature

is shared by the two-element pattern model of Suppes, et al. (1962).

Although analyses of the two-element model can be found in the literature

(cf. Bower and Theios, 1963), in general, there may be more than two items

in the list. When M > 2, analysis of the resulting model (obtained by

Theorems 4.2 and 4.5) is best done by computer.

Bernbach (1966) has proposed a computerizable scheme for analyzing

Markov models. To use Bernbach's scheme, it is necessary to expand each

state into an error and a success state. When this expansion is accom-

plished, the differential probability of learning after an error or suc-

cess is embodied in the matrix. To illustrate, Eq. (4.27) can be so

expanded; the result is as follows:

S E S
e
2

e
1

e1 e0

e
2

1 0 0

e1
1

A (1-A)g' (1-A)(1-g') 0

(4.28) eE c (1-c)g' (1-c)(l-g') 0
1

e
E Pr(eorrecttrow state)
0

0

0

0

e
S

0
0 cg' c(1-g') (1-c)g (1-c)(1-g)

e
E

0 cg' c(1-g') (1-c)g (l-c)(1-g)

where g' (l +g) and

(4.29) A = Pr(e
2,n+l

le
1,n

, = 0)
n

c
=

l+g
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Bernbach's scheme could be directly applied to Eq. (4.28) to generate the

statistics for the error-success on the item pair (SilS2).

In the next chapter we present some detailed analyses of several

models, using the theorems and methods developed for the framework pre-

sented in this chapter. It should be emphasized that the tractability

of a model within the framework depends on the construction of clever

experiments designed to reduce the state space (.11, and consequently the

matrices in PI to manageable proportions.
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CHAPTER 5

APPLICATIONS OF THE FRAMEWORK

In this chapter several applications of the preceding framework will

be presented. It is hoped that these examples will illustrate the flex-

ibility of the approach to the problem of levels of learning presented in

Chapter 4. The framework is applied to the mixed model, the all-or-none

multi-level model, and Restle's strategy-selection theory.

The Mixed Model

Atkinson and Estes (1963) develop the mixed model for the learning

of the following miniature list:

Stimulus Response

ab 1

bc 2

The assumptions are that each pattern is in a state U or state L,

where L is an absorbing state, and items are presumed to start in U.

Responses to an item in U are governed by the stimulus components in

the sense that if a pattern is in L, then its components are assumed to

be connected to the response associated with that pattern. Thus, if ab

is in U and bc is in L, the probability of response 1 to ac is

1/2 x 1/2 + 1/2 x 0 = 1/4, where with probability 1/2 the S uses

component a, which is unconnected to either response 1 or 2, and with

probability 1/2 he uses c, which is, by assumption, connected to re-

sponse 2. The one-element P-level model is assumed to govern the learn-

ing of patterns, hence dependencies among items are produced only by the
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response rules which are based on the conditioning of common components.

The aufaors assume a Bernoulli presentation schedule (see p. 66, Chap-

ter 4) with n = 1/2. They derive a sort of "average" matrix of transi-

tion probabilities among the states of the list, (U, U), (U, L), (L, U),

(L, L). It is as follows:

(5.1)

(L,L)

(L,L)

1

(L,u)

0

(u,L)

0

(U,U)

0

(L,U) ie 1-4=C 0 0

(tJ,L) iC 0 .1.-2C 0

(U,U) 0 cc 1 - C

This matrix is raised to the nth power to get state probabilities, where

n indexes presentations of either stimulus.

For the record, the response probabilities given the item presented

and the state of the list are as follows:

(5.2)

Pr(A1) Stimulus presented State of list

1 ab LL

1 ab LU

1/4 ab UL

1/2 ab UU

0 bc LL

3/4 be LU

0 be UL

1/2 bc UU
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Now let us.analyze this example within the framework of the preced-

ing chapter5 . The list, consists of two members, ab and bc.

The response set el consists of 1 and 2. The item state space T
I

=

(U, 47= T x T. r consists of the following two matrices, where

ab = S
1

and

(5.3) IP

and

bc = S
2'

(L,L) (L,u) (u,L) (u,u)

(L,L) 1. 0 0 0

(L,u) 0 1 0 0

=
(u,L) 0 1 c 0

(u,u) 0 0 1 - c
. 11=11

(L,L) (L,u) (u,L) (u,u)

(L,L) 1 0 0 0

(L,u) c 1 - c 0 0

(U,L) 0 1 0

0 0 1 - c
ON,

-4
The response rule de is presented in Eq. (5.2). p

1
= (0,0,0,1), and

= ((ab, bc)) (see p. 76, Chapter 4) .

The model 2)1 = (7, Pot) is a commutative model since

(5.5) i
.P
2

= P
2 1

1

c

c
2

0

1 - c

0

c(1-c)

0

0

1 - c

c(1-c)

No,

0

0

0

(1-c)2_

2/ Portions of this analysis are reported in Batchelder,
Yellott (1966, Ch. 8, problem 8.G.2).
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Next we apply the theorems of Chapter4 to analyze the mixed model in

terms of the framework. First, suppose kl S1 and k2 S2 presentations

in any order for the first kl + k2 = N trials. Then, according to

Theorem !l.3 for commutative models, we have

k k
1 , 2-->

P P sir °irN+1 1 1 2

(0,0,0,1).

0 0 0

0 1 0 0

k, k,

1-(1-c) -L 0 (1-c) -L 0

k, k,

L 0
1-(1-c) -L (1-c) "L

1 0 0 0

1-(1-c)
k
2 (1-c)

k
2 0 0

0 0

0 0

1

1-(1-c)
k

0

(1-c)

k,

[1-(1-c)]
k
J11-(1-c)

2
1, [l-(1-c)

kl
](1-c)

k
2

[1-(1-c)

k2](1-0
k
1)

k
1
+k

Response probabilities can be easily determined using Eq. (4.11) and the

response rules of Eq. (5.2). Constructing an experiment by varying the

presentation order of the S
1

and S
2

stimuli would provide a strong

test for the mixed model.

Next we consider a Bernoulli presentation schedule with g o Pr(S1).

To use Theorem 4.2, we first compute Arc The result is



(5.7) A

1 0 0 0

(l-g)c l-(l-g)c 0 0

gc 0 .1-gc 0

0 Ito (1-10C (1-0

Now we use Theorem 4.2 to determine En(51/41). The result is

(5.8) = (0,0,0,1).

E (5) ) = 5)AN
N+1 1 g

[

. 1 0 0 0

1-[1-(1-1 c3N [1-0g)c? o 0

1-(1-gc)N 0 (1-g0)N 0

1-1-(1...c)N [1-(1-70c3N (1-goN (1-0K

-1

= (1-1-(1-c)N- [1-(lng)c]N-C1-gc]N, [1-(1-g)c]N- (1-c)N,

(l-gc)N- (1-c)N, (1-c)N) .

Response probabilities are easily determined using Eq. (5.2).

The tie-in to Atkinson and Estes' analysis comes from noting thtt

for It = 1/2 Eq. (5.8) reduces to the matrix in Eq. (5.1); i.e., Ai.

is Eq. (5.1). Theorem 4.2 provides a justification for considering powers

of this matrix to get state probabilities under the it = 1/2 Bernoulli

presentation schedule. Atkinson and Estes' choice of a single matrix

determines the unit of analysis for the miniature list to be the error-

success process on the pair. From this they are able to show that per-

formance prior to the last error on the pair falls in the interval
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(1/2, 5/8). This is because the stimulus not responsible for the last

error can either be learned or not prior to the last error on its part-

ner. Then the response rules specify the end points of the above inter-

val.

