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What is Physical Science?

Physical science is the study cf matter and its behavior,
Since the YLehavior of matter often involves forces, energy, temper-
ature, speed, and many other things, all these belong also to
the study of physical science. There are, of course, many different
kinds o7 matter -- like iron, glass, water, air, sand, and gasoline,
Physical science is concerned with kinds of matter, too, Sometimes
one k.nd of matter may be changed into another kind. For example,
wood may be changed into ashes by burning it, or a raw egg may be
cha-ged into something quite different by cooking it. Changes
thet matter undergoes are also part of the study of physical science.

If we push a brick off the top of a tall building, it falls
(o the ground. This is something that happens to a piece of matter,
and the study of falling bodies is therefore of course part of
Physical science. Bt notice that just as a brick will fall from
the top of the building, so will a horseshoe, a cuckoo clock, a
barasel, or a wad of newspaper. In other words, the business of
falling under gravity is common to all kinds of matter. Similarly,
if you put a brass door-knob, a stick of wood, a diamond ring, ot
a golf-ball in a lighted oven, they all get hot. The business of
getting hot in a warm oven is also common to all kihds of matter.

On the other hand, if you try to burn a sheet of paper and a
sheet of iron, you find that only the paper will burn. If you drop
a sheet of iron and a sheet of gold in a glass of acid, the iren
will dissolve but not the gold. A pill of 2spirin will relieve
your headache but a pill »f sugar will not. Vinegar will curdle
milk but water will neot, a ¥aw ¢gg wili change greatly when dropped
in boiling water but a golf ball will not. 1In other words we
recognize that some sorts of physical happenings depend on the
Xind of matter you are talking about. Try to list a few physical

happenings that apply to any kind of matter and a few others that
apply only to certain kinds of matter,

It is customary to divide Physical science into two main
divisions. Those Pkysical happenings where the kind of matter
involved is not important to the discussion are usually said to
belong to the study called physics. Those Physical happenings
where the kind of matter is important, or where the kind of matter
you start with changes to another kind, belong to the study called
chemistry. But the distinction between physics and chemistry is
a very fuzzy one and not at ajl important. No scientist could
pPossibly tell you the exact difference between physics and chemistry
because there simply is no fence between the two,

Some people have the mistaken idea that physical science is
basically a hard subject. This is totally untrue. The basic idecas
of physical science are very simple. You will have no trouble with
them at all. The oniy difficulty that pPeople ever have with physical
science is really a difficulty with English. 1If you say "I only
have two pencils" when you mean "I have only two pencils", you
may have trouble. In the same way, you should clearly understand
how each of the following pairs of s2ntences, sometimes used as
though they mean the same thing, really differ in meaning:.
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I don't like spinach, I dislike spinach.

I gave the wrong answer to every I didn't give the right angwer
question on the test, to any question on the test

Every shark is not a man-eater. Not every shark is a man-eater.

Every gink is a foople. Every foople is a gink.

Did anyone forget to bring their Did anyone forget to bring his
lunch today? lunch today?

I painted all of the boats. I painted all the boats,

The recipe calls for five The recipe calls for five
teaspoans full of sugar. teaspoonfuls of sugar.

I was suv hungry for cake that 1 I was so hungry for cake that I
ate the wncle recipe. ate the whole cake.

My family like to go on picnics. My family likes to go on picnics.
Your sister is a beautiful dancer. Your sister dances beautifully, A
I don't have ne money in my pocket.I don't have any money in my pocket:
Write nothing on the blackboard. Write "nothing" on the blackboard.

I 1iKe the bovs playing in the I like the boys' playing in the

yard. yard,

Notice that none of these scntences is incorreci. 1Iii is X
simply that the two sentences in each pair have different meanings. i
Try to explain how the meanings differ.

If you can see clearly the differences between the meanings
of the sentences above and can learn to use English correctly, then
you will have nou trouble with physical science. The one absolute
necessity in learning of physical science is the correct use of
English -- in reading, in writing, and in speaking. All the rest
is easy.

But you ought to be warned at the beginning of one important
thing. You cannot expect to read and understand a science book
as fast as you can a story book or a comic book. Read only as
fast as you understand. what you are reading. Don't be ashamed to
go back and read a difficult sentence as many . times as you have
to to understand it, If ycu skip or fail to understand a sentence --
or even a whole paragraph! -- in a story, you usually can pick up
the story without loss. But you cannot often do that in this book!
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Unit L.

Making Measurements

1. Comparisons

Everyc..c has heard of comparisons and everyone makes comparisons
every day. When you say ""John is taller than Mike'' - you are making a
comparison between John's height and Mike's height and stating that John's
height is the greater. Here are semecomparisons the like of which you
have probably yourself made at one time or another:

I have more marbles than Sam.

Mr. Smith's car is faster than Mr. Brown's.

Charlie is heavier than Suec.

Molly lives farther from school than Chuck

A milk bottle holds more than a salt-shaker.

Your living-room floor has more area than a sheet of notebook paper.
A tractor can pull harder than a rabbit.

It was warmer yesterday than it is today.

A right ang;e is larger than the angle at the point of a sharpened pencil.

Try your hand at writing out some comparisons like these. Try to make them
comparisons of different kinds of things.

In each of the above examples, notice that the sentence first calls your attentio:
to some kind of quality that is possessed by two people ¢r things. The sentence then
reminds you that.the two people or things possess this quality to different degrees.
finally it tells you which of them possesses it to the greater degree.

For instance, the first example comparing the number of Sam's marbles
with mine says something like this: '"Everybody has some number of marbles
(Remember that zero is a number!). Itis possible to find out this number
both for me and for Sam. If you find out bott Sam's and my number, you will
see that mine is the larger." In this case, the ''quality" we are talking about
and comparing is '"'number of marbles.'" For the examples above, these are
the qualities being compared:
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: :D Number (of marbles)
Speed (of cars)
Weight (of persons)
Distance (of a2 point from other points)
Volume (of containers)
Area (of surfaces)
Force (of things used to pull things)
Temperature (of the air on different days)
Angle (between pairs of lines)

Be sure you understand that the sentence-comparisons above speak of just the
qualities in this list, and then list the qualities dealt with in the comparisons .
that you wrote yourseif. b

Now examine these comparison-sentences:

I have more influence than Sam.. .

Mr. Smith's car is nicer-looking than Mr. Brown's.
Charlier is healthier than Sue.

Molly's house is more pleasant than Chuck's.
A milk bottle is better than a salt shaker.

We had more fun yesterday than today.

At first sight, these comparisons look much like the first group, but there
is a very important difference. You can best see this difference by looking at the
list of qualities in the sentences.

Influence (of persons)
Niceness of appearance (of cars)
Health (of persnns)
Pleasantness (of houses)
i Goodness (of containers)
Fun (of a person on different days)

Do you see what the qualities in the first list have that the qualities in the second do
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If you do not clearly see the diffe-ence, think of it this
way. Think about the sentence about marbles above as an example.
In order to find out whether it is true that I have more marbles
than Sam, all I have to do is to compare the number of marbles I
have with the number of marbles Sam has. 0.K., how many marbles
do I have? By actual count, Y have 87. Sam has 74. You know

that 87 is greater than 74 and the sentence comparison is therefore
correct.

Or, when we talk about the speeds of cars, we can by actual
trial find out how fast Mr. Smith's and Mr. Brown's cars can g0.

If Mr. Smith's car can go 85 miles ner hour (not on a nublic
highway, of course) and Mr. Brown's only 78, the case is praved.
Also, you can find out how many pounds Charlie and Sue each weighs,
how many miles Moily and Chuck live from school, and how many :
teaspoonfuls of water the milkbottle and the salt-shaker each hoids. |
How many square feet to your living-room floor? How many pounds
can the tractor null? What was the temnerature yesterday? How
many degrccs ia the anpgle of a pencil peoint?

Notice that all these questions can be answered. But can
you really give an answer to such questions. as "How much influ-
ence does Sam have?", "How nice does Mr. Brown's car look?",
"How good is a miikbottle?", and "How much fun did we have
yesterday?"? There questions have some meaning, of course, but
neither the questions nor the possitle answers to them have the
precision of which the others are capable.

ognize then that some qualities are very snecial in
that an be measured or counted. Length, number, volume,
weight, etc. -- all those in the first list above, and many more
besides -- are such qualities. Tell how you might go about
measuring or counting each quality in the list. On the other
hand, there are other qualities -- like influence, niceness of
appearance, pleasantness, and many more -- that cannot be
measured or counted.

1

When a quality is measurable or countable, its measure (or
count) is called a quantity. For instance, a count of 87 (marbles)
is a quantity. A speed of 56 miles ner hour is a quantity. So
are a weight of 105 pounds, a distance of 1 1/2 miles, a volume
of 1 quart, an area of 272 square fecet, a force of 31,2 pounds,

a temperature of 72°F, and an angle of 15°. Each of the quantities
we have met so far consists either of a number or a number plus

a unit. The quantity of 87 marbles is expressed by the number

87 alone. The quantity expressing Charlie's weight, however, must
be expressed by the number 105, plus the unit, pounds. Notice

that to say "Charlie weighs 105" is not enough, for you do not know
whether this means 105 pounds, 105 tons, 105 ounces, or 105 what,
There are, of course, circumstances where everybody knows what
units you :mean and it is unnecessary to name them. If Charlie
steps on a penny weighing machine in the United States or (anada
and gets a card reading '"105", he knows that by custom it means
105 pounds". The same Charlie would get a card reading "7 and 7"
in England, however, and one reading "47.6" in France. Do you
know why?
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Here is a renetition to help you remember: Nearly every
quantity is a number or a number plus a unit. Most quantities
are of the second kind, requiring a number and a unit. 1In fact,
the only quantities that are numbers are numbers themselves! --
like six, two-and-a-half, or 3.7. 1In any other quantity the
unit must be expressed. If you say "The line is 6 long", will
anyone know what you mean? Is it six inches, six feet, six
centimeters, or six miles? Length is a auantity that must have
units attached or it is without meaning. On the other hand, "I
drew six lines" 1s perfectly correct, for the quantity of number
(or count) needs no units.

There are some quantities that cannot be exnpressed by even
a number and a unit. Thesc are more complicated and need to be

expressed by a number, a unit, and something else. You will
get to such quantities later. Don't worry about them.now.

Physical science is inseparably concerned with quantities
and relationships among them.

2. Units of Measurement

Wle have been talking about measurements and comnarisons,
but has it occured to you that a measurement is a comparison?
When you say "My desk is six feet lone", vyou really mean this:
"My desk is longer than a one-foot ruler. If I take a footrule
and lay off one foot at a time along the edge of my desk, I
find that I can lay it off exactly six times," In other words,
saying "My desk is six feet long" means exactly the same as "My
desk is six times as long¢ as a one-foot unit."

Also, to say "Charlie weighs 105 pounds'"-means '"Charlie
weighs 105 times as much as a one-pound weight unit. When you
say "My time for the hundred-yard dash is 12.3 seconds," you
mean that it takes you 12.3 times as long as a one-second unit
to dash a hundred yards. When you speak of a 5-quart jug, you
mean the jugs holds 5 times as much as a one-quart unit.

Make up some other quantitiés and then make un similar state-
ments about what they mean. In doing so, there are two things
you will have to be careful about,.

First, notice that certain units -- like foot, pound, and
second -- are "primary" units. They are not derived from any-
thing clse. The first person to decide how long '"one foot"
should bec had complete freedom to make it anything he pleased.
He could just make two marks on a cheet of paper and say "This
is a foot, and everyone will have to agree with me". No one
could say he was wrong, because he invented it. The definition
of one foot for legal purposes in those countries that use the
foot is made in just this way. It is not defined by pencil
marks on a sheet of paper, of course, but by scratches.on a
bar of metal. Do you see why scratches on a bar of metal would
be better than pencil on paper? The scratches are so fine that
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/5u need a microscope to see them. Do you see why fine scratches
~re better than coarse ones that can be seen without help?

“he bar is kept in a safe place so that no one can tamper with

it. Everyone then agrees tc abide by the law and so "one foot"
means the same thing to everybody. po you see why it is important
that everyone agrees on exactly how long a foot should be?