The method of analysis proposed in this paper has the advantage

that the items ab and be can be analyzed separately. One consequence

is that the probability of an error response prior to the last error on

a particular item will be an increasing function of the trial index;

i.e.. if n indexes the presentations of ab, Pr(xn = 11L > n) is an

increasing function from a value of 1/2 to 3/4. This is because the

mixed model assumes that learning the patterns takes place independently

so, as n increases, the probability that bc is learned increases with

consequent negative transfer to ab. This result comes from the analysis

in this paper by noting that, under the Bernoulli presentation schedule

with it = Pr(ab),

(5.9)

Pr(c=(U,L))
Pr(? (1401;1= u) -

N Pr(c.=(U,U))+Pr(;=(U,L))

(1..g0N-1- (1-0N-1

(1 -ate x-1

where the appropriate probabilities from pl in Eq. (508) are in-
itt

serted into Eq. (5.9). Eq. (5.9) tends to 1 as N increases. Since

L
ab

> N (last error on ab > N) implies

N 6 ((U U) (U L).)

4

the assertion of the preceding paragraph follows.
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Finally, the generalization from g = 1/2 to g e (0,1) permits

an additional powerful test of the model. Depending on the value of c,

the probability of a correct response to item be could even decrease

for large values of the parameter 7t. Using the response probabilities

from Eq. (5.2) and Eq. (5.8) yields

Pr(A2INialS2INia) = 1.(1-[1-(1-g)c]N) + 4([1-(1-g)c]N (1-c)N]

(1-C)N2

I

3= 1 - 7 [1-(1-n )c]
N

+ (1-c)N

The preceding remark can be illustrated by plotting Pr(A2NIS2N ) for

g = .95 and c = .5. This is shown in Fig. 5.1.

.9

"14

.1

I J J. I I

1 2 3 4 5 6 7 8 9 lo 11

Trials (N) on Pair

Fig. 5.1. Probability of correct to S2 for mixed model,
g = .95, c = .500
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This concludes the section on the applicability of the framework

to the mixed model. Of course the framework could be used to get results

for other miniature lists. To recapitulate the advantages of applying

the framework to the analysis of the mixed model, we first note that

properties of the model such as commutativity are utilized by the frame-

work (Eq. (5.6)). Second, results from a generalized (It A 1/2) Ber-

noulli presentation schedule fall directly from Theorem 4.2 (Eq. (5.8)).

And finally, statistics involving response probabilities to a particular

stimulus (S
1

or S
2

) are easily obtained (Eqs. (5.9) and (5.10)).

Of course these results could be obtained without recourse to the frame-

work, but the compatibility of the framework and the model suggests that

there are dividends to be gained by an axiomatization of a model in

terms of Definition 4.3. Next, we turn to Ln analysis of the all-or-none

multi-level model for M = 2.

The All-or-none Multi-level Model (M = 2)

Assume a list of pairs of related items for which related pairs are

assigned the same response. For example,

Stimulus Response

ABC 1

ADE 1

FGH

FLY

2

2



might be such a list with three sublists of size 2 fitting the above

criterion. In Chapter 3, the all-or-none multi-level model for learning

such a list was axiomatized. The analyses of the model in Chapter 3

were restricted either to general theorems (Theorems 3.1, 3.2, 3.3) or

to the special case where c = r (Table 3.2). In this section a fur-

ther analysis of the model in terms of the framework will be presented.

For the all-or-none multi-level model (M = 2) we have T
I

= (U,P,R),

0= T x T, and 2/ = (U,R), (R,U), (P,R), (RIP)), where is the

set of null states (Definition 4.8). Thus, the state space for the

analysis is q7 =r- = ((U,U), (UIP), (PIU), (P,P), (R,R)).

(WiliP2) , where

(R,R) (PIP) (PIU) (UIP) (U,U)

(R;R)

(P,P)

1

c

0

1-c

0

0

0

0

0

0

(5.11) Wi = (P,U) c 0 1-c 0 0

(U, P) r 0. 0 1-r-p 0

(U,U) r 0 p 0 1-r-p

and

(R,R) (PIP) (PIU) (u,P) (U,U)

',011

(R,R) 1 0 0 0 0

(5.12) (P,P) c 1-c 0 0 0

IPA = (P,U) r p 1-r-p 0 0

(U,P) c 0 0 1-c 0

(U,U) r 0 0 p 1-r-p
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It should be noted that the preceding state space and matrices really

apply to the sublists consisting of pairs of related items, i.e., 004,

the levels partition of Aff, consists of two-item equivalence classes

(Theorem 4.4). For example, the levels partition for the six-item list

on p. 98 is

(tABC,ADE1, [FGHIFIJ), (KLMIKNO)) .

The response rule asserts that responses to items in state U are

correct with probability g and incorrect with probability 1 - g;

whereas, responses to items in states P and R are always correct.

Finally, the start vector PI = (010,0,0,1).

The model, 07, is commutative in the sense of Definition 1..7. This

fact can be seen by noting

(5.13) Pl.P
2

= IP
2
01'1

1 0 0 0 0

1-(1-c)2 (1-c)2 0 0 0

c +(1-c)r p(1-c) (1-c)(1-r-p) 0 0

c +(1-r)r p(1-c) 0 (1-c)(1-r-p) 0

r(2-r) P2 p(1-r-p) p(1-r-p) (1-r-p)
2

Now to apply Theorem 4.3, let us assume k1 S1 and k2 S2 presenta-

tions for the first N trials on a related pair of items (S1S2), for

k
1

+ k2 = N. Then

(5.14)

0) 0) 0)
Pr(A11N+11S1,N+1) 1EPN+1 PN+1 PN+13

0) -(1)

6LPN+1 PN+l i
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N +1
where p

N
-0+1 is the probability of being in state i on trial N + 1

after the specified S1 and S2 presentations (we are assigning numbers

to states as follows: 1-(R,R), 2-(PIP), 3-(P,U), 4-(U,P), 5-(U,U)).

Now by Theorem L..3

(5.15)

where

and

k, k,

p1Pi "-'1D2

(010,0,1).

*am.

1

k
1-(1-c) J.

1-(1-c)
k

j"

B
1

B
1

1

1-(1-c)
k2

B
2

kn

B
2

0

lc,

(1-c) -L

0

Al

0

0

(1-c)

k2

A
2

0

0

0

0

(1-c)

kJ.

0

Al

0

0

k2
(1-r-p)

0

0

0

0

0

k
(1-r-p)

0

0

0

0

kn

(1-c)

A
2

11,

0

0

0

0

k
(1-r-p)

CIMINO

110Mr

0

0

0

0

k
(1-r-p)

k
= (B +A_B ) + (1-r-p) '33 AA A(1 r-p 2,A f

1-r-p 1,
1 -1 2 2' 1 2' /1 2

kj-1 k1
A = P ((l-c) (1-r-p) ),
i r+p-c

ki

B = 1 - A - (1-r-p) .
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The appropriate 4)1 terms in Eq. (5.15) can be substituted into

Eq. (5.13) to obtain response probabilities as a function of k1, k2,
2' c'

p, r. An experiment in which the presentation orders of the S
1

and S
2

items are varied in position and in number should provide a strong test

for the all-or-none multi-level model.

Next, suppose a Bernoulli presentation schedule (Definition 4.6 )

with it = Pr(S
1
). Then from Theorem 4,2,

(5.16) Alt

1 0

1-c

gc+(l-g)r (1 -n )p

gr+(1-70c icp

r 0

0 0 0

0 0 0

g(1-c)
+ 0 0

(1-0(1-r-p)
g(1-r-p)

0 + 0

(1-g)(1-c)

gp (1-g )p 1-r-p

A
n

could be raised to the N
th power to get state and response proba-

bilities for trial N. The result will not be presented here,

The all-or-none multi-level model is a symmetric model (Definition

4.11). Hence, Theorem 4.5 can be used to lump Al into the states

T1 = ((R,R)), T2 = ((P,P)), T3 = 1.(P,U), (U,P)i, T4 = ((U,U)). The

result is

(5.17)

T1 T2 T3

T1 1 0 0 0

c 1-c 0 0

Al
2 T

3
(r +c) 2p r c+p) 0

T
4

r 0 p 1-r-p
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The response probabilities for this chain are as follows:

(5.18) Fr(xN = OlTi)

for T
1

and T
2

for T
3

for T .

Since T
1

and T
2

are both perfect performance states in Al,
IF

there is a simpler equivalent three-state model. This is given by

W
1

W
2

w3 Pr(x
n

= *ow state)
-

w
1

1 0 0 1

(5.19) AI = W
2Y

W
3

i(r+c+p) 1-4(r+c+p) 0 -i(l+g)

r p 1-r-p g )

...., .....

where Wi = (T.1,T2), W2 = (T3) , W3 = (T4). Ai is a two-stage model

(cf. Bower and Theois, 1964). Analysis is facilitated by expanding W2

into an error and a success state (see p. 88, Chapter 4).

Al represents the three-state stochastic matrix that corresponds
2

to the stochastic model govening the error-success process on the item

pair for a Bernoulli presentation schedule with it = 1/2, i.e., each

error-success protocol for the pair of items, Sl, S2, is a sample path

from this process. Thus AI represents a particular stochastic process

derived from the all-or-none multi-level model under the boundary con-

ditions of g = 1/2 and the level of analy-1G chosen as the pair of

items. Without dwelling on the point, there is a sense in which the

framework provides a method for axiomatizing a theory for list learning

in such a way that a particular model can be derived in accord with the
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boundary conditions of the experiment. This property is a feature of

theories in physics, e.g., Newtonian mechanics.

An additional point can be made about a model viewed in terms of the

framework. The question of whether a theory is identifiable in the sense

of Greeno and Steiner (1964) can not be answered, as such, by models in

the framework. The Green°, Steiner analysis concerns the identifiability

of a model for a particular presentation schedule and a particular level

of analysis. Thus, a derivation, such as the model represented in

Eq. (5019) for the pair of items, provides a stochastic process (or mod-

el) which might or might not be identifiable in the sense of Greeno and

Steiner. However, some additional development of the theory of identi-

fiability is needed to apply it to a particular model, 24)= (471tPlon.

No attempt to extend identifiability In the indicated direction is pre-

sented in this paper.

Similar techniques can be used to handle the anticipation procedure.

On any cycle, either the presentation order S
1
S
2

or the order S
2
S
1

is presented to the subject, Since the model is commutative, the effec-

tive matrix of transition probabilities for any cycle is given by Eq. (5.13).

Since (R,R) and (P,P) are perfect performance states, the effective

matrix on a cycle is lumpable to

T
1

T
2 3

T
2

1-(1-c)2 (1-c)2 0 0

T1 1 0 0 0

=

c9-(1-c)r p(1-c) (1-c)(l -r -p) 0

r(2-r) P
2

2p(1-r-p) (1-r-p) 2

(5.20) p

where T
1 T2,

T

are defined in Eq. (5.17), This stochastic matrix
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represents the model for the analysis of the error-success subsequences

associated with whichever item appears first in a cycle. Thus, if s

is an error-success sequence for the item pair in an anticipation proce-

dure, the subsequence corresponding to the even terms in s is an error-

success sequence for the model in (5.20). The response probabilities,

given state T., are presented in Eq. (5.18).

In a similar manner to the way in which Eq. (5.19) represents an

equivalent model to Eq. 15.l7), a three-state equivalent model (with

states Wili=1 2,3) to Eq. (5.20) can be derived. The result is

W1 W2

w
1

1 0

V = W
2

(r +p)(l -c) +c (l- c)(l -r -p)

% 2
W
3

r(2-r)+p 2p(1-r-p)

w
3

0

0

(l -r-p)2 .

NM.

Computations for this model would proceed similarly to those for the

model in Eq. (5.19).5 The point of interest is that the models in Eqs.

(5.19) and (5.21) are different models. Each is relevant to a different

presentation procedure and each applies to a different level of analysis,

however, both are derived from the all-or-none multi-level model. Next,

we present a slight modification of the all-or-none multi-level model

and indicate the direction of an analysis of this model in terms of the

framework.

5/ It should be reiterated that models derived from Theorem 4.5 generally

have differeatial probabilities of learning following errors and successes

in a particular lumped state. This model is no exception. Analysis is

facilitated by expanding (5.21) into a W2 error state and a W2 suc-

cess state.
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Another Version of the All-or-none Multi-level Model

Thus far, we have reported an example where response probability to

an item depends on the states of other items in the list, and an example

where items other than the one presented can change their states. For

completeness we mention an extension of the all-or-none multi-level model

which displays the third type of dependency discussed, namely, the tran-

sition probabilities for items may depend on the state of a particular

unpresented item.

Except for one modification, the model assumes the same structure

as the all-or-none multi-level model (M = 2). The probability of rule

learning is assumed to be c for any item presented, provided there is

at least one item in the list not in state otherwise it is assumed

to be

(5.22)

and

(5.23)

r. For M = 2 the two members of

(RIR) (P,P)

are displayed below

(PIU) (UIP) (U,U)r
(R,I1) 1 o 0 0 0

(P,P) c 1-c 0 0 0

P = (Flu) c 0 1-c 0 0

(u1P) c p 0 1-c-p 0

(ulu) r 0 p 0 1-r-p

(RIR) 1 0 0 0 0

(P/P) c 1-c 0 0 0

P
2

= (P,U) c p 1-c-p 0 0

(UIP) c 0 0 1. -c 0

(U,U) r 0 0 p ] -r-p 0
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This model has a sort of proactive feature to it in the sense

that previous presentations of other items can affect the probabili-

ties of rule learning to a particular item. The model is not

commutative model. For M = 2, this is shown by computin6 P1P2

and P2.1P1. The result is

(R,R) 1 0 0 0 0

(PIP ) l-(l-c)2 (1-c)2 0 0 0

(5.2)P11P2 = (P,U) 1-(l-c)2 p(l -c) (l- c)(l -c -p) 0 0

(u,P) 1-(l-c)2 p(l -c) 0 (l-c)(1-c-p) 0

and

(U1U) l-(1-r)2

[

p2
p(l -c -r) p(1-r-p) (l-r-p)2

p(c-r)

(RA)

(PIP)

(5.25)P2Pi = (P,U)

(u,P)

(u,u)

1 0 0 0 0

1-(l-c)2 (1-c)2 0 0 0

1-(1-c)2 p(l -c) (1-c)(1-c-p) 0 0

1-(1-02 p(1-n) 0 (1- c)(i -c -p) 0

l- (1-r)2 p(1 -r-p) p(1-c-p) (1-r-p)2

p(c-r)

107



These two matrices differ in their (5,3) and (5,4) terms,

This model, in miniature form, embodies some of the ideas currently

being worked on by G. Groen and L. Hyman (personal communication). They

are investigating the assumption that the probability a concept is learned

on any trial depends on the number of items in the list that have been

learned as paired associates- The above model reflects these considera-

tions by setting the concept learning parameter equal to one value if no

items have been learned as paired associates and a second value if any items

have been so learned, Further analysis of this model will not be pre-

sented in this paper. With the exception of the lack of commutativity,

the analysis would proceed along the same lines as the all-or-none multi-

level model, Next we turn to an analysis of Restle's strategy-selection

theory within the framework of Chapter 4,

Strategy Selection Theory

Restle's strategy-selection theory (Restle, 1962, 1964; Poison,

Restle, Polson, 1965) has been mentioned in Chapter 4, p )44 and p. 65

In this section we present one possible interpretation of his theory in

terms of the framework, As will be seen, there are two reasons why his

theory is an attractive one to analyze by our methods, The first is

that it provides a complement to the all-or-none multi-level model. The

multi-level model has the property that similar stimuli are paired with

the same response; whereas, in strategy-selection applications, similar

stimuli are paired with different responses. Thus, stimulus confusion

facilitates performance in the former situation and hinders it in the

latter. The second attraction to analyzing Restle's theory in terms of

the framework comes from noting that in .Restle's applications of his
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theory several approximations are made (Restle, 1964, pp. 132-144; Poison,

Restle, Poison, 1965). Restle is aware of these approximations and even

suggests that a completely accurate analysis of his theory would require

a complicated Markov chain analysis involving the whole set of confusable

items and different transition matrices for different items (Restle, 1964,

pp. 168-171). The method of dealing with dependent items (in this case

confusable ones) in the framework appears to be similar to the method of

analysis Restle had in mind.