There are certain qualities like volume and area, however,
where the story is a little different. You can do two things.
You can say that area is really closely related to length; this
is what you do when you say that your desk top has an area of
six square feet because it measures 2 feet by 3 feet. 1In the
same way volume is also closely related to length., You recognize
) this when you say that a box measuring 2 by 3 by 4 feet has
: a volume of 2 x 3 x 4 or 24 cubic feet. VYhen you do this you
simply say that the unit you will use to express quantities of
area is the area contained in the square that measures one foot
each way. The unit of volume is the volume contained in a cube
that measures one foot each way. This is the sensible wa/ to
do it.

. You can also do a much less sensible thing. You can say
"I have a perfect right to make up my own volume unit. I will
call it a 'gallon' and it will be so bie". This sounds like a
silly thing to do when you have a ready-made unit in the cubic
§ foot; but that's what the English system of units does, and, of
e course, we have become used to it. To use the gallon as the
';éb unit of volume and the foot as the unit of length means that we
. 723t define two units. To use the cubic foot as the unit of
- ‘slume and the foot as the unit of length means that you need
.:f{ine only one unit.

| So you see, when you say that a certain tank holds five

? gallons, you mean that it holds five times as much as a one- -

’ gallon unit. When you say that a certain tank holds five
cubic feet you mean that it holds five times as much as a cube
ieasuring one foot each way. Units like the square foot and
*he cubic foot, which are really derived from other, already-
defined units, are called derived units. To keep things as
simple as possible, it is always better to use derived units
(like the cubic foot) than to use a primary unit (like the
gallon). Scientists usually use derived units when they can
because it is simpler to do so.

A little more complicated derived unit is the unit of speed,
say the mile per hour. You could say that a speed of 30 miles-
per-hour means a speed thirty times as great as a unit speed

nf one mile-per-hour, and to do so would be correct. But what
25 the unit, mile-per-hour? Is it a unit like the gallon that
someone just invented; or is it rcally a derived unit? A
little thought will show you that t is a derived unit, meaning
a speed equal to the speed you woui? have to make to g0 one

; mile-unit in a time of one hour-unic. Therefore it is more

l simple to think of a speed of 30 miles per hour as a speed such
that you could cover 30 mile-units in one hour unit.
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A better thing to 4o with speeds, however, is to use the foot
that has already been defined, instead of bringing in the new

and unnecessary unit of the mile, They are both distances, and
only one of them is needed. A speecd of thirty miles per hour

is the sampe as a speed of 44 feet per second. Can you show

that they are equal? Using the foot-per-second as a derived unit
of sneed is more simple than using “he mile-per-hour, of

course. Once the foot and second a.e defined, why bother to
define two new units, the mile and the hour?
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The other thing you will have to be careful about is in
dealing with what are callied "irrational" units. The only one
you are likely to meet is the degree of temperature. The scale
of temperaturec (both Fahrenheit and Centiprade) are irrational
simply because '"zero" on the scale does not really nearn zero.
Yhen you say that the thickness of a shadow is zerov inches you
mean it has no thickness at all. When you say that an empty
candy-box contains zero pounds of candy, you mean it contains
no candy at all, But when you say that the outdoor temperature
is zero degrees, you don't mean that the outdoors has no
temperaturec at all. For you know that you can have a temperature
of 5 below zero, which would then mean "less than no temperature
at all". The question then comes up, what temperature means no /|
temperature at all? This temperature, which is what really :
ought to be called "zero", leads to another means of measuring "
temperature which is not irrational. You may meet "absolute
temperature” later in your study of science, Meantime, notice
that saying "This water has a temperature of 50 degrees'" does
not mean that it is 50 tiwmes as.hot as somethi ;
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ature of one degree, This strange
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part te
ment will not concern us in the present study.

3. Makine Measurements

You have seen that making a measurement is really nothing
more than comparing an unknown with a unit. The main idea in
making a measurement is then to have at hand an example of the
unit to be used and an instrument for comparing it to your unkrown,
Often the instrument and the unit are combined into a single
gadget, as with the foot rule. Sometimes they are not combined,
as in the scales on which you have to put sevarate weights. Ve
will at the present time talk only about making measurements of
distance using the ruler.

T
‘a
b

If we are soing to make scientific measurements, however,
we might as well use the same units as scientists use. Although
in this country we commonly use the foot and the inch as units
of distance, civilized people in most of the world and scientists
all over the world use the centimeter,.

Get a centimeter ruler and examine it. It will look much
like the sketch below. Notice on the sketch, which is drawn
life-size, which are the numbered centimeter marks -- the longest
lines. Each centimeter snacing is divided in half by a shorter
line. Each half-centimeter is divided by four short lines into ;
five parts. Each of these tiniest parts, having a length about 6 |
the thickness of a dime, is a tenth of a centimeter. Do you see why?
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The quantity expressing tho distance between two successive longest
lines is 1 cm; the half of this distance is the quantity 0.5 cm;
and the smallest interval is 0.1 cm. The smallest distances

are also called millimeters, though we will have no use for

that name.

Now take a pencil or other object and measure its length,
To do this, place one end of the pencil exactly ovnosite the
zero-end of the scale and let the pencil lie along the scale
with its other end falling wherever it will. Suppose that the
other end falls between the 18 and the 19 cm. marks. You then
know that the pencil is more than 18 but less than 19 enm long.
The smallest marks will help you tell just where between 18
and 19 the lenpth lies. If the end of the nencil lies right
on the middle-sized mark lying halfway between 18 and 19, you
would record the length as 18.5 cm. If it lies on the second
short line between 18 and 18.5, you would record it as 18.2.
If on the third line past the middle, as 18.8. Etc. 1If the
end of the pencil does not fall exactly on any of the lines, you
take the nearest one. Tt will almost always be true that the
end of the pencil will not fall exactly on any line. You will
therefore almost always have to judge which line to choose as
the nearest one.

If the nearest line happens to be one of the main centimeter
marks, like 18 or 19, you should record the length as 18.0 or
19.0. Be sure you always write the "point-zero'" when the lefifith
is an exact whole number of centimeters. You will later see
the reason for insisting on being fussy about this.

It is a curious thing that nearly every physical measurement
you make is in the end made by reading a position on a scale.
When you read a thermometer, you really read the temperature
the same way you read a ruler. "hen you read the speedometer
on your family's car or the time on a clock, you are really
reading a position on a scale, aren't you? This is why it is
so important to learn how to read a ruler properly.

4. Significant Fisures

When you measured the length of your nencil, you probably
found that the end of the pencil fell between two of the finest
marks on the ruler, say between 18.6 and 18.7. Suppose that it
lay closer to 18.7, though, so that you recorded the length as
18.7 cm. When you did this, you might have said co yourself
"I can see that the length of the pencjl is really somewhere
between 18.6 cm and 18.7 cm. Maybe it is really 18.68 cm but
my cyes are not good enough and the ruler is not divided finely
enough for me to tell. Anyway, I don't need to know the pencil

| length that accurately, so I will just call it 18.7 cm, which
! is the line on the ruler nearest to the end of the pencil."




You have therefore read the length of the pencil to the
nearest tenth of a centimeter. Maybe the lenpth of the penc1l
is a little more than 18.7 cm or a little less, But 18.7 is the
nearest venth of a centimeter. You record the length as 18.7 cm.
If your friend asks you "How long is your pencil?'", you will

tell him "My pencil is 18.7 cm lone,"

*n *+hoe
~5

Now suppose your friend tells you that his pencil is 18.7 cm
long. Yhat will go through your mind when he tells you so?
You might think like this: 'He said his pencil is 18.7 cm long.
He must have used a ruler to measure it because he gave me the
length accurately instead of saying that it was about 18 or
19 ¢cm long. On the other hand, he must not have measured it
with a very finely divided ruler and a magnifier, because he
didn't say his pencil was 18.72 or 18.727 cm long. He measured
it only to the nearest tenth nf a centimeter and gave me the
result of that measurement.

In other words, when you say your pencil is 18.7 cm long,
the number 18.7 really tells two things:

(1) 1It tells how lcng the pencil.is.
(2) 1t tells the person who is listening how accurately
you measured it,.

If you had measured less accurately than to the nearest tenth

of a centimeter, you would perhaps say that your wvencil is

19 cm long. If you had measured it more accurately, you would
have said 18.72, or 18.723, or even 18.7231 cm. {(To measure
something so accurately that yc could say it is 18.7231 cm long,
you would have to measure it to the nearest 0.0001 cm. To do
this you would need a very svecial ruler and a microscope to

use it.)

Remember then that the quantity that results from a
measurement always tells the person who sees it or hears it
how accurately the measurement was made. It always means that
the last figure is only the nearest figure, and not that it is
exactly that figure. Now you can see why we are fussy and insist
that you write 18.0 instead of just 18 if your pencil happened
to have a length that fell ncarest to the 18 cm mark on the
ruler. If you say that the pencil is 18 cm long, it would
mean that you measured it onlvy to the nearest centimeter. 1If
you took more care and measured it the nearest tenth of a
centimeter, then you should be proud of your extra effort and
say so by reporting the length as 18.0 cm. In fact, if you
took very great care using a spmecial ruler and microsope, you
might report the length of your pencil as 18.0000 cm. This means
that, even measuring to the nearest 0.0001 cm, the nearest
mark was the main centimeter mark at 18.
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Here is a list of quantities that mipght have been measured
by some instrument or another. Tell how accurately the measurer
must have been working in each case:

A metal rod is 37.17 cm long

A ball bearing weipghs 3.267 grams

A bobsled completes its run in 57.07 seconds
A bottle holds 14.0724 cc of water

Now let's think about measuring the length of that rencil once ’
again. Say that you found the end of the nencil to lie between '
18.6 and 18.7 cm. You judged it to lie closer to 18.6, so you
reported its length as 18.6 cm. In this case you realize right
away that your revort is only anpproximate. It 1sn't exactly
18.6 cm, but only nearer to 18.6 than to any other tenth of a
centimeter.

But suppnose that the end of the pencil appeared to lie exactly
on the 18.6 line. If someone now came along with a magnifying
glass and locked at your pencil and ruler, he might say '"Oh, no.
Lock. The end of the pencil lies just a little bit past 18.6. Let's:
get a ruler where the division of tenths of a centimeter (the y
finest ones on your ruler) are themselves divided into tenths, and
measure the pencil again”. What would be the distance between the
finest divisions on this super-ruler? Look at your ruler divided '
into tenths of a centimeter and try to imagine how close together
the divisions would bé if you had a super-ruler divided into
hundredths of a cenfimeter.

Suppose with this super-ruler vyou found the length to be
18.62 cm. VWould this be exactly correct? Probably not, because
someone might come along with a microscope and a super-super-ruler
and show that the length is really 18.623 cm. But you couldn't
be sure that this reading is exactly correct either, could
you? Can vou explain why not?

It is important that you realize that any quantity that is
measured is never known to be exactly correct. The best you can
do is to say that the real value lies closer to some certain mark
on a scale than to the next markings before or after it, Yrou
never know whether someone else might come along and use »n better
measuring instrument than you did to get a more accurate value than
yours, 50 you always report any measured quantity like this:
Use as many figures as will make the last figure the one
selected as '"nearest'" to some mark.

This rule works both ways. You must be careful never to
use either too many figures ir too few. Suppose you measure
your pencil to the nearest tenth of a centimeter and find it to
be nearest to 18.2 cm. You would be unfair to yourself to report
it as 18 cm because you really did better than that. But you will
be bragging unfairly, if you renort the length as
18.20 cm when you didn't measure it to the nearest hundredth
of a centimeter but only to the nearest tenth.
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last d1g1t is the "nearest" one then the flyures used are called /
significant. For instance the quantity 18 cm has two sign’ficant
figures; the quantity 4.79 grams has threce significant figures;
and the quantity 18.0000 cm has six significant figures. Tell how
many significant figures there are in each of the following ,
quantities. i

lenpgth of 17.22 centimeters
weight of 19.1765 grams
volume of 180.60 cubic fecet
sneed of 17.3 miles per hour
time of 4500 seconds 7
thickness of 0.0012 inch

e R b B

The last two of these are difficult and you may need your teacher
to explain them to you. ,

Now you are ready to do Exneriment 1 in your laboratory manual.

After you have finished the experiment, here are some questions
to discuss in-class,

Points to Discuss in Class

How many places to the right of the decimal point are signi-
ficant in these measurements? How many in the averages?

Did everyone obtain the same quantity when one and the same
stick was measured by several peonle? 1If not, whose measurement
was the correct one? Why did different people get different
results?