Restle applies strategy-selection theory to a number of experiments.

In applications, the theory takes the form of a finite state Markov chain.

The intermediate states of the model involve stimulus confusion or re-

sponse confusion. Since many of his applications are similar, the main

points of this section can be made in the context of the Polson, Restle,

Polson (1965) experiment. Next, we turn to a description of the experi-

ment and model reported in that paper.

In the experiment, college students learned a 16-item paired-

associate list with 5 response alternatives by the anticipation procedure.

The stimuli were symbols such as a chess knight, a question mark, and

musical notes. The responses were common four-letter words. The major

manipulation was that 8 of the items were highly dissimilar; whereas,

the other 8 items consisted of 4 highly-confusable pairs, e.g., two very

similar Chinese words. Confusable stimuli were assigned different re-

sponses.

The model assumed by Polson, Restle, and Poison had the property

that unique (non-coufusable) S-R pairs would be learnea by a two-stage

all-or-none model (the one-element P-level model); whereas, the confusable
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twin items would be learned by a three-stage model, The intermediate

stage was a stimulus confusion stage. More specifically, the model for

confusable pairs assumes three states, S
0'

S
I'

S
L'

where S
0

is an

initial unlearned state with correct responses emitted with probability

p, S
I

is an intermediate confusion state where correct responses are

made with probability P and confusion responses (incorrect responses

which would be correct for the twin) with probability Q, and SL is a

final learned state. The transition matrix for the model is as follows

(5.26)

S
L n

S
I,n

S
O nl_

SL
+1

1

Qd

cd

Iln+1

0

1-Qd

c(1-d)

01111

0 1

0

1-c

Pr(correctlrow state)

1

P

p

where it is understood that transitions take place from S
I

to S

only on confusion errors, Thus, c is the probability any strategy is

selected to an item in state S0, and d is the probability a selected

strategy is not a confusion one, Resampling of strategies is assumed to

take place only on errors> The model in Eq. (5.26) is assumed to govern

the learning of a single confusable item, Le-, the model was applied to

a P-level analysis of twinned items in the Poison, Restle, Poison paper.

There are several reason why Eq. (5,26) does not adequately embody

some features of strategy-selection theory, To see these reasons, it

will be helpful to rewrite the model by expanding the intermediate S1

state into an intermediate error state, SI, and an intermediate success

state, S.S The result is
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(5.27)

S
L

SI SI SO Pr(correctlrow state)
11.11== OMNI.

SL 1 0 0 0 1

SI d (1-d)Q (1-d)P 0 0

S
I

0 Q P 0 1

so cd c(1 d)Q c(1-d)P 1-c p
ARNIM

dmwor

Strategy-selection theory postulates that once a strategy has been sam-

pled, resampling occurs only on an error. Careful analysis reveals that

Eq. (5.27) does not represent this assumption in a way that keeps harmony

with the theory. To see this point, let Sl and S2 denote a pair of

confusable stimuli. Suppose a confusion strategy, hl, is learned when

S
1

appears. By its nature h
1

will produce correct responses to S
1

and errors to 52.
6

Since h
1

was learned when S
1

appeared, the sub-

ject is now in state S
I

for item S however, only on a trial when

S
2

appears, h
1

is tried with an error, and resampling occurs, will a

transition take place from SI. The error that causes rejection of hl

does not take place on a trial when Si is presented but on a trial when

S
2

appears. But (5.27) assumes that each subject-item protocol is a

sample path from this learning-only-on-errors model. The error that

causes learning is not in the protocol for Si; and, thus, learning can

take place following a success to S1 if an intermediate S2 item

causes rejection of the confusion strategy learned when S1 was pre-

] viously presented.

ti The reader who doubts that cur treatment of strategy-selection is a

fair interpretation is referred to Restle (1964), pp. 126-127. Actually,

it is this stimulus-specific interpretation of strategy sampling that

this writer finds so attractive about Restle's theory.
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A possible way to rectify the state of affairs might be to use the

model represented in Eq. (5027) to account for the error-success process

on the pair (S1,S2), i.e., the level of analysis for which pairs of

items are the units. Restle (1964, p. 123) suggests this by arguing that

when stimulus generalization is considered, tithe unit of analysis must be

the subset of related items as learned by a single subjecc." If the unit

of analysis for Eq. (5.27) is the item pair, the learning-only-on-errors

assumption is no longer in question, However, suppose hi is learned on

a trial when S
1

appears and is rejected when S
2

appears in favor of

a strategy which is unique to S2. What strategy now covers Sl? The

answer is that Si is thrust back to the unlearned state, SO, but this

has zero probability in Eq. (5.27). Poison, Restle, Poison (1965, p. 54)

point out this possibility and even note properties of the data to indi-

cate that such events did happen in their experiment.

One resolution to these problems would be to change the transition

probabilities in Eq. (5,27). This solution seems not to be desirable

since the model already fails to reflect the nature of the intra-pair

dependencies postulated by strategy-selection theory, A better resolution

would be to attempt to embody these dependencies in a multi-level model

written in terms of the framework, This direction is very definitely

suggested by Restle (1964, pp, 168-171). One possible model embodying

strategy-selection assumptions for the Poison, Restle, Poison experiment

is presented next.

Suppose the item state space, Tv is 1,U,C1,C2LI, where U is

an unlearned state, Ci is a state where a confusion strategy requiring

response i is held (for i = 1,2), and L is a learned state, After
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removing null states, the state space for the list is as follows:

of = ((U,U), (Ci,C1), (C2,C2), (U,L), (L,L)) .

consists of two matrices, ff
'1

and IP
2'

they are as follows

(L,L) (L,U) (U,L) (C2,C2) (C1,C1) (U,U)

(L,L)

(L,u)

(5.28) Pl = (u)1.1)

(c2,c2)

(cilci)

(u,u)

and

(L,L)

(L,u)

(u,L)

(5.29) P2

(c
2,

c
2

)

(C1,C1)

(U,U)

.010.1

1

0

0

0

0
1

(L,L)

1

C

0

0

0

0

1 0 0 0 0

0 1-c 0 0 0

d 0 0 1-d 0

0 0 0 1 0

cd 0 0 c(1-d) (1-c)

(L,u) (u,L) (c2,c2) (c1,c1) (Tu)

0 0 0 0 0

1-c 0 0 C 0

0 1 0

0 0 1

0 d 1-d

0 cd c(l -d)

0 0

0 0

0 0

0 1-c

where the following special assumptions have been made: (1) If an item is

presented and a confusion strategy is learned, it applies equally to both

items if they were previously unlearned, (2) if one item is learned and

the other is not, any strategy learned on a trial when the unlearned item

is presented is sufficient to move the pair into state (L,L), and (3) on
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an error trial to a confusion strategy, only the presented item can be

learned and, if so, its twin goes to state U. These assumptions appear

to be in the spirit of strategy-selection theory but, by no means, rep-

resent the only wny strategy-selection theory could be formalized in

terms of the framework. The response rule, 491 would specify that items

in U would be responded to correctly with probability p, in L with

probability 1, and in state C.C. the response correct for Si is

always made.