If you had used a ruler divided more finely and a magnifying
glass to read it, would everyone have got the same result?

Does it make sense to sneak of "the exact length" of a stick?

Does it make sense to speak of the measured length as a
quantity that everyone agrees on? Suppose that you own a company
that makes and sells gold wire. T mail you an order for 37.5 cm
of gold wire of a certain size and you mail the wire back to me.
We have never at any time met face-to-face to measure the wire
tcgether, 'hen the wire arrives, I measure it to see whether I've
been cheated. 1Is there any reason to suppose that my idea of what
37.5 cm should be will apgree with what you think 37.5 cm should
be? Why? How closely will be asrce?

The whole of physical science vests on a faith in this belief:
That when two peopnle make separate measurements of the same quantlty;
if neither of them makes a mistake, the measurements will agree.
How closely will they agree?
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Suppose you have measured two pencils separately and y ou
wanted to know how long the combination would be if you placed
them in line end to end. You would compute the total length by
adding the two measured lengths together, wouldn't you? If one
pencil was 16.7 cm long and the other 17.2 cm long, the total
length would be what?

But now suppose that you measured one pencil with an ordinary
ruler in the ordinary way and found its length to be 16.7 cn.
Then you measured the other pencil with a microscope-and-rulep
arrangement and reported its length as 17.232 cm. What would you
report as the total length? From what you nave learn>d in arith-
metic, you might be tempted to set down the two quantities and
add them like this:

16.7 cm 16.700
17.232 ¢m which means the same as 17,232
33.932 cm 33.932

You might report the sum as 33.932 cm, but this would be improper.
Let's examine what we have done to sce what is wrong about it and
what we should have done,

You remember that a quantity reported as 16.7 cm means that
the last figure, the 7, was intended to mean that the end of the
pencil did not fall exactly on the 7 but closer to 7 than to ay
other mark. The true iength mipght have been 16.694, for instance,
or 16.721. Because we didn't measure it that accurately, we simnly
do not know what we would have got if we had made the measurement
to 5 significant figures. Since we don't know what the next two
figures past 16.7 would be, we might write 16.7XX cm as the
length. We are pretending that the length is written with 5
significant figures, but we are admitting that we don't really know
what the last two are by putting X's for them. We certainly do
not, at any rate, know that the next two figures are zeros, as the
above addition seems to suppose.

Now, if we try to add the two quantities, we might set the
addition down like this:

16 .7XX cm

17.232 cm

33.9XX cm
and think as follows. 1In the units column all the way to the right,
"X plus 2" is how much? You don't know, so yeou write down X. 3
"X plus 3" is how much? Again you don't know: write another X in
the sum. "7 plus 2" you do know, so you write a 9 in the sum and

then complete the addition in the usual way. The result is 33.9XX.
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This means 33.9 with some more figures that we don't know.
this means the same as 33.9. Therefore the sum of the two g
tities 16.7 and 17.232 is 33.9, You are not entitled to any
more than three significant figures and have no right to report
more in the sum.

an-
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When you learned how to add decimal number; in arithmetic,
you were probably told that 16.7 pnlus 17.232 is 33.932, as we
got first above. Are you now being told that wvhat you learned in
arithmetic is wrorg? No, you are not, thourh it miesht look that
way at first. The difference is that in arithmetic you are
asked to add two numbers, one of which is exactly 16.7 and the
other exactly 17.232. But exactly 16.7 means 16.7000 with as
many zeros as you wish, and similarly with 17.232. The sum of
these, of course, is exactly 33.932 with as many zeros added on
as you wish. But the measured nquantity 16.7 cm does not
mean exactly 16.7 cm, but only means '"some number of centimeters
closer to 16.7 than to 16.6 or 16.8". This uncertainty in the
number beyinning with the second decimal nlace creates an
uncertainty (remember the "X + 3" in the addition above!) in the
sum in the second decimal nlace. You therefore have no right to
report 33.932 as the sum when all the figures after the 9 are
uncertain. This uncertainty does not occur if 16.7 means exactly
16.7, as it mieht well mean if it is not a measured quantity.

The general rule in adding measured quantities is now very
simple. If you want to find the sum of 84.62 grams, 171.4 grams,
and 42.119 srams, you set them down in the usual way with the
decimal points lined un.

84.6 om
171.4 om
42.1119 gom

Now draw or imagine a vertical line to the risht of the number
known with the: fewest: decimal places. In this example, the
"noorest'" number is 171.4, because it is known only to a tenth
of a gram; all the others are known to better than a tenth.
llence we draw the line to the right of this 4 as in the example
above. Then add only the nart to the left of the line. Finish
the example yourself, and don't forset to add the word "grams"
when you read the sum!

Now you are ready for Exneriment 2.

When you have completed this experiment, you should discuss
the following matters in class.

Points to Discuss in Class

Is it true that you can obtain the combined len~th of the
thr:e sticks by addine the numbers renresenting the individual
lengths? Answer this question by comnaring the combined length
you obtained by measuring, with the combined length obtained by
adding. Remember that two measured quantities can be said to
"agree" if they differ by only one or two ip the last significant
figure.
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Dcoes it seem "only common sense' to you that the total length
of two or more sticks can be obtained by adding the numbers repre-
senting the individual lengths? If it does seem obvious, here
are some things to think about that may make you less certain:

(1) What is the combined length of three sticks, one of which i
measures 2 feet, one 7 inches, and one 4 centimeters? llere is 3
a case where you cannot add the nurbers to aset the total length.
What must be true of the units in each quantity before you may
add them?

(2) You may be thinking this way: If I put together a pile
of 17 toothpicks and a pile of 12 toothnicks, the two niles
together will total 29 toothpicks. If john weipghs 80 pounds and
Sam weighs 90 pounds, the two together will weigh 170 pounds.
If T walk 40 steps, stop, and then walk 50 steps more ia the
same direction, the two walks together will place me 90 steps
from where I started. If Mr, Brown's farm is 5 acres and Mr. Smith's
farm next to it is 6 acres, the two farms together will cover
11 acres. If I pour 2 gallons of cider into an empty barrel and
then pour in another 4 gallons, the two portions tégether will put
6 gallons in the barrel. 1In fact, it often happens that putting
two quantities together gives a result that asrees with adding
the numbers. e may gset into the habit of thinking that "together"
means 'add'". But think of these questions:

If one ocean liner can cross the Atlantic in four days and

another can do it in five days, will it take them nine days to
do it together?

If T can paint a fence in 15 hours and you can naint it in
10, will it take us 25 hours to do it topether?

If T have a glass of water at 75° temperature (about ordinary
room temperature) and another glass of water at 100° (about body
temperature) will pouring them topether give me water at 175° (almost
boiling)?

If T wdalk 40 stens, ston, then walk 50 steps more, must I
end up 90 steps from where I started?

You realize, of course, that the answer to every one of these
questions is "No". Yet each question asks for the result when
two quantities are put together. Do you agree that sometimes the
word "together" does not téll you to add? fA;l*figﬁt, thén, what
right do you have to say that putting two sticks tomether nermits
you to add the numbers renresentine their lengths to set the
total length? 1In other words, how can you tell when "together"
means ''add" and when it does not?

BTN | et

The answer to this question is deeper than you might think,
But in the end it amounts to this: The only right you have to do
so is that experience (that is, experiments such as you juyst
performed) show that you always get the same result whether you
measure the total length or add the individual lengths. Your
experiment showed that you may do this under two condjitions: first
the units must be the same; and second, the two lengths must be
alJong the same straight line.
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6. Commutativity under Addition

il

Did you pet the same total lencth of th

w ik

o

e t sticks regard
less of the order in which you lined them up? D this surp;ise
you? Do you have a right automatically to sunpose that adding
three lengths will always give you the same result for the ccmbined
lerpgth no matter in what order you add them? You already know
that you may add numbers in any order you wish ard always get
the same result. This property of numbers is called "commutativity
under addition.' You have shown by exneriment that lengths are
also commutative under addition. Not all quantities are commuta-
tive under addition. For some quantities, you gpet a different
result when you add A + B from what you aet when you add B + A.

O ~
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Would you like to see an example of a quantity which does not
commute under addition? GCet an ordinary matchbox and six common
straight pins. Stick one of the pins in the center of the top
of the box and another in the center of the bottom, You now have
an axis around which you can spin the box. You can turn the
box around this axis through any angle you wish. Hold the axis
vertic2l in front of you with the label on top facing you 30 you
can read it. Now turn the box around the vertical axis clockwise
(in the direction in which the hands of a clock turn) through
1 riyht angle. The top of the box is still on top, but now a
person would have to stand on your left to read the label. Now
turn the box further through 2 right angles. The label is still
on top, but now a person would have to stand on you right to read
it. That is, if you add ' right angle turn + 2 ‘right angle turns)
you put the box in a position with the label on top facing so
that a person would have to. stand on your right to read it. Now
return the matchbox to its criginal position with the label on
top facing you so you can read it. Then rotate the box again
clockwise around the vertical axis; but this time.turn it first
through 2 right angles (the box now has its label still on top
but & person must stand in front of you to read it) and then
furtker through 1 right angle. The box now has its label on top,
but to read the label a person must stand on your right. That is,
if ycu add (2 right angle turns + 1 right angle turn) you put
the tox in a position with the label on top facing so that a person
would have 1o stand on your right to read it. This is the same
as before. You see then that when you add rotations, they do
commute if the two rotations are around the same axis.

But if the rotations are not around the same axis, they do
not commute. To see this, stick a pin in the center of each end
of the box and also in the center of each side. You now have six
pins forming three axes. Hold the matchbox in front of you, top
up, and turned so that you can read the label. Hold it by the pins
in tcp and bottom and rotate it around the up-down axis 1 right
angle clockwise as before. The label is still on top. Now hold
the box by the pins stuck in the sides of the box. These pins make
an axis pointing right and left. Rotate the box around the left-
right axis thrcugh 1 right angle toward you. The label now faces
you. Therefore, starting with the label on top and faced so y ou
can read it, 1 right angle turn clockwise around an up-down axis
Plus 1 right angl. turn away from you around a left-right axis
leaves the box with the label facing you,
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Now perform the two rotations in the other order.
the box label up and so you can read it. The pins stuck in the
ends of the box ferm a left-right axis. Hold it by these pins and
rotate the box through 1 right anglz toward you. The label is
now facing you. Then hold the pins stuck in the sides of the
box -- the up-down axis -- and rotate the box 1 right angle clock-
wise. The label now faces to your left. Therefore, starting
with the label on top and faced so you can read it, 1 right angle
turn toward you around a left-right axis plus 1 right angle turn
clockwise around an up-down axis leaves the box with the label

Start with

facing to your left.

Here are the two trials in a diagram form:

i

‘Rotate l right angle Rotate 1 right , End
clockwise, up-down axis angle toward =| with
' you, left-right label
axis toward
you
Start with
label on top
A\ Rotate 1 right angle Rotate 1 right End
toward you, left- angle clockwisg| = | with
right axis } fup-down-aXis label
to left

So you see, adding these two rotations in one order gives yau
» result different from what you get if you add them in the other
crder, Rotations around different axes do not always commute,

7. Significant Figures in Multiplying

You now know how to add measured quantities and how to deal
properly with their significant figures. Much the same thing
happens when you multiply measured quantities. Suppose you have
a r-ctangular card whose width is 23.6 cm and whose length is
37.4 cm. What is the area of the card?

You will remember that you find the area of a rectangle by
multiplying the length times the width. You world ordinarily do
it this way:

37.4 cm
23.6 cm
2244
1122
748
882.64 cm

You would report the area as 882.64 square centimeters. But by
this time you are probably suspicious enough to guess that we are
going to find fault with this one, too! We are: let's see why.
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You know that "37.,4 cm" means a quantity that was measured
only to the nearest tenth of a centimeter: closer to 37.4 than
to 37.3 or 37.5. We might write this as 37.4X, pretending that
we know it to four figures but at the same time admitting that
we don't really know the fourth one. 1In the same way, we will
write 23.6X for the other number. Now let's multiply them:

37.4X
23.6X
XXXX
2244X
1122X
748X
883. XXXX

Here is the way you perform this strange-looking multiplication:
First, you multiply X times 37.4X. How much is it? You haven't
the slightest idea, so you might as well admit it and write a
string of X's in the first row. Next you multiply 6 times 37.4X.
You say, "6 times X I don't know", and you write X all the way to
the right in the second row. Then, "6 times 4 is 24", write the
4, carry 2, and complete the second line in the usual way,.
Following the same method, show how the third and fourth lines
were obtained.