= Plc
4°,) is not a commutative model, since P

1
4)
2

/ IP
2

11=

The results of the matrix multiplications are as follows

(5.30)

(5.31)

1

c

C

0

1-c

0

0

0

1-c

0 0

0 0

0 0

Pl.r
d(1-c) d(1-d) (1-d)2 0

0 0 d 1-d 0

cd(1-c) cd(2-d-c) (1-d)c(2-c-d) 0

1 0 0 0 0

c 1-c 0 0 0

c 0 1-c 0 0

P2 WI =

0 d 0 0 1-d

ed

c-9d

(1-d)d

cd(2-c-d)

d(1-c)

cd(1-c)

0 (1-02

0 c(1-d)(2-c-d)

0

0

0

0

0

(1-c)2

0

0

0

0

o

(1-c)2

The anticipation procedure requires that the two possible orders of pre-

sentation, S1S2 and S2S1, are equally likely, In order to apply
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Theorem 4.2 we compute the average effective matrix, A, on a cycle

(see Theorem 11.2). The result is

(5.32) A = 2 wi-P2 + I F'2.[Pl

(L,L) (L,U)

1J,L) 1 0

(LIU) c 1-c

(U,L) c C

(U,L) (02,02)

0 0

0 0

1-c 0

cd d(2-c) d(l -d) (1-d)2 11221(02,02)
2 2 2 2 2 0

cd d(l -d) d(2-c) ILL (1-d)2
(01,01)

2 2 2 2 2
0

2.1/,... % cd,..... % c(1-d)(2-c-d) a(l:1)12:1:11
(U,U) c

2
d 0 2c-d) --0 2c-d) (1-c)

2

2 2 2 2

Since 2/ is a symmetric model, Theorem 4.5 can be used to lump A

to a four-state matrix with states Ti = ((L,L)), T2 = C(L,U), (U,L)),

T3 = ((02,02), (C1,01)), Th. = ((u,U)). The result is

(5.33)

T
1

T
3

T
4

T1

1

C

c
2d

T2 T3

0

Th.

0 0

1-c 0

4(3-c-d) (1-d) (2-d)

2

0

0

cd(3-2c-d) c(1-d)(2-c-d) (1-c)2
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The probability of correct given state Ti is as follows:

(5.34) Pr(xN = OITI)

1 if T
1

11-(1+g) if T
2

2 if T
3

g if T ,

The model represented by Eqs, (5,33), (5.34) would apply to the

error-success sequences on items S1 or S2, which appear first on

each cycle (see p.105 of this chapter for a further description of this

level of analysis). This is because between two successive first ap-

pearances, each of the matrices, P1.P2 or P2 .1P1, is equally likely

to be effective. Restle assumes items start in state U, so 51 =

(0,010,1) for this model. Since the data for first-appearing items is

not presented in Poison, Restle, Poison, no attempt will be made to

present statistics for this model. It should yield to hand computations

of some statistics, or it could be analyzed by computer, using Bernbach's

(1966) scheme. Intuition suggests that the pattern of predictions for

this model should conform as well or better to data as the model pre-

sented in Poison, Restle, Poison There are two reasons for this in-

tuition: (1) items can drop from a confusion state to state U, and

there are indications in the data that this happened, and (2) the model

is an average of a convw.ution of two geometric distributions and a

convolution of three geometric distributions. Since a convolution of

two geometries does not do badly, it is unlikely that the addition of

another stage will hurt prediction. The case is not, however, entirely

transparent.
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The model for the error-success process on the second-appearing

item in a cycle is slightly more complicated. This is because this item

is always different from the item associated with the last effective

matrix, i.e., if S
2

appears second on some cycle, then fp
1

, corres-

ponding to S
1,

which appeared first, is the last effective matrix.

If one uses the average matrix, AL, as in Eq. (5.33), it is assumed

not only that plp2 and P2P1 are equally likely, but also that Si

and S
2

appear equally likely and independent of whether P
1
tp
2

or

r
2
ip
1

was effective. This assumption is violated for second-appearing

items but not for first-appearing items on a cycle. There are several

ways second-appearing items can be handled, but the details will not be

presented here. One way would be to consider the arrangements IP2
S
1

and IP
12
IF 52' which are the two possibilities for effective matrix and

item-presentation for second-appearing items° By incorporating the

presented item into the state space (e.g., a state might be (U,L,S1)),

a model for second-appearing items could be derived.

Additional results and statistics for different presentation

schedules and levels of analysis could be presented for strategy-selec-

tion theory as interpretated by the framework. These will not be pre-

sented in this paper. It is hoped that this section has indicated the

direction that a mathematical theory for confusion processes in list

learning might take. This section concludes our analysis of models in

terms of the framework. We have seen how the theorems of Chapter 4 can

be applied to a variety of multi-level models embodying various sorts of

item dependencies. The net value of the framework depends entirely on

its ability to generate new and tractable tests for learning models.
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CHAPTER 6

EXPERIMENTS AND CONCLUSIONS

In the first part of this chapter we will discuss two experiments

that the writer has conducted to generate some data relevant to the ideas

and methods of analyses discussed in Chapters 2 and 3. Since these

experiments represent only the start of a program to pursue experimentally

the ideas in those chapters, their presentation has been postponed to

this last chapter, which is designed to indicate plans for developing

and extending the ideas in this paper, In the last part of the chapter

we will indicate briefly some general directions that research motivated

by the ideas in Chapters 4 and 5 might take.

Experiments

Before presenting the two experiments, it will be useful to describe

the general paradigm that governs the design of both The paradigm in-

volves list learning. The stimulus terms are composed of recognizable

components with some number N of these components per stimulus (in

the experiments to be reported, N = 3), There are fewer response terms

than stimulus terms, and hence, more than one stimulus is paired with

each response.

Some of the components making up a stimulus are unique in the sense

that they only appear as components of that stimulus, whereas other com-

ponents are shared by more than one stimulus. The major manipulation in

the paradigm is to construct stimuli and assign responses in such a way

that all stimuli sharing any component (or components) are paired with

the same response. Thus, shared ("overlap") components should aid the
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subject in the sense that they will never lead him astray in his responses,

i.e., if the subject pairs a certain component x to response A and

hence says response A to any stimulus having component x, he will

always be correct. The following is a possible structure of a typical

list used in the experiments to be reported:

Stimulus Response

Carl Stan Eric 1

Carl Dave Robert 1

Carl George Jim 1

Jack Bill Bob 1

Jerry Dick Pat 3

Jerry Frank Louis 3

Jerry Mike Guy 3

Tom Harry Glen 3

etc.

It should be noted that the only overlap components are Carl and. Jerry;

and, further, if the subject pairs any component with a number response,

he will get the stimulus having that component correct as well as any

other stimulus (if any) sharing that component.

The list structure for this paradigm is similar to that frequently

employed to study concept identification (eng., Atkinson, Bower, and

Crothers, 1965, p. 31); however, there is one essential difference in

the two paradigms. This difference is that overlap components in a con-

cept identification task are not always facilitative; that is, two otim-

uli can share a component and yet be assigned different responses, Our
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paradigm is even more different from that employed by Poison, Restle, and

Pols,on (1965) to study confusion processes in paired-associate learning.

In their study, stimuli sharing common components were always assigned

different responses (see pp. 109-210 for a aiscussion of their paradigm).

By using the paradigm described in this chapter, it was hoped that

positive inter-item transfer within the list would result from the facil-

itative nature of the overlap components. As will be seen, this expec-

tancy was borne out in the data. Addi4.4,'71a1 motivations for the experi-

ments were to gather data relevant to the levels analyses discussed in

Chapter 2 and possibly to fit the all-or-none multi-level model to these

data. However, only some of these latter expectancies materialized.

Next, we turn to a discussion of the two experiments.

Experiment I

Method

Subjects.--The Ss were 15 male and female undergraduate and non-

psychology graduate students at Stanford University. Each S was paid

$1.50 for his participation in the experiment. The data for all Ss were

used.. The initial plan was to run 50 Ss in the experiment; however,

the task proved so easy that only certain statistics, requiring many less

than 50 Ss for stability, were usable.