Now to complete the multiplication, you start as usual all
the way to the right. You bring down the unknown X to the bottom
line, In the second column from the rtight, you say, "X plus X
is unknown", and write X at the bottom. In the next colum, you
say, "X plus 4 plus X is unknown", and write X in the bottom line
again, In the next column, you say, "X plus 4 plus 2 plus X,

I don't know", so you write another X at the bottom. This time,
though, you say to yourself, "I don't know exactly how much is "X
plus 4 plus 2 plus X', but it almost certainly is at least 10,
because 4 plus 2 is already 6, and two more digits added to it
will probably reach ten or more.” So you write the X at the
bottom, because you don't know what the sum is exactly, but you
carry a "one" into the next column because you're pretty sure
it's at least 10. In the next column, the carried-over 1 plus 2
plus 2 plus 8 is 13. Write the 3 carry the 1, and complete the
addition in the usual way. There are two "decimal places" in the
first number and two in the second. You therefore point off four
decimal places from the right-in the result and get 883.XXXX.
This means that you do not know any significant figures jpast 853.
and therefore you should not report the product any more accurately
than 883 square centimeters.

The rule is easy: When you multiply two quantities, the
product should contain no more significant figures than are
contained in the multiplier with the fewer significant figures.
Sometimes it is permissible to take one more figure than the
rule allows.
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It is not recommended that you multiply by the X-method above.
Multiply in the usual way as in the first multiplication above,
but when you are finished, "round off" the answer to as many
figures as the rule Says you are entitled to. Notice that ro nding
off the first result of 882.64 to three figures gives 883, the same
as the X-method shows you are entitled to say.

Now you are ready to begin Experiment 3. When you are firished,
you should discuss in class the questions below

Points to Discuss in Class

What is mcant by a scale drawing? Mention some examples of
scale drawings that you have seen used in business or school or

elsewhere. Does a scale drawing have to be smaller than the
object it represents?

You hold a circular card behind your back and ask me to
make a scale drawing of your circle without seeing it. Since I
have never seen your circle, the best I can do is draw a circle

of any size I please on my paper. Will my circle be a scale
drawing of yours?

% You hold a rectangular card behind your back and ask me to
make a scale drawing of your rectangle without seeing it. I draw

any old rectangle on my paper. Will my rectangle be a scale
drawing of yours?

Any circle is a scale drawing of any other. But any rec-

) tangle is not a scale drawing of any other. The reason for this

= is that it takes only one quantity to describe a circle completely
-- its radius. But it takes two quantities to describe a rectangle
completely. How many quantities are needed to describe completely
the special kind of rectangle called a square? Is any square

a scale drawing of any other? It takes three quantities to
describe a triangle completely and this is part of the reason why
3 it is a little harder to make a scale drawing of an irregular

' triangle. Can you name some other shapes for which only one
quantity need be given to describe it? Can you name some or
which more than one quantity must be given?

You can make a scale drawing only for a flat shape. Flat
shapes are called "two dimensional™. A body that has thickness
or that sticks out above or below the flat is called "three-
dimensional”, A spoon, a sphere, a rectangular box, and a
cylinder are three-dimensional. What corresponds in three
dimensions to a scale drawing in two dimensions is called a
scale model. Name some three¢.dimensional objects which require
only one quantity to be given to enable a person to make a scale
model. Name some that need more than one.

3 How many areas does a given rectangle have? Only one, of

! course. Suppose two reople compute the zrea of a .iven rectan L

- and get two different answers. Can they both be right? Then if

N there are two different methods for computing the area of a rectangle,
they can both be correct only if they give the same result, G.K.,?

Now, the formula says that you compute the area of a rectangle by

multiplying the length by the width. But is it definite which side

of a rectangle is its length and whiéh the width? Suppose you sat

down at one desk and I at ancther, both to compute the area of

a rectangle that we are told measures 12.3 cn by 14.6 cm.
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You choose to call the 14.6 cm side the length and 12.3 cn the
width, You therefore multiply 14.6 x 12.3 to get the area in
cm2, At my desk, meantime, I choose to call the 12.3 cm side
the length and 14.6 the width. I therefore multiply 12.3 x 14.6
to get the area. If we both do it correct’y we must both get
the same result, because the rectangle has only one area. What
guarantee have we that we will get the same result?

Does multiplication of a length by a leng*h to get an arca
commute? Does multiplication of a number by a number to get a
number commute? Suppose that the first of these commuted but
the second did not. Could we then computc the area of a rectangle
by the rule "multiply one side by the other"?

To get the area of a circle you multiply the square of the
radius by the number 7. What units does 57 have? The value of iy
is 3.14159265358979 to 15 significant figures. Of course, no
One ever computes the area of a circle by using this many signif-
icant figures for 77 . You always round it off to as many significant
figures as you need. How can you tell how many places to round
it to for a particular problem given to you?

A given triangle also has only one area, doesn't it? The
formula tells you that the area of a triangle can be computed if
You multiply 1/2 times the base times the altitude. But you
may choose any side you wish as the base; thcve are therefore really
three different ways to compute the area of . triangle depending
on which side you happen to choose as the base. With your triangle
did you get the same result no matier which side you selected as
the base? What guarantee have you that you always get the
same result regardle~s of the selection?

Notice that the answer to this question is not the same as
with the similar question we acsked above regarding the area of a
rectangle. With a rectangle you are multiplying the same two
numbers (length and width) in two different orders; you get the
same result because multiplication of two numbers commutes. But
in the triangle case there is no question of commutation; you
multiply different numbers together (depending on the choice of
base) yet you still get the same result. Why? We cannot answer
this question here beyond pointing out that experimentally you
did get the same result for the triangles you measured. That
it is true for all triangles is proved by logic in the study of
geometry.

In computing the area of a triangle after having selected a
particular side to use as base, does it make any difference whether
you multiply half the base times the altitude:; or half the altitude
times the base; or the altitude times half the base; or multiply
the base times the altitude and then take half the product; etc.?
(There are six possibilities; what are they all?) Does the multi-
Plying of three numbers together commute?
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8. Decimal Estimation

Now let us reiurn once again to that pencil we've been
measuring -- the one that we found measured between 18.6 and
18.7 cm. Heretofore, we have recorded the length as, say,
18.6 cm if the end fell closer to 18.6 than to 18.7. But a

little thoughthillsshow;yDucthhtyyburreéllycc%ndﬂo'better%%hantthis.5
If the end fell about halfway between, you might say that the

length is 18.65 cm. 1If you judge it to be a little less than half-
way, you might record the length as 18.64 or 18.63. If a little
more than halfway, you might judge the length to be perhaps

18.66 or 18.67. 1If the length was only a.little past 18.6, you
might judge it as 18.61 or 18.62; and if almost 18.7, you might
estimate it at 18.68 or 13.69. A great deal of experience has
shown that the human eye¢ and brain acting together can readily
estimate,with surprising accuracy, tenths of a division on an

undivided scale. It takes only a little practice for most people
to be able tn do this quite reliably.

The practice of reading any scale as though its finest
divisions were actually still further divided into tenths is
called "decimal estimation". It is customary in all scientific
work te read a scale by decimal estimation. This amounts to
squeezing out of the scale the very last bit of accuracy it is
capable of. Experience has shown that a scale whose finest
divisions are in the neighborhood of 1/20 of a centimeter or
more apart can be read just as reliably by decimal estimation as
by having the finer divisions actually ruled on the scale --

and far more easily because the closely ruled lines make for
confusion,

In decimal estimation, the last figure (the one that is
obtained by estimating tenths between the finest divisions actually
ruled on the scale) is regarded as a significant figure. Even
thcugh you 'guess at it", remember that experience shows that
the guess is just as reliable as if the scale were actually
diviced into tenths of its smallest divisions.

You are now ready to do Experiment 4. After you are finished,
we will have some more questions to discuss.

Points to Discusg in Class

Did everyone get the same result on measuring, say, rod #1°?
Can you expect that everyone will always get the same result when
different people make a certain measurement? Now if the only way
you can learn the length of a rod is to measure it, and if different
people get somewhat different results when they measure it, how
can you ever tell what the "true" lengtii of a certain rod is? The
answer, of course, is that you can't. It is worth repeating: no
Physical measurement is evfr known to be exactly correct. No one
Can ever say "The true lewgth of this stick is so-many centimeters . "
The length can be known with considerable accuracy if highly refined
methods are used to measure it, bu> it can never be known exactly.
There is one exception: a certain rod is known to be exac

tly one
meter long. Do you know what this rod is and why it is an

exception?
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Notice that even a ruler, no matter how "good" it is, is not

an exception? Since someone had to make the ruler, he had to ;
measure where to put the marks, Hence the positions of the ]
marks are not known to be correct, and one cannot say "This ruler ;
is exactly 25 cnm long.” ]

Even though we agree that we cannot ever tell anvone the
"true" length of a ro s yet we still feel that it ought to be
Possible to tell him the "best" value we know. 1If several
people measure a rod -- or even if one person measures the same
rod several times -- the several measurements will not be
all the same. Then which measurement do we select as best?
There is no truly logical answer to this question, but there
is a general agreement by scientists the world over that there
is a reasonable answer to the question ag follows: If there is
a series of measurements of a single quantity and there is no reason
to believe that any of them is more reliable than any other, then
the "best" value of the thing measured is tpe average of the several
measurements .

The reason behind this agreement is simple. The idea is that
every measurement will probably be a littie "wrong." But there
will Probably be just as ma..; "too-big" measurements (with plus
deviations) as there are "too-1little" ones (with minus deviations),

Usually these deviations will largely cancel each other out, and
the average will be pretty close to the "true" value. VLet's talk
again about significant figures.

9. Averages and Deviations

Suppose that two different people each make the same measure-.
ment several times. Say that they are both measuring the length
of a rod, and one Person's results are these:

18.74 18.72 18.74 18.75 18.74 18.73 cm
As you now know, even the best measurer has to expect that he will
not get exactly the same value every time he measures g given

rod, even if he is equally careful in every try. He takes the
average of uis results and reports the '"best" length as 18.74 cn.

The other person measures the same rod, also six times, and
his results are:

18.74 18.70 18.77 18.73 18.68 18.71 cm

He reports, as the best value, the average of the six values, 18.72 cm.g

Now, one person reports 18.72 and the other 18.74 cm as the
length of the rod. Whieh shall we take as the best of all? One
way to settle the problem is to take the average of the two repcrts
and call the length 18.73 cm. If we do this, however, we are really
saying, "There is nothing to choose between the two reports,

They ai: equally reliable and we will therefore take the average
of the two reports as the best value." But wait a minute; are they
equally reliable? ‘
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You will notice that the first measurer's results run from
a low of 18.72 to a high of 18.75 -- a range of 0.03 ecm. The
second measurer's results range from 18.68 to 18.77 -- a range of
0.09 cm. Now, if you had no other information, which measurer
would you regard as the more reliable -- the one whose readings

fell in the narrow range of 0.03 or the one whose results
scattered out over 0.09 cm?

There is no strictly logical answer to this question either.
Let us suppose, however, that the true value lies somewhere between
the extreme values obtained by both measurers -- that is, between
18.68 and 18.77. It is obvious then that the first measurer
was making smaller errors than the second. If we suppose, for
instance, that the true value is 18.73, then the deviations made
by the two measurers are:

First: +0.01 -0.01 +0.01 +0.02 +0.01 0.00 ¢

Second: +0.01 -0.04 +0.04 0.00 -0.05 -0.02 G

You can see that the second measurer was making larger errors than
the first.

We instinctively regard as more reliable the measurer who
makes smaller errors. We cannot be sure that the second measurer's
average is not better than the first. Maybe it is, Maybe the
second measurer does make bigger érTGfS;}bﬁt”méyBe'dI&o“He’is
wrong on the too-big side as much as he is wrong on the too-little
side so that the average is quite good. Maybe the first measurer
holds his head a little to one side of where he should,; and there-
fore nearly always gets results that are too small. Or maybe his
ruler isn't as good as the secand measurer's ruler. But if we have
no reason to be suspicious of the accuracy of either measurer,
most physical scientists feel that the measurer whose results
are less scattered is more reliable.

Now if yeu look at the deviations listed above for the two
measurers, you will probably agree that the second measurer‘s
deviations are more scattered. Notice that e are now getting
back to the material discussed in Section 1. We have the
comparison--sentence:

Number 2's measurements are more scattered than Number 1l's,

We are comparing the quality, "scattering of measurements," and
saying that 2's is greater than 1l's. Is the quality called
'scattering" a quality that can be measured? Or is it a quality
like happiness, fun, or niceness of appearance, where we only feel
that one may be greater than another?
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How do we tell that 2°'s scattering is greater than 1's? We
look at the deviations. We see that some of 2's deviations are
less than 1's and some are greater. But on the average 2's are
greater. That is, we can average the deviations of 1 and the
deviations of 2 and se:z which has the greater average deviation.
Take the deviations shown above and average them for each observer
In doing so, pay no attention to whether the deviations are plus
Oor minus -- just average the numbers. Show that the average devi-
ation of Number is only 0.01 cm while the average deviation of
Number 2 is about 0.03 cm. It seems reasonable to regard Number
1's measurements as more reliable because they are mors consistent
and less scattered chan Number 2's. When we say '"Number 2's
measurements are more scattered than Number 1's,” we mean that
Number 2's measurements have a greater average deviation than
Number 1's. 1In other words, the average deviation of a set of
measurement: is a kind of sign showing how reliably the measurements

were made. The smaller is the average deviation, the greater is
the reliability.

In fact, careful scientific measurements are often reported

with the average deviation attached to the report. For instance,
measurer Number 1 above might report the length his

th of his rod as "18.72 cm

with an average deviation of 0.01." This expression is often written
in abbreviated form like this: '"18.72 + 0.01 cm." You read the

abbreviated form: "18.72 plus or minus 0.0l cm." It means: "The
average of several measurements was 18.72 cm. Some of the measure-
ments were greater than the average (plus) and some were less
(minus). The average deviation was 0.01 cm."

Let's try an experiment involving deviations. After you
have finished, the class will discuss the following questions,

Points to Discuss in Class

Who was the best guesser of the correct number of balls to
Place in a dish? If you look at the last two lines of Table I,
perhaps you can answer the question. Suppose, for instance, that
Sam was one of the guessers and that his average guess over all
ten dishes was 22.1 balls; suppose alsc that Mary Ann's average
was 21.6. You might say then that Mary Ann is a better guesser
than Sam because her average guess was closer to 20 than was Sam's

average. But this may not be true.

It may be, for instance, that Mary Ann's guesses ranged all
the way from a low of 5 to a high of 52 and that none of her guesses
was any where near 20. Yet her average was quite close. You
wouldn't want anyone as likely as this to be wrong to do your
guessing for you, would you? On the other hand, it may be true
that Sam's guesses averaged a little further from the mark than
Mary Ann's; but all his guesses lay between 19 and 23. You muy
prefer Sam's consistency which averages a little off the mark to
Mary Ann's wide scattering which averages closer to the mark
than Sam's but is never anywhere near.
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Comment on the statement: '"If Mark stands with one leg in

the freezer at -10°F and ofie’leg in‘the- 6ven at 156°F,*ﬁfs*éﬁérage
temperature is a comfortable 70°."

Comment on this one too: "Peggy is an excellent marksman
with bow and arrow. She made one shot that fell fifty feet to
the left of the bullseye and another that fell fifty feet to
the right. The average for her two shots was right on the
button.,"

The point is that the reliability of a measurement is really
composed of two parts: (1) How close is the measurement to the
true value? and (2) How consistently can we reproduce nearly the
same value over and over again? The first of these is called
accuracy" and the second is called "precision." Accuracy
refers to how close a measurement is to the "true” value,
Precision refers (o the consistency among many measurements of the
same quantity. It is perfectly possible for a measurement to have
high accuracy and low precision: consider the case of Peggy the
marksman above. It is also possible to have high precision and .
iow accuracy. For example, suppose you measured the length of
a rod using a ruler graduated in tenths of a centimeter. You

measured the length as 18.68 cm with an average deviation of 0.0l cm.

Sounds pretty reliable doesn't it, with a very high precision?

But someone later notices that the ruler you used was sawed off

at one end and starts at 1 cm rather than zero. Then your
measurements are all one centimeter off. Though the precision

is high, the accuracy is very low.

In making measurements, one strives for high precision and
high accuracy. The precision of a measurement is always known,
because you can always calculate your average deviation. Usually,
however, you can only guess at the accuracy, because usually

you don't know the '"true" value of a measured quantity.

Suppose you have two round buttons. One is a polished metal
button-and the other is covered with cloth. You want to measure
the diameter of each with as ‘h'igh precision as you can. Using
a magnifying glass and a special ruler, you measure the diameter
of the metal one as 2.173 cm with an average deviation of 0.002 cm.
You try the same method on the cloth-covered button. But when
you look at it under the microscope you find the surface very
rough with ups-and-downs and particles of lint sticking out
as much as 0.02 cm. Does it make sense even to try to measure
this button with a precision of 0.002 cm? Think up some other
examples of measurements where a precision can be so ridiculously
great for the measurement as to be without real meaning. Does
the hair on a person's head interfere with measuring his height
to the ncarest millimeter? Does the fact that a person eats,
drinks, sweats, and breathes make it sensible to say that a
prize-fighter goes into the ring weighing 184 3/8 pounds? (A:
very small drink of water weighs an eighth of a pound, and a person
looses about one ounce of water by the moisture in his breath every
two hours, not counting water that he loses by sweating.)
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10. Once Again, Lightly

Physical science is the study of matter and its behavior.
Scientists have studied physical science long enough to have
learned by experience that the behavior of matter is not haphazard
but predictable and logical. Logical reasoning involves close

attention to the meanings of words and sentences and often involves
mathematics too.

One way in which mathematics arises in physical science is
through measurements. A quality that can be measured or counted
is called a quantity. A quantity may be a number alone, but it
may also be a number with a unit attached. When a person speaks
of a quantity other than a number, the unit that goes with it must

always be stated (or implied) so the person to whom he speaks
will understand.

A measured quantity always, therefore, involves a number.
This number shows both the value of the quantity and also how
Precisely it was measured. The statement, "This red is 6.75 cm
iong," not only tells the length of the rod but also tells that
the rod was measured to the nearest 0.01 cm and was judged to be
closer, probably, to 6.75 cm than to 6.74 or 6.76. If the last
digit used in writing a quantity is obtained by estimation (judging
that digit to be closer to "right" than the next higher or next

lower one), then all the digits used in writing the quantity are
called significant.

Attention must be paid to the number of significant figures
in measured quantities when arithmetical operations are
carried out on them. 1In adding measured quantites, the decimal
points are lined up in the usual way. The numbers to be added
are then examined to find which hastuhe”fewestuSignifdcantﬁfigures
after the decimal point. All the numbers are then rounded off to
this many decimal places and the addition then carried out in
the usual way. (If preferred, the addition may be carried out
without first rounding off, then rounding off the sum to as
many decimal places as in the number with fewest significant
figures after the decimal point.) The sum of a set of measured
qQuantities has as many significant figures after the decimal point
as has that member of the set with the fewest significant figures

after the decimal point. The same scheme, of course, applies to
subtraction.

When multiplying the numbers in measured quantities, the
number of significant figures in the product is equal to the
lesser of the number of significant figures in the nuantities
multiplied. The same rule applies to dividing. The idea behind
the rules concerning significant figures is simply that a sum or
product or quotient cannot be "better known" than any of the
numbers used to calculate the sum or product or quotient.

e
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Just because a quantity involves a number, it does not, there-
fore, follow that a quantity expressed by a number and a unit is
a number. We often find that two quantities can be multiplied™
together by multiplying their numbers together, but this is not
always true. When two or more quantities are added, their units ;
must be the same, and the units of the sunm will be the same as the f
units of the individual quantities. When two quantities are
multiplied together, their units need not be the same. The units
of the product must then be given a special name, for the product ‘
will not have the same units as either of .theitwo quantities ' i
multiplied. ]

From the preceding paragraph, you will recognize that the
adding of quantities i1s a far less complicated matter than multiplying.
them. You may be wondering "How will I ever be abie to tell whether
the multiplying of two new quantities that I never met before can
be handled by multiplying their numbers; does the order of multi-
Plying matter; and what are the units of the product?'" Such
questions you need not worry about; they will be answered for
each case specifically when they arise.

Every measured quantity has an uncertainty about it, because
no measuring method is perfect. There is therefore no answer to
the question "What is the exact value of such-and-such a quantity?"
if the quantity is a measured one. It is often important to knoy.
how much uncertainty is involved in a quantity. The uncertainty
is revealed in two ways: One is always used, the other sometimes.
The first is the simple matter of significant figures. 1If a
quantity is quoted as 18.72 cm, it immediately notifies you that
the measurement is uncertain within 1-in“théﬂsecondfdeciuaiiﬁlace---
within 0.01 cm. Less often, the average deviation is used, too.

If a quantity is reported as "18.72 * 0.03 cm,” it means that the
measurer tried to estimate to the nearest 0.01 cm -- this much is
told you in the "18.72'" alone. But it also tells you that the
quantity was measured many times and the average is quoted, but
the results deviated from the average such that the average

of the deviations was 0.03 cm.

The number of significant figures quoted and the average
deviation both reveal the precision of the measurement. The more
significant figures used, the higher the precision. Of the two
measurements, 18.72 cm and 18.723 cm, the latter is more precise
because 0.001 cm is a "finer" reading than 0.01 cm. Of the
two measurements, 18.72 + 0.02 cm and 18.72 + 0.03 cm, the former

is more precise because the range of numbers leading to the average
is smaller., Precision refers to fineness and consistency of
measurement.

Accuracy refers to the closeness of a measured value to the
"true value." Since the '"true value" may not be known, one cannot
always tell how accurate a measurement is. It is entirely possible
to have very low accuracy and very high precision. The reverse
is also possible but not likely.
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Further Classroom Discussion

A bird watching club takes part in the annual Christmas bird
census conducted by the Audubon Society. The watchers count 3
virens, 2 waxwings, a flock of terns estimated as 40, 2 robins,

2 orioles, 6 blackbirds, 3 warblers, 5 doves, and a flock of
starlings. There is some argument as to how many starlings there
are in the flock. The low estimate was 1000 and the high estimate
was 3000. They decide to 'report it as 2000. -They also- repoft the
total birds observed as the sum of the individual species,

namely 2063. Does this report of total birds seen make sense?

The manufacturer of a cleansing tissue cuts the flimsy
paper into sheets of 9 1/2 inches by 8 7/8 inches. He marks on
the box that the individual sheets measure 9.500 inches by 8.875
inches. 1Is this sensible?

A French scientist estimates that a meteor would begin to
glow when it comes to within 100 kilometers of the earth's
surface. An American newspaper prints the story, but to make
things easier for its American readers, converts kilometers
to miles. The rewrite man finds in the dictionary that one
kilcreter is 0.62137 miles. The story then appears saying that
the French scientist estimated that the glow would begin 2t a height
of 62.137 miles. What would you have said if you had been the
rewrite man?

The average speed winning the "Indianapolis 500" automobile
race in 1962 was officially reported as miles per hour. This
speed was obtained by dividing the distance traveled (500 miles)
by the time required for the winner to go from start tc finish,
measured as hours. Do you think the time was measurable
this accurately? To be entitled to six significant figures in
the speed, toth the distance and the time must be known to six
sigrificant figures.: Assume that the time really was known this
accurately. What about the distance? To know 500 miles to six
significant figures means that the distance is known to 0.001 mile.
This is about five feet.

A calorie chart for foods says that a medium-sized potato is
equivalent to 265 calories. Comment on this rating.

An American scientist builds a sun furnace and estimates that
he can obtain a temperature of 4000°C. Our rewrite man above
handles this story, too, finding that a temperature of 4000°C
is the same as a temperature of 7232°F. He prints that the
scientist estimates that he can obtain a temperature of 7232°F,
What would you have reported?
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Unit II.