Apparatus and Materials --Subjects were run one
at a time Presen-

tation was by hand. The E sat facing the S behind a 1 x 2 ft. screen

and placed 3 x 5 inch cards on a 3 x 8 inch metal card rack situated to

the E's right of the screen.

The materials consisted of three decks of twelve stimulus cards.
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Each card in the experiment was composed of three component words arranged

it a triangular fashion on a card, i.e., if xly,z were the three com-

ponents, a typical arrangement on a card might be

The responses for a particular deck were either the numbers (3,5,7,9)

cr the numbers (2,4,6,8).

The twelve stimulus cards in each deck were partitioned into four

sets of three stimuli per set. Each set zas assigned to a different one

of the four response numbers. Each set of three stimuli in the experi-

ment had one of the following three structures: (1) all three stimuli

shared exactly one common component word, (2) two of the three stimuli

shared a common component word, and (3) none of the stimuli shared a

component word. Denote these three structures by C3, C2, and Co,

respectively. With the exception of the overlap components possible in

a C
3

or C
2

structure, all other components for a particular deck were

unique, i.e., appeared only on a single stimulus.

Deck (list) one consisted of animal names as the components, e.g.

toad, mole, badger, and consisted of 2 C3 and 2 Co sets. Lists two

and three had the following structure. One of the lists had a 2 03,

1
2'

1 C
0

structure, and the other list had a 1 C
3

, 2 C
2'

1 CO

structure. The components for a particular one of these lists were either

all common, short, boys' first names, e.g., Jim, Bill, Dick, or common,

short, girls' first names, e.g., Patty, Ann, Margie° Each of the two orders

Or presenting the two lists was given to half the Ss,
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Procedure.--Each S received training trials on each of the three

lists, Presentation was by the paired-associate anticipation method.

The inter-item interval was short, with a mean of about 1 sec. (range

about n5 to 1.5 sec.), The break between cycles (randomizations) was

noticeable and about 5 sec., and the break between lists was about 2

minutes. For the first list. Ss were run either to a criterion of one

errorless cycle through the list or 8 complete cycles -- whichever occurred

first; however, for lists II and III, they were run to a criterion of

two errorless cycles. Upon the presentation of a particular stimulus

card, the S, at his leisure, gave orally one of the four number re-

sponses; immediately thereafter the E told him the correct number for

that stimulus.

The arrangement of components on a card was counterbalanced, both

for a single S and from S to S. Within a given cycle through the

list, an overlap component never appeared twice in the same position (this

was accomplished by having three randomizations of each list available

to the E)0 Finally, to further minimize recognition of the overlap

components, presentation orders were arranged in such a way that two

stimuli sharing a common component never appeared adjacent in a cycle.

Ss were given brief paired-associate instructions and were told that

the spatial arrangement of a particular set of component words on a card

might change from cycle to cycle, Following the third list the S was

given a paper and pencil task to see how many of the component-number

pairings he could remember. The S was required to fill n response

number in the blank opposite each component word,
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Results and Discussion

This section will present results for List I (2 C
3

and 2 C
0

sets)

first, followed by the analysis of Lists II and III. The major results

for List I c...n 1::e seen from a P-level analysis of the data using some

of the statistics discussed in Chapter 2 (see pp. 16-18). By way of

preview, these statistics are as follows (1) the learning curve,

Pr(x
n

= 1); (2) the mean total errors, E(T), and the mean trial number

of the last error, E(L); and the probability distributions of these two

statistics; and (3) the probability of an error prior to the last error,

Pr(x
n

= 1IL > n), and the probability of an error given error curve,

Pr(xnrl =
n

= 1). These three classes of statistics are presented for

the C
3

stimulus sets and C
0

stimulus sets separately. Figure 6.1

presents Pr(xn = 1), Table 6.1 presents E(T) and E(L), Fig. 6.2

presents the distributions of T and L; and Figs. 6.3, 6.4 present

Pr(xn.1.1 = 1!xn = 1) and Pr(xn = 1IL > n). It should be reiterated that

these statistics are computed for a P-level analysis.

First, it is quite evident from the learning curve (Fig. 6.1) and

from the mean total errors and mean trial number of the last error (Table

6.1) that C. stimuli (stimuli with an overlap component) were learned

more rapidly than Co stimuli. Also, there is evidence that the process

governing C
3

learning produced qualitatively different data from the

data for Co. In Fig. 6.1, the C3 learning curve is not badly fit by

an exponential function; however, the learning curve for Co stimuli is

more S-shaped. This difference could reflect the fact that Ss learned

to recognize and attend to the overlap components to the detrlment

stimuli in C
0

sets not having these components. A qualitative difference
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Table 6.1 Mean Total Errors, E(T),

and Mean Trial Number of Last

Error, E(L), for and C
0

(List 1)
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in the data for C
3

and C
0

is also seen in the total error and trial

number of the last error distributions (Fig. 6.2). The C
3

distribution

appears somewhat geometric, although limited data prevent a sharp reso-

lution of this point, On the other tirid, the Co distributlons are

definitely not geometric.

Thus fax, it appears that for 0
we can reject the one-element

P or R level model and also the all-or-none multi-level model, since

these models all predict exponential learAing curves and geometric T

and L distributions for the P-level of data analysis (see Tables 2.1

and 3,2, p. 18 and pc 39 , respectively), Moreover, the Pr(xn = 111, > n)

and Pr(x
n41

= ilx
n

= 1) curves (Figs. 6,3 and 604) make it unlikely

that any of these three models could account for C7 data, Both curves

tend to decrease over trials, whereas al1 three models predict that they

should be flat. Thus, it appears that processes more complicated than

all-or-none P and R level mechanisms are needed to account for the

data from List I.

The picture becomes more complicated in light of the R-level

analyses, None of these analyses (which will not be given in detail here)

revealed anything approaching a significant tendency for R-level learn-

ing (in the sense of Chapter 2) for C
3

otimulio The R-level learning

curve was essentially flat within o cycle and the P-level error-success

protocols for C3 showed no nDtable intercorrelations (see p 20 and

p. 21, Chapter 2). This lack of R-level learning could be reflected

in the rapid learning of C. stimuli. Thus the might not have had

a chance before reaching criterion to manifest signifloaut transfer

effects by these analyses, However, the diffelorce In learning rate of



C
3

and Co stimuli strongly iridicc'tes that the overlap components were

effective in cutting sown errors to C
3

stimuli.

was designed as a warm-up task for Lists and III. It

was hoped that the S would have a fair idea of the stmeture of the

stimulus classes after his Enccunter with List I, and Iv, 'd therefore

perform in a stable fashion on Lists II and III. Next, w. move to an

analysis of these two lists,

Apparently there was no significant difference in the learning

rate between Lists II and III (the numbers refer to the list the S saw

2
nd

3
rd

; the two lists are discussed on p. 121). Nor vas there any

tendency to learn the list having structure 2 C
3

, 1 C2, 1 C
0

any

faster or slower than the 1 C
3
, 2 C

2,
1 C

0
list. There was, how-

ever, a slight tendency to learn stimuli with boysinames as components

slightly slower than stimuli with girls' names. Since the component type

was randomized both for list order and list type, the data from Lists II

and III were combined for analysis despite this slight differential learn-

ing rate on component type. All C3 stimuli, all C2 stimuli sharing a

component (i.e., C2 stimuli), all C2 stimuli with all unique components

(i.e., C2 stimuli), and all Co stimuli were pooled into four classes

for a P-level analysis. These classes had 135, 90, 45, and 90 protocols

in each class, respectively.