Constants, Variables, and Equations

1. Constants and Variables

J T O T T E T

You now know that a quantity is the numerical measure of any physical
quality that can be measured or counted. Remember that most quantities must
have units attached before they become meaningful.

i Let us now look at two lists of quantities:

First List Second L:st
The number of sides in a triangle The length of any triangle's side
- How tall the flagpole at your school is The length of any piece of pipe
How far you live from your school How far from one house to another
3 The diameter of Jack's bicycle wheel The diameter of any circle
- The weight of a certain croquet ball The weight of any ball
‘The area of your teacher's desk The area of any rectangle
E ‘The freezing temperature:.of water The temperature outdoors

Do you see anything special about the first list that does not apply to the
'W second? The important difference between the two lists is this: Every quantity
= in the first list remains always the same; each quantity in the second list
I may change from one value to another. For instance, there are always three
: sides to a triangle, but the length of a side may be any length at all; your
f: sichool's flagpole is some particular length, but a pipe may be any length at
i all; your house is always the same distance from school, but you can find
F

two houses that are almost any distance apart that you please; a particular

croquet ball always has the same weight, but you can find some ball that has
almost any weight you please.

: So you recognize tha* some quantities have the special property of

§ remaining unchanged in value while other quantities may have any value

X at all (within limits, perhaps). A quantity is called a constant if its value

' remains fixed during the time you are interested in it. If a quantity may have
different values during the time you are concerned with it, the quantity is

5 called a variable. Try to list a few constant quantities and a few variable ;
ones that you are familiar with. !

You might notice that some particular quantity may under some circum-
stances be considered a constant and under other circumstances a variable.
Ifor instance, suppose vou were playing with onmeone on a seesaw. You have
carefully positioned yourselves so that the board is exactly balanced and then
you begin to teeter. As you know, you can now teeter up and down as long as
you feel like it. But if your weight suddenly increased and decreased crazily
and unpredictably, you wouldn't be able to have much fun on the seesaw, would
you? During the short time you play on a seesaw, your weight and your friend's
weight remain constant. But you know very well that, over a period of years
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P as you grow up, your weight steadily increases. For the purpose of seesawing
;y one afternoon, you may properly consider your weight a constant. But over
a longer period of time, you would have to consider your weight as a variable
quantity.

You will have to prepare yourself to accept a peculiar thing about con-
stants: some of them have always the same value, others have a fixed value
only during some particular investigation, but may have another value that
stays unchanged during another investigation. Constants that always have the
same value are often called absolute constants; the number 6, 1/2, 0. 022,
and 7. 96 are examples of absclute constants. Constants whose values stay
fixed during any one investigation (like your weight, for instance), but may
change from one investigation to another may be called temporary constants,
We will have more to say about temporary constants later on.

Right now we will try to measure a certain absolute constant. You are
ready to dc Experiment 6. After completing it, we will have some questions

to discuss.

Points to Discuss El_ Class

Did you find that the ratio, diagonal/edge, of a square is always the
same, regardless of the size of the square? Does it seem reasonable to you
that this ratio would not depend on what color the square is, what it is made
of, how thick it is, how heavy it is, who measured it, where or when it was
measured, or on anything other than that it is a square? If you answered
'yes'' to both these questions, you have said that it is a property of being
square -~ a 'pure'' property that depends only on being square -- that the
ratio of diagonal to edge is always the same. In geometry, it is proved that
this is true; you have shown experimentally that it is true, at least for those
squares that you measured. If you have not already done so, compute the
average of your values and write the average at the bottom of the table.

What units does this ratio have? Suppose that you had measured both
edge and diagonal in inches instead of centimeters; would the ratio be different?
Try it, by having your teacher draw two or three large squares on the black-
board and making the measurements in inches with a yardstick. If you do this,
you will probably find out quickly why the metric system is so much easier
to use than the English system.

The ratio is a number, without units. It is a peculiar number in that it ;
is not an integer (that is, a whole number), it cannot be written as a fraction
no matter what integers you use in the numerator and denominator, and it
- cannoti be wriiten as a decimal no matter how many places you carry it out.
It is very nearly equal to 10/7; a closer value is 17/12; and a still closer
value is 99/70. But no fraction involving integers only is exactly right. In ;
decimals, the value is about 1.4142, but no matter how far you carry it out,
it is never exactly correct. Well then, if you can't hope to represent it by an
ordinary fraction or a decimal, how will you name it? The number is asually
named ''V¥2,'" which you read '"'square root of 2. "
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This number has very many interesting properties, one of which is the
origin of its name, ""square root of 2." It is the number which, when rnulti-
plied by itself, gives 2. See how close you came to the ''correct' value (that
is, how nearly exactly square were the "squares'' you used and how accurately
you measured them) by multiplying your average ratio by itself. Why did your
mzasured value not come out exactly correct? '

Since. when you multiply this number by itself, you get 2, it follows that
2 is the square of this number, or this number is the square root of 2. Calcu-
late the square root of 2 to four decimal places and compare it with your
average value. Your teacher will show you how if you don't already know,

If you like to play with numbers, here is another interesting property

of 2. You will notice that J 2 is not quite /3 , butitis more than / 3'? .
It is the fraction, ''1 and one somethingth, ' where the denominator in ''one
somethingth'' is bigger than 2 but less than 3. How about /"‘IT 7?7 Well, 1
2L :

5 :

!
I Z""*_r; happens to be too small b\}t / Z‘Zl is too big. The denominator of the
fraction should be ''2 and one somethingth, ' the ""one somethingth" being

/
between -é— and .:’;- . How ~bout / Z 17 ? 'This turns out to be a little too
23

]
large while / Z . is too small. The correct last denominator should be
7 4
3

l

———t ey

more than 2 but less than 3 - gay ZJL‘ . 7The fraction then would be A .

L
2 2
)

——————

I
Now it turns out that this is a little too srnall, but 2 P is too big. A
L

| / 23

!

closer value is Z 2 -—'-—-;— » Which nevertheless is now a little too large. If
2i:

you keep on writing this already very mesgy fraction, always changing the very
last 2 to 2 1/2, you keep getting closer and clocer to 2. Try working it out
using, say, six 2's and then seven 2's. The correct value will be between your
two results. Your teacher will help you if you get mixed up. You will find

a guide for doing the work systematically on page 20 ci your workbook.

[_You must not get the idea that J?cczmld be calculated by using 3's in
Placed of the 2's in the continued fraction for § 2. You canft. Perhaps when
you study more mathematics you will learn why J 2 can be calculated this way}
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2.  Arithmetic with Quantities

In Experiment 6 you calculated the ratio of length of diagonal to length of
edge for a square. That is, you divided the length of the diagonal by the length
of the edge. But how could you do this? When you learned how to divide, you
were taught only how to dividerpggnumber by another number. Lengths are not
numbers -- they are quantities, consisting cf a number plus a unit. How can
you divide things other than numbers? Can you divide an umbrella by a box-
car or a picnic by a jar of olives? Clearly you cannot divide any old thing
by any oid other thing. When then does dividing one quantity by another mean
somuthing ?

Notice that it could hardly be an accident that dividing the number of the
quantity expressing the diagonal length of a square by the number of the quan-
tity expressing the edge-length of that square should always give the sarne
result. In other words, in this experiment the dividing of one length by another
at least appeared to mean something. We can give no strictly logical answer
to the question of when you may multiply or divide quantities that are not
numbers. But we learn, sometimes by experiment and sometimes otherwise,
that certain quantities can be multiplied or divided to give meaningful results.

For instance, you already know that you can multiply the length cf a
rectangle by its width (both quantities but not numbers), and get the area of
the rectangle as a result. You know that you can multiply your wages per
hour by the length of time you work (again quantities that are not numbers) to
get your total pay. These are cases where you can perform arithmetical
operations on the numbers appearing in quantities and get meaningful results.
But suppose you divide the speed of a motorcycle by the number of buttons
on the jacket of its driver; or multiply the weight of a bird by the number of
leaves on the tree-branch it's sitting on. You can perform these arithmetical
operations, too. But do the results mean anything? One cannot say logically
that either of the two.last operations is really nonsensical. One cannot,
that is formulate a logical rule that will tell you when a certain mathemaiical
operation upon physical quantities is useful and when it is not. One of the
important goals of physical science is to seek out those cases where mathe-
matical operations on physical quantities are useful and meaningful.

The case for addition and subt:zacidon is one you are already familiar
with. Try to recall Experiment 2, where you added the lengths of some sticks
and found the resulting quantity equal to the length of the train of sticks laid
down end-to~end. You are also aware that adding the weight of one rock to
the weight of another wil' give you the weight of the pile made of the two rocks
together. Now it is clear that the train of sticks has some length, and the
pile of rocks has some weight, and that this length and this weight have :
meaning even if the individual - sticks and rocks are not measured. That
is, you don't have to know the individual weights or lengths in order for the ;
total length and total weight to have meaning. You don't even have to have a
defined length~unit or weight-unit in order to tell someone the length or
weight. (You can tell someone how long the train of sticks is by holding your
hands ti.e right distance apart and saying '"This long. ') All this discussion
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says that the length o. the train and weight of the pile are quantities all by
themselves. They are meaningful quantities whefier they are thought of
as sums of componants or noti They are meaningful quantities whether a
uhit of measurement happens to be handy or not.

A given train of sticks, moreover, has always the same length. Its
actual length does not depend on what units you choose to measure it in.
You may say the train is 24 inches long, or 2 feet long, or 61 em long. These
are all the same length, for giving the length different names does not give
it different valucs. In the same way, you realize without any need to explain
that "my father,' '""Dad,' and '"Mr. Brown' all may refer to the same persen,

Now lct us consider a specific case of adding two stick lengths. A stick
25. 4 cm long and another 38.1 cm long will, laid erd-to-end,- procuce. a ir-zin
6355 cm long. I you were asked whether these two sticks laid end-to-end
would span a distance nf 61 cm, ycu would say '"Yes.' Now this property of
the two sticks of Leing able to verspan a distance of 61 ¢cm has nothing
whatever to do with the fact that you made the measurements in cm. If
someone elsc came along and met the same problem, he might ask "Will these
two sticks togeiher span this distance of 24 inches?'" (24 inches h. ypens to
equal 61 cm, withing the ; -ecision of two significant figures.) To find out,
he might measurc the two siicks, find that they have lengths of 10 inches and
15 inches, notice that the sum of 25 inches is greater than the given 24
inches, and thc. answer '"Yes, they will span the given distance.'" An uncivil-
ized man who never heard cf a ruler and has no concept of arithmetic might
arrive at the came conclusion without making any measurements..at. all. A
highly civilized man from ‘cuter space may make the necessary measurcmeants
in units you never heard of and ccme to the same._conclusion. The point is
that the sticks either do or do not span the space. The sticks do not know ==t
means you are going to use to find the answer, and do not change themszlias
so that they give one answer for one method and another answer for another
method. The behavior of the sticks is a property of the physical world, =c:
of the methods that man uses to study ‘he world. Remember this, for it illug-
*rates the most important precep: of all of physical science: The behavior of
the Universe.is independent of the means used to study it. If you have a
problem to solve and the answer you get depends upon the nethod you us

solve it, then -rou cannot he surec that that answer is right.
g
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But suppose that two different people measured the two sticks, one
using inches 22d the cther using centimeters. One stick is 10 inches long
and the other iz 38. 1 cm long, Wi the two sticks span a distance of 61 cru?
Notice that the prcllein has not changed; we are still talking about the same
two sticks and the same distance to span. By this time, also, we are con-
vinced that one can obtain the total length of two sticks laid end-to-end by
adding the quantities representing their individual lengths. Therefore the
sum of the quarntities '"'107inzkes" and 38. 1 em'" must be the quantity repre-
senting the total length.
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Now if we aad 10 + 38.1 we would get 48. 1, would see that 48. 1 is less.
than 61, and would conclude that the two sticks would not span the distance.
On the other hand, we concluded from earlier discussion that the two sticks 1
do span the distance. Here we have two different answers to the same Lro-:- ‘
lem, depending upon how we worked it. That's not allowed! What is the :
trouble?

If we stick exclusively to cm we find that 25.4 cm plus 38.1 cm is
63. 5 cm which exceeds 61 cm, and the sticks do span the distance of 61 cm.
If we stick exclusively to inches, we find that Einches rlus 15 inches is
28 inches which excceds 24 inches and the sticks do span the given 24 inches.
If we stuck exclusively to z.iles, or feet, or vers?:-;(used in Russia), or
grixes (used on the planet Nonesta) we would never have trouble: we can
find the sum of two quantities, under these conditions, by adding the numbers
representing the quantities. When the two quantities use different units, howe

ever, you cannot get their sum by adding the numbers representing the quan-
tities.