The P-level learning curves for the four classes are presented in

Fig. 6.5 and the mean total errors and mean trial number of the last

error are presented in Table 6.2, Finally, the distribution of the total

error statistic is presented in Fig. 6.6, Learning was o rar4d for Lists

II and III that Pr(xn = 11L > n) and Pr(xn4.1 = lixn = 1) were not
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Table 6.2. Mean Total Errors, E(T), and

Mean Trial Number of Last Error, E(L),

for C
3'

C
2

C2
'

and CO (Lists II and III).

E(T)

E(L)

C
3

C
2

C2 co

1.21 1.30 1.84 1.62

1.46 1.62 2.22 2.07

11,
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sufficiently stable to warrant their inclusion. Other things being equal,

these two statistics tended to decrease over trials.

The learning curve analysis (Fig. 6.5) reveals at least two things.

First, stimuli with overlap components were learned significantly faster

than stimuli without these components. Second, learning was very rapid

in the experiment with only about 15% or less errors per trial on and

beyond trial 3. Closer analysis reveals that the C
3

and C
+
2

curves

drop faster than an exponential function during early trials. This can

be seen since the first decrement in the error probability was greater

than 50%, whereas later decrements tended to be less than 50%. The Co

and C
2

curves are more closel a PP roximated by an exponential function.

It seems possible that the overlap components were both identified and

paired with responses on the first cycle, whereas they were already iden-

tified for later cycles and possibly ignored by some Ss. Interviews

did indicate some conscious ignoring of overlap components by some Ss.

A section of the R-level learning curve to follow (Fig. 6.7) bears on

this recognition and pairing hypothesis.

The fact that learning was quite rapid for these two 12-item lists

is even more strikingly seen in Table 6.2. The mean total errors for

each class was less than two The total error distributions in Fig. 6.6

reveal that, in each of the four cases, geometric-like distributions are

obtained; however, rapid learning and small N make it difficult to

discriminate between a geometric distribution and one that just drops as

k increases. These distributions reveal the differential difficulty in

C
3

and C
+
2

vs. CO
2

and C- classes. The fact that Pr(T = 0) is

greater for C
3

than for C
+

2
might indicate more transfer from stimulus



to stimulus during cycle 1 when three stimuli share a common component as

opposed to just two. This transfer within cycle 1 is illustrated in the

R-level learning curve to be presented later (Fig. 6.7).

A comparison of the overlap classes and non-overlap classes (C.) C2
2

vs. C
0,

C2 ) both on their total error distributions (Fig. 6.6) and their

learning curves (Fig, 6.5) indicate the nature of the learning-to-learn

effects developed in the experiment. The List I data inCicate that trial

1 had little direct effect on CO stimuli, whereas trial 1 had the big-
MT

gest effect on cutting down errors to Co stimuli for Lists II and III.

Also, the Co total error distribution is definitely not geometric for

List I and apparently geometric-like for Lists II and III. These differ-

ences are attributed to the Ss' increased familiarity with the paradigm

for Lists II and III, i.e.) the S Lea!med to expect some but not all

overlap components and to use them. The post-list III recall task indi-

cated that Ss remembered the component, response pairing for 85% of the

overlap (relevant) components atid only about 35% of the irrelevant com-

ponents (corrected for guessing). Since it was necessary to learn a

minimum of 18% of the irrelevant components to master the List, this

measure indicates that not too much learning above the minimum necessary

took place,

Another difference between Lists I vs. II and III 1E, revealed by

the R-level analysis, The small number of Ss and few errors prohibit a

full R-level analysis; however, there were significantly fewer errors

made to the 3
rd.

appearing C
3

stimulus cycle than were made to the

1
st

and 2
nd

stimulus in a C3 class, ThiL;-, fact is shown in Fig. 6.7,

which presents section of the R-level learning curve corresponding to

1.34
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the first two cycles for C
3

stimuli. The large drop from R-trial 2

to R-trial 3, withoUt such a drop from trials 1 to 2, is strongly sug-

gestive of the fact that Ss only recognize the common component on its

second appearance and then hook the response to it on that trial. Other

R-level analyses, including the correlation of P-level protocols (see

p. 21), revealed no additional significant tendencies for R-level learn-

ing.

In conclusion, we have seen that a single overlap component can

result in a highly significant tendency for stimuli sharing that compo-

nent to be learned faster, Also, we have seen that the way in which

common components are utilized changes across successive lists; however,

the simple all-or-none ideas discussed in Chapters 2 and 3 prove unable

to account for the pattern of results on any of the lists, Finally, a

portion of the R -level analyvis helped reveal the nature of the process

explaining the results shown in the P-level analysis° In the hope of

obtaining more errors, while still retaining the general overlap paradigm

presented in this chapter, Experiment II was performed to illuminate the

nature of the overlap facilitative effect discussed in Experiment

L56



Experiment II

Method

The design and procedure for Experiment II was essentially the same

as that for Experiment I, except for the followja ...guifications. Twenty-

one subjects were run. The data from one S was excluded, since she

thought that she was supposed to write down the S-R pairs as they

appeared (she was a native German and had a 'imited mastery of English).

Th,.! first list had a 2 C3, 2 C
0

structure (just as the first list of

Experiment I); however, boys' first names were used as the components

instead of animal names.

The major departure from Experiment I was to make the second two

lists have 16 stimuli each. The stimuli were partitioned into 4 sets of

4 stimuli, and each set had the same structure. The structure for all

sets of 4 stimuli was that 3 of the 4 stimuli shared a single common com-

ponent, whereas the 4
th

consisted of all unique components and provided

a cord 1 for the learning of the three with an overlap component. Denote

by Ci
3

the three stimuliuli which shared a component and by C- the single

stimulus with all unique components. Finally, the components for Lists

II and III were either animal names or names of common American cities,

i.e., a random one of these two lists would have animal name components

and the other one names of cities as the components.

It was hoped that, by increasing the list length from 12 to 16 and

using the more difficult (established by a pilot study) city and animal

names, learning would be retarded, In retrospect, this hope was only

partially justified.
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Results and Discussion

As was expected, the data from List I were very similar to the data

from List I of the preceding experiment. This was anticipated, because

both lists had a 2 C
3

2 Co structure The single important differ-

ence (which was expected) was that List I for this experiment proed

easier than List I from the preceding experiment. No comprehensive

analysis of the data from this list is presented here; the reader is

referred to the discussion of List I for Experiment I for the major

qualitative features of the data The learning curve for this ltst,

however, is presented in Fig, 6.8 Figure 6.8 is similar to the learning

curve for List I (Experiment I) in Fig, 6,14 however, it is not quite so

S-shaped, Next, we move to the analysis of lists II and III,

Unfortunately, there was still a learning-to-learn effect from

List II to List III, and therefore their analysis will be carried out

separately, This difference was not anticipated, since it did not occur

measurably from List II to List III in the preceding experiment. Perhaps

it can be attributed in part to the similarities in structure of Lists

II and III. Also, the fact that the lists were longer, and hence the S

got more experience from List II, and the fact that the warm-up task was

easier with consequently less experience prior to List II, might have

contributed to this learning-to-learn effect Even with this necessary

separation in analyses, there were 240 C
3

and 80 C.
3

Ph- level:- level: protocols

for each list.

The learning curves for List T and List II are presented in Fig, 69,

the mean total errors and mean trial number of last error in Table 6,3,

the distributions of T and L in Figs, 6-10 and 6,11, respectively, and
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Table 6.3. Mean Total Errors, E(T), and

Mean Trial Number of Last Error, E(L),

-
for C

3'
c
3

and Lists II, III.

List E(T)

II C
3

II C
3

III C
3

III C
3

E(L)
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Pr(xn = 1IL > n) in Table 6.4, and Pr(xn+1 = llxn = 1) in Table 605.

It should be emphasized that these statistics are for a P-level analysis

of the data from Lists II and III.