You must understand that there is nothing whatever wrong with "adding
2 inches and 3 centimeters.'' This is a quite reasonable and meaningiul
operation; they do have a sum. The wrong part enters only vhen you try to
add the numbers 2 and 3 and expect the number-sum to represent the length-
sum. In other words you can add two lengths together to get a total length
whether or not the two lengths are expressed in the same units; for this is
a physical operation in which the sticks have no way of knowing what some
human being chooses to call their lengths. But as soon as that human bcing
wants to compute their combined length by adding numbers, the quantities
must be expressed in the same units. If you wanted to add 10 inches to
38.1 cm to get a single quantity representing the sum, you can do it only
if you change 10 inches to centimeters or change 38.1 cm to inches and
then added the numbers. You can make this change if you know that one inch
is 2.54 cm. Adding weights some of which are in the metric and some in the
English system is also possible when you know that one pound is 453. 6 grams.

¥inally, suppose that you wanted to add 3 gallons and 4 hours, what
would you get? Realizing that numerical addition is forbidden unless the
quantities are in the same units, you seek first either to change 4 hours to
gallons or to change 3 gallons to hours. But this cannot be done, for the
gallon is a unit of volume and the hour a unit of time. There can be no way
of converting the one to the other because they measure different things.
Their sum could not then possibly be a quantity, because a quantity is the
measure of a quality, not the measure of two or more qualities. There 1s no

meaning to the sum of two quantities that are measures of different qualities.

All this discussion can be summarized in the following

Rule: Two quantities can be added (or subtracted) numerically if they
are measures of the same quality and are expressed in the same units. The

sum (or difference) is another measure of the same quality and has the same
units.
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) It is important that you understand where this tule comes from. The rule is
) not a law that was passed by Cohgress, ot that your teacher or the President
of the United States or the Pope decteed you must follow, or that the Bible

or gome textbook saill everyone must obey. The rule comes from a logical
examination of the meanings of words and of fundamental principles. It is

a rile forced on us by the hature of the world, not forced on you by someone's
say-so.

; Here is a word of caution. Do not underline the Rule above or box it
carefully in red ink as something important to remember. It is imp’ortant
to remember, of course. But if you did not understand the discussicn that
led up to the rule, you miss the whole point by merely memorizing the rule.
If you did understand the discussion, then you know the rule without m- norizing
it. Memorizing is very unimportant in physical science.

You must work a few examples to make sure you understand the ideas of
adding physical quantities.

1. How far would three steel rnds stretch if laid end-to-end. One xod is
14 cm long, one is 2. 62 cm long, and one is 10. 941 cm long?

2. A stack is made of four thin aluminum plates laid flat one on top
of another. One plate is 0. 0346 inches thick, one is 0. 123 cm thick, one is
0. 00248 cm thick, and the fourth is 0. 001756 inches thick. How thick is
the stack?

3. A flask contains 22.71 cc of water. An irregular lump of glass is
placed in the flask and the water level rises to 57. 22 cc. What is the velume
of the lump of glass?

4. A flask contains 34. 65 cc of water. An irre\gular lump of marble
weighing 17. 212 grams is dropped into the water, so that the totzl! volume is
now the sum of the volumes of water and marble. What is the total volums<?

5. Three pieces of brass are placed in a box weighing 586 grams. Cne

hs 1, 748 pounds and the second weighs 13, 42 ounces. The box with

all three pieces weighs 2271 grams. Wkat is the weight of the third piece of
brass?

prn we
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3. Multiiplying and Dividing Quantities

The logic involved in deciding when you may multiply or divide physical
quantitics is somewhat simpler than for adding and subtracting. The corres-
ponding rules are therefore a littl2 less restrictive. You will remember the
basic restriction. It was that adding two quantities together always means

L:) lumping one portion of a certain quality (like length, volume, weight, etc.)

)

together with another portion of the same quality. The nature of addition is
such that we can attach meaning to a sum only when we add measures -of the
same quality. This is not the case with multiplying.

T D R
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For instance, remember again that you can multiply the length (say in
feet) by the width (also in feet) of a rectangle to get its area in square feet.
This is a case where you are multiplying two measures of the sarme qualiity.
But you can calculate the distance a car travels by multiplying its speed by
: the time it takes to make the trip. Three different qualities (distance, time,
l and speed) are involved here, all with different units. You can multiply the
i area of a box-top (square inches) by the height of the box (inches) to get its
| volume (cubic inches); again three different qualities and three different units
being involved.

e N R S e st Ve iy Lt e onn DT

The questions now are: What quantities may you multiply together
numerically? What units may the quantities have? And what units does the
product have? The first of these questions must be answered for each partic-
ular case and will be touched ':.on more thoroughly in Section 5 below. In
general there are no restrictions at all on what quantities may be multiplied
together. (That makes things easy, doesn't it?) The two questions about
units are settled by the following

: . Rule: You may numerically multiply two quantities whether or not they

; have units or whether or not the units are the same. You attach to the product
& new unit whose name is formed by joining the names of the two individual
units together with a hyphen, either one first.

N There are a few conventions used generally in connection with this rule.
- For one thing, only the second member of the compound name is made plural.

: When both quantities have the same unit, the compound unit is usually named
by using the word ''square' in front of the common unit. Thus the area of a
rug measuring three feet by two feet is usually given as "6 square feet, " though
there is nothing logically or grammatically wrong with calling it "6 foot-feet. "
If only one of the two quantities has units, the units of the product are the

same as the units of this quantity.

You might now protest that we went to a lot of trouble to explain and
justify the rule for adding quantities and even scolded the person who wanted
to memorize the rule as a substitute for under standing it. Why now do we
give this naw rule for multiplying without any justification, so that the only
way anyone can learn it is to memorize it? You have a right to be given an
answer to this question. .

You will remember that adding two quantities is very much a common-
sense process. You can add two herds of sheep together and obtain the num-
ber in the combined herds by adding the numbers for the individual herds,
You can do the same with baskets of apples or gallons of cider. Under the
proper conditions, you can do the same with lengths of sticks, intervals o:
time, weights of rocks, ectc. Combining two portions of the same guality,

= as we said before, is almost an intuitive process that yields a larger portion
) of the same quality; that is,. the numerical sum. We saw, however, that condi-
tions have to be proper. If the sticks are not laid end-to-end, if the time
intervals are not consecutive, if we add the weight of a half a pile of rocks to
) the weight of the whole pile -- the numerical sums may not have as much
meaning as we might at first think. The truth is that one has to be a little
Q careful even in this intuitively "simple'" process.
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Multiplication, however, is not so intuitive. There are times when
multiplication is merely a compact way of stating = long addition. But there
are times (in fact most times) when multiplication is not a kind of addition.

In these cases, we have no immediate meaning to attach to the idea of the
product of two quantities, and we are free to attach to it whatever meaning
we wish that is consistent with experience. FEach case of multiplying two
physical quantities together has to be examined separately, as we shall see
later, in the light of such experience. Since there is no automatic, common-
sense, intuitive meaning to the product, there is no automatic name for the
units in which the product is measured, We can call it what we want. Most
people feel that it is more reasonable to name the unit of the product after
the names of the things multiplied together. But there is absolutely no logical
reason why this should be done (and in fact it is not always done);. it is. éaly
convenient to do so. Thus the rule for addition is a logicul one and was
carefully explained. The rule for multiplication cannot have a logical basis
and is only a convenience that has to be learned. The situation here is some-~
what similar to, say, your eating habits. You have two rules for eating: you
wash you hands before eating and you wash the dishes after eating. Why not
the other way around? There is a very good logical reason for washing your
hands before the meal, but a much less sound one for washing the dishes
after . The one '"rule" is logical but the other is largely convenience.

The situation is similar with the process of dividing quantities. Here is
the

Rule: You may numerically divide two quantities whether or not they have
units or whether or not the units are the same. You attach to the quotient a new
unit whose name is formed by writing first the unit of the dividend (numeratcr),
then the word ''per'’, then the unit of the divisor (denominator).

Again, there are conventions to be observed. Frequently ir writing,
the word ''per' is replaced by the diagonal slash '/, just like a fraction tar,
which in fact refers to dividing the upper or first unit by the lower or second
one. In speech, the slash is read as 'per'. Only the first unit named (numer-
ator) is made plural. When both quantities have the same unit, the quotient
is a quantity without units -- that is, a pure number. (Very often, however,
one sees units, like '"feet per foot' or 'galion per gallon', used to emphasize
the units from which the quotient was derived, though this is not necessary. )
When only the numerator has units, the quotient has the same units. When
only the denominator has units, the quotient has the same units with the word
"per' in front. In this case, the name is always singular.

Notice that the person who says '"You cannot multiply or divide one quan=-
tity by another unless they are both numbers" is no more (or less) right than
the person who says ''"Oh yes you can." There is obviously nothing to stop you
from multiplying the number of one by the number of the other. The important
question is: is it worth doing? We answer this question this way: if the product
has meaning, it is worth having done it. Physical science is much concerned
with discovering when such arithmetical operations on quantities have meaning.
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You have discovered that dividing the length of the diagonal of a square by
the length of its edge has meaning, and is therefore permissible.

These rules are far less formidable than they may look. You only

need a little practice to get the idea. Here are some questions to practice
on:

If an automobile can travel 180 miles on 10 gallons of gasoline, what do
you get when you divide 180 miles by 10 gallons?

If you can travel 24 miles on your bike in 3 hours, what do you get when
you divide 24 miles by 3 hours?

If 55 gallons of paint weighs 495 pounds, what do you get when you divide
495 pounds by 55 gallons$

If 15 1/2 pounds of kamburger costs 620 cents, what do you get when you
divide 620 cents by 15 1/2 pounds?

If an airplane needs 1350 gallons of gasoline to travel 135 miles, what
is the meaning of the quantity 1350 gallons divided by 135 miles? What is the
meaning of 135 miles divided by 1350 gallons?

The glass for a large telescope mirror has to be cooled very slowly. In
one case the glass was cooled from 800 degrees to 500 degrees in 30 days.
What is the meaning of dividing 300 degrees by 30 Jdays?

A man strings 15 tennis rackets in 5 days. What is the meaning of
15 divided by 5 days?

A garden is 30 feet by 40 feet. What is the quantity 30 feet time 40
feet and what does it mean?

Thirty marbles cost 15 cents. What is the meaning of 30 divided by
15 cents and what is the meaning of 15 cents divided by 307

An iroun pipe 7 feet long weighs 28 pounds. What is the meaning of 7 feet
divided by 28 pounds? What is the meaning of 28 pounds divided by 7 feet?

A baseball player makes 72 hits out of 240 times at bat. What are the
meaning and the value of the quotient 72 divided by 240? The newspaper
reports this batter as having a batting average of ""300.'" Where does this
number come from?

If you have not already done Experiment 8, now would be a good time to
do it. Then come back and we will have some. more.

Points to Discuss ;_lll_ Class

How many significant figures are you entitled to in calculating the ratios
of circumference to diameter?
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What are the units of the ratio, according to the rule?

Did you find that you got the samre ratio (allowing, of course, for a little
experimental error) for every circle? Does it seem reasonable to you that
this ratio should be independent of what the circle is made of, who made it,
how thick it is, where it was made and measured, or anything else other
than that it is circular? Table I shows you that it is purely a property of
being circular that the ratio of circumference to diameteris always the same
-~ at least for the circles you measured, and when the measurements are
madc in centimeters.

Did you find that the ratio changed when you switched tc inches {o
measurements? When you switched to widgets? Does it matter what unite
you use to make the measurements?

According to the rule for units of a quotient, when the numerator and
denominator both have the same units, the quotient has none; that is, the
quotient is a pure number. The quotient, in other words, does not tell you
the units of the two numbers divided. Might this be because it isn't necessary
to tell, because you get the same result no matter what units are used? At
least you have shown experimentally that it doesn't matter for the units you
used -- centimeters, inches, and widgets. Did anyone inyourclass find that
he got a different result for his invented unit? What does this show? Notice
that the fact that everyone in your class got the same ratio even when very
many different invented units were used does not prove that no one will ever
invent a unit for which the ratio will be different. This sounds like a hard
thing to prove, doesn't it -~ that noone will ever find such a unit? Neverthe-
less we will prove exactly that at the end of this Unit!