The learning curves in Fig. 6,9 show that learning was much faster

for C
3

stimuli than for C
3

stimuli. Also, the curves for Lists II

and III demonstrate a fairly striking learning-to-learn effect for C
3

stimuli, i.e., C
3

stimuli in List III were learned much more rapidly

than they were in List II Neither the two C
3

nor the List III C
3

learning curves are exponential in shape. The C7, curves take about

equal drops in the error probability for the first three trials and the

List III C
3

curve drops much too rapidly from trial i to 2 to be approxi-

mated by an exponential function, This evidence, as well as other evi-

dence, suggests that the data would not be fit well by a P- or R-level

one-element model or the all-or-none multi-level model, since all three

models imply an exponential P-level learning curve (see Chapter 2, p. 18

and Chapter 3, p. 39),

Table 6.3 presents more evidence on the learning-to-learn effect

and the superiority of C
3

over C
3

stimuli in learning rate. Much to

the writer's chagrin, the 16-item list proved remarkably easy for the

Stanford students, so it is very difficult to undertake any elaborate

protocol analyses, The E(T) column in. Table 6.3 shows how few errors

were actually made to the stimuli. The T distributions in Fig. 6,10

reveal geometric-like distributions; however, the L distributions in

Fig. 6.11 seem not to be geometric. Finally, the strongest indicator

that a model with more than a single stage all-or-none feature is needed

to account for these data is seen in the tendency for Pr(xn.1 = lixn = 1)



1

Table 6.4. Pr(x
n

= l(L > n) for c
3'

c
3

and Lists II, III.

Trials,

List 1 2 3 1.

. 65 . 69 59 59

. 63 . 72 55

411MMEM.

. 46 . 38

.8o .64 . 67*

Table 6.5. Pr(xn+1 = llsn = 1) for C;', C; and Lists II, III.**

List

II C
3

II C
3

III C
3

III C
3

1

Trials,

2 3

.38 .46 .31 .21

.52 .45 .4o .28*

.22 .21
*

.21 --

.49 .28 .18
*

IMI 1.

* means two adjacent trials pooled.

** computations were made only if the number of
cases was greater than 30.



to decrease with trials in Table 6.5.

Evidence for R-level learning comes from a plot of the R-level

learning curve. This curve is presented in Fig. 6.12. The List II R -level

learning curve shows only a slight tendency to decline within a cycle.

Any significant tendency for Px(error on N) to decrease

within a cycle for C
3

stimuli can be interpreted as positive transfer

to items within the class. This within-cycle decline in Pr(xN. = 1) is

more strikingly demonstrated in the R-level learning curve for List III.

The N = 2 to N = 3 decrease in Pr(xN = 1) is especially noticeable.

In both Lists II and the larger jumps in Pr(xN = 1) take place

between cycles. These jumps are thought to reflect both R-level and

P-level learning, whereas the within-cycle jumps merely reflect R-level

learning. Unfortunately, there are not enough errors to warrant a fur-

ther R-level analysis,

In conclusion, these experiments have shown how some of the analy-

ses discussed in Chapter 2 can be used to infer properties of data when

multi-level learning is presumed to take place. Although the effect of

overlap components in learning rate is striking, the general lack of

many errors by the Ss prohibited a detailed R-level analysis which might

have revealed the nature of this overlap facilitation Also, it was

hoped that the all-or-none multi-level model would give a fair account-

ing of the data in Lists II and III. This hope failed to materialize.

Since it is not the purpose of this paper to attempt post hoc model fits

to data, no effort was made to piece together a workable model for the

results. Such a model would no doubt have to involve more than one stage,

because the Pr(x = lIx
n

= 1) and Pr(x
n

= 1IL > n) curves decreased
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over trials. Also, intuition and subject interviews Indicate that sub-

jects learn to recognize overlap components before hooking responses to

them, suggesting at least one additional stages In the future, an effort

will be made to find more difficult materials where overlap components do

not stand out but are learned just as any other component with, perhaps,

more "unconscious'" positive transfer. Then a multi-level model, such as

the all-or-none multi-level model, might give a better account of the

data.

In addition, a program of research in which different presentation

schedules for the same list are used is contemplated, It is hoped that

a multi-level model written in terms of the framework in Chapter 4 can

be tested by derivations from (gl2P,X) under various presentation

schedules. The aim of this research will be to show that a valid model

for paired-associate learning can be represented in a general enough way

to allow for testing on various levels of data analysis as well as for

different presentation schedules. It is hoped that by this line of re-

search the ideas embodied in various extant models for P-level analyses

of paired-associate learning by the anticipation procedure can be eleva-

ted to the status of a general paired-associate theory capable of masking

contact with data in a variety of different experimental paradigms. If

this paper has contributed in any way to narrowing the apparent conceptual

gap between the carefully designed simple list-learning studies of math-

ematical learning theorists and the more complex multi-factored processes

studied by the more traditional schools of verbal learning, then it will

have served its purpose,
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APPENDIX I

This appendix presents selected derivations for statistics presen-

ted in Tables 2.1, 2.2, and 3.2. Not all expressions in these tables

will be derived, but the hope is to convey the idea of how the multi.

level derivations were made.

For Table 2.1

A) Pr(xn=1) for the (P,R) analysis.

Since the item can appear in any of the M positions on its n
th

cycle, the result is

M
)Prtx =1 = (1-c)M(n-"*)

1
m(1-g)(1-c)kt-1% /

k=1

= ilVEILL711=9.1_1 [(1-c)N
n-1

.

Mc

B) Pr(xn+1=11xn=1) for the (P,R) analysis.

Pr(xn=11xn+1=1)Pr(xn+1=1)

Pr(xn+11xn=1) Pr(xn=1)

= (1-g)(1-c)M .

Cj Pr(T=0) for the (P,R) analysis.

Let Ai be the position of the item on cycle 1, 1=1,2, ... M.

(I.3)

M
Pr(T=0) = Pr(T= OIAi)Pr(Aj) .

i=1

Pr(A1) = and we can get Pr(T=OlAi) in terms of i and Pr(T=0)

as follows:
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(I,4) Pr(T=01A1) = [1-(1-c) + (1- ) gtfl-(1-c)M-i+1

(1-0M-1+1Pr(T=0))

SUbstituting (I,4) into (I03) and summing yields

(I.4) Per (T =0) = 1 « SimalLIALcK]
m2[1-g(1-01m]

12:g112
Ms

where b has been substituted from Table 201, Pr(T=k) is computed in

a similar manner,

For Table 2,2

A) Pr(xN = 1) fox the (RAP) analysis,

Since knowing the R-trial allows us to find the cycle npriberl K(N),

we have

(106) Pr(xel 1-g)(1,...c)K(N).1

B) Pr(xN+1=11xN=1) for the (R,P) analysis,

The only difficulty in this computation is in noting that there

are two cases. In the first case the item is not the last in a cycle,

and hence, the N+1
st appearing Item is some other item than the Ntha

In the second case the item is the last in a cycle and may or may not be

the N+1
st

item,

The derivations that were e immbersome or not presented involve work-

ing with the maximum of a sequence of M random variables,
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For Table 3.2

Derivations for the P-level are very similar to those of Table 2.1,

except more cumbersome. The only difference is that on R-trials when the

item appears (l -p -r) is the probability that that item remains unlearned,

whereas when other items appear, the probability is (1-r). To illustrate,

consider the learning curve. Let A, be the event of the item appear-

ing in position k on cycle n, k = 1,2, ... , M and n = 1,2,

Pr(x
n
=1) = pr(xn=i1A,

n)x
k=1

,

" n-1
=

R
1

[(1....p_r)(1-rrul
(1-0k-1

k=1

g)[l- (l-r)MJ [(1-p-r)(1-0
M-1

n-1

Mr

The two derivations presented for the R-level analysis are very

similar to those of Table 2.2, except that during a cycle the R-level

process operates. To illustrate, consider the learning curve. Since the

cycle number, K(N), associated with R-trial N is easily computed, we

have

Pr(xN =1) (1-g)(1-0N-1
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