The number 7] is a tremendously important number in mathematics
and physical science and elsewhere, too. The fact that it is the ratio of
circumference todiam®ter of a circle is only one of very many places where
it pops up. You will see a few more places as we go along. And, itis to
be hoped, you will see many more in your future study.

fifteen significant figures. Of course,no one ever determined T this ac
ately by experimental measurement. Even if you used a microscope and
super-ruler that could measure to 0. 0001 cm, you would have to measure

a circle about six times the diameter of the earth to get this accuracy! How
then can 1/ be determined so accurately? Simple -- you use some of its
other properties.

The value of 7/ was given in the discussion following Experiment 3 to

[If you like to play with numbers, here is another property of {7 by which
you could compute its value to very great accuracy if you had the patience.
Multiply 4 x (1/2), and you will get 2. 00, which you know is much less than
77 . In other words, to get 7/, we would have to multiply 4 by something
much larger than 1/2. Very well, we will add something to the 172 and
try again. The thing we will add is 1/3: try 4 x{1/2 + 1/3_] . If you work
this out, you will find it comes to about 3. 33, which of course is too large.
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We overshot the mark, so we will now subtract a little off: try 4 x [1/ Z2+1/3

- 1/1_5]., This comes to 2,93, which now is too small, We overshot the mark

again, hut we’re coming closer! So we add a little back on, this time adding
1/35. We find that 4 x [_1/2 +1/3 -1/15+ 1/35] is too big, but not very
much and we are now closer to 77 than before. We can get still closer by
subtracting a little away again, this time subtracting 1/63. This time we find
that 4 x [1/2+1/3 - 1/15+ 1/35 - 1/63] is too small, but closer than ever,
We raust add a little back on. Continuing in this way we keep getting closer

and ¢loser toT, one time too large and the next time too small, but always
closer than the time before.

i‘ The trick, of course, is to know exactly what next to add or subtznact
inside the parentheses. Obviously you cannot add or subtract any old thing
you please, and expect to get closer toTT every time regardless of what you
add. (Of course, if we knew the value of | ahead of time, we could always
tell what has to be added or subtracted. But remember that we do not know

its value beforehand.) There is a special scheme to the series of fractions in -

the parentheses.

To learn this scheme, notice first that every fraction has 1 for its
numerator. The denominators of the fractions {after the first fraction, 1/2)

N - & b & Vidv rda v qa [ILI0I

are 3, 15, 35, 63, etc. Do you notice any pattern in these numbers ?Compare
this series to the series you would get if you increased each number by one.
The new series would be ¢, 16, 36, 64, etc. Do you see a pattern now? The
new series is simply the squares of the even numbers' in their natural order.
The next fraction to be added ts the 1/63 iast used above is 1/99 {99 is one
less than 10 x 10) and the next one after that to be subtracted is 1/143

(12 x 12 = 144), And so on.

LYou might want actually to work out JJ this way. You would getTT correct

to two decimal places by taking six fractions, and correct to three decimal.
Places by taking sixteen. The worksheet for . .Experiment 9 will help you to
systematize the work. Perhaps if there is a company that uses an electronic
computer near your school, your teacher might arrange to have you visit there
and have it compute™ || for you from this series using perhaps 150 fractions in
the parentheses. This would give ]j correct to about 5 decimal places. The
machine could do this for you very quickly, whereas it would take you with a
pencil and paper many days. Actually this series is a very slow way of
computing JJ» though a very simple one. There are very much faster and
better ways to do it, though much more complicated. It is hard to see how the
squares of the even numbers could be related in such an elegant way to the
ratio of circumference to diameter of a circle. It is one of the beauties of

mathematics that such relationships exist and can be proved to be true.:]

4. Symbols

The number 12 is a constant, isn't it? But 3 x 4 is also 12, and so is
6 x 2, and so is 24/2, and so is 7 + 5, and so is 17 - 5, and so is V144, Since

12 is equal to all these ( and many more, of course), is 12 therefore a temporary

constant -- or even a variable? The answer is no. You must be careful to

‘
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distinguish between the yglue of a number and the ngme of the number. For
instance, ''twelve' and "12" are different names for the same thing; in French
they call it "douze, " in German '"zwolf, " and in English we also sometimes
say ''dozen'’; -- but they all mean exactly the same thing, In the same way

'""3 x 4" is still another name for 'twelve,' and so is "7 + 5,'" and so is V144,
They are all merely different ways of writing exactly the same number.

Similarly, consider a tertain rock weighing 12 ounces. The weight of
this rock is also 3/4 of a pound, or 0.75 pound, or 341 grams. Does the fact
that the weight of the rock has all these values mean that the weight is variable?
No. Again "12 ounces, " ''0. 75 pound, " and "'341 grams'® are simply different
ways of saying exactly the sime thing -- different languages, if you please.

Be very careful to distinguish between a quantity itself and its name. The

quantity, if it is fixed, has oply one value, but it may have many different

names. One kind of name especially convenient to use for a quantity is the
sort of name called a ''symbol. "

When one thing is used to represent another thing, the first thing is
called a symbol. You have been using symbols almost all of your life, but
you may not realize it. Take for instance a dog. A dog is a certain kind of
four-legged animal that barks, wags its tail, and likes to be petted. You
refer to this animal orally by pronouncing the word ''dog, '' but you do not
have any trouble confusing the animal itself with the sounds you make when
you pronounce the word ''dog.|'"'" The sounds are a symbol representing the
animal. In the same way, cel:'tain marks on a piece of paper -- the marks

look like this: d o g -~ are 2 symbol for the animal, but are not the animal
itseclf, |

You can see how useful symbols are. Wouldn't it be troublesome if
everytime you talked about your dog you could do so only by lifting him up,
pointing to him, and saying 'ugh''? Imagine how it would be if.you had to do
that with every thing you talk about. All of your speech is really the use of
symbols, and of course it takes a baby a long time to get used to using the
same symbols that other people use so they can understand him. In the same
way, when you learned to read you had to learn a whole new set of written
symbols before you could understand what you were reading.

Physical scieniists find it very useful to use symbols in addition to the
ordinary ones used in speaking and writing. Most of them are just new and
easier names for the quantities they deal with. For instance, you have
already seen that when you divide the length of the diagonal of a square by
the length of its rdge, you always get the same number. We could write the
sentence

Length of diagonal) (divided by) (Length of edge) (always gives) (same
constant).

where each separate idea in the sentence is put in its own parentheses.
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Now let us rewrite the sentence using symbols. Nouns first: Instead of
writing ""Length of Diagonal'' (which is already a symbol anyway!), we will
write simply ""D!'. Instead of writing "Length of Edge.'s we write "E!. We
have already used J2Z as the symbol for this particular '"Samne constant, ‘' and
we might as well continue doing so. The sentence now looks like this:

D divided by E always gives J 2.

Next, we will agree that "always gives'' will be symbolized by ''=" and ''divided
by' by '"/'. The sentence then reads

D/E= J2

You should not let this strange-looking sentence trouble you. It may look
formidable or foreign, true; but perhaps you can remember the day that the
sentence you are now reading looked strange and undecipherable. The sentence :
"D/E = (2" is merely written in a foreign language, but it is a language that is ;
very easy to learn.

You have used symbolic statements like this before, of course, but it is
important that you understand the exact meaning of such a sentence. (People
also call them '"equations' or 'formulas'" but they are really only sentences. )
Perhaps the most difficult thing about such a sentence is the meaning of ''=!',
To say that one thing equals another is not always exactly clear in meaning,
Fortunately, however, when dealing with quantities, the meaning is quite
exact. Two quantities can be equal only if they are quantities having the same
magnitude 21‘_12 the same units -- only, in other worcs, if they are no more
than different names for the same quantity. This statement is worth repeating:

In an equation involving physical quantities, the two sides of the equation
are merely different names for the same quantity. This means that the whole
left-hand side of the equation (no matter how complicated it may look) and the
whole right-hand side are different names for the same quantity. Do you see
how fundamentally simple an equation is? An equation is nothing morve than a ;
sentence that says that one quantity is merely a different name for another
quantity; that is, that the "two'' quantities are really only one under different
names.

In the equation D/E = J2 for instance, ﬁ is the name of a certain number
which you learned how to work out. Experiment 6 showed you that D/E is
another name for this number. For what does "D/E'" mean? It means the
quantity you get when you divide the variable D by the variable E. But D and
E are both lengths. For example, D might be 14. 14 cm and E might be 10. 00
cm. Then according to rule for dividing quantities, D/E is a quantity whose
number is 14.14/10.00 or 1.414. The units of thisnumber may be found by
the rule: since D and E both have cm as their units, D/E has no units, or is
a pure number. Thus D/E is simply 1.414 - as is also J2 to the accuracy
of our measurement. That is, "D/E" and ﬁare merely different names for
the same quantity.
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Write an equation like the one abowe for the relationship between the
circumference of a circle and its diameter. Use '"C" and "D' ag gymbols
for circumference and diameter. Is '"C/D'" an .other name for T ? Does
your experiment tell you so? Does dividing C by D give a number without
units ?

Just to show yourself how easy it is, try your hand at translating the

following sentences into symbolic equations. Use whatever you like a3
symbols for the quantities involved.

1. If you lay two siicks down ead«towend in a straight line, the total
length can be found by adding the lengths of the right-hand and left-hand sticks.

2. The average speed of a car during a trip may be found by dividing the
distance travelied by the time for the trip.

3. The cost of a pile of golf balls is the price of one ball multiplied by i
the number of balle in the pile.

4. The radius of a circle is half its diameter.

Also, make up formulas to show the relationship between
5. The perimeter of a rectangle and its length and width,
6. The perimetier of a square and ihe iength of iis edge.

7. The weight of a pile of golf ballis, the weight of one golf ball, and
thenumber of balls in the pile.

8. The cost of a pile of porkchops, the weight of the pile and the cost
per pound.

5. Multiplying and Dividing

Of course you know how to muliiply two numbers together and how to
divide one number by another. In fact you are probably quite skillful at it.
Don't let the title appearing at thehead of this paragraph make you think you
are going to have to go through all that again. Instead, the present section
will try to tell you something about what multiplying and dividing mean. First -
-- multiplying.

It is easy enough to see what is meant by multiplying two integers together.
Integers, you remember, are the numbers you use in counting -- like zero, ..
one, two, seven, forty-three, and one-hundred-twenty-one. But there are
also numbers that are not integers but lie between two consecutive integers --
like 6 1/2, 14.712, ﬁ, and 7. What consecutive integers does each
each of these lie between?




If you multiply two integers together -- say 6 and 7 -- the product is
defined as that number which you would get if you add 7 and 7 and 7, etc.,
six times. And it happens, as you know, that adding 6 and 6 and 6, etc.,
seven times gives you the same result; that is, multiplying of integers is
commutative. Since you obviously can do this with any two integers (although
with big numbers it may take a lorg time to do it), there is no trouble with
the meaning of multiplying integers. You know, too, that whenever you multi-
Ply one integer by another, the result has to be an integer.

Also when you multiply a non-integer by an integer -~ say 6 x 7 1/2 --
you say that the product must be 7 1/2 + 7 1/2 + 7 1/2, etc., six times. This,
too, you can do for all cases.

The trouble starts when you try to multiply numbers that are not
integers; for instance, 7.5 x 6.3, The question here is not ''"How much is
7.5x 6.3?" Before we can say how much it is, we must first decide '""What
does 7.5 x 6.3 mcan?'" We have agreed on what is meant by multiplying two
numbers of which at least one is an integer. We have not yet said what
multiplying means when neither is an integer. But there is really an even
more basic question than that. One way to phrase the more basic question
comes from realizing that ''7.7 x 6. 3" cannot mean 7.5 + 7.5 + 7. 5, etc.,
6.3 times. Thus the truth is that "7. 5 x 6. 3'' doesn't mean anything until we
say what it means. Since ''multiplying'' has so far been defined only when at
least one o. .e factors is an integer, we are quite free to make multiplying
numbers other than integers mean anything we want. The most basic question
then is ""What do we want multiplication of two ron-integers to mean?"

When we look at the matter this way, we can see that two requirements
would be desirable if we could meet them. First, we would like the product
of two non-integers to mean something useful -- else why bother to define it
in the first place? Second, since we know how much are (7.5 x 6) and (7. 5 x 7),
we would like (7. 5 x 6. 3) to lie between (7.5 x 6) and (7. 5 x 7) -- simply because
6. 3 lies between 6 and 7. And we would like (7.5x 6.3) and (7. 5 x 6. 2) and
(7.5 x 6. 4) to be defired in such a way that (7. 5 x 6. 3) lies between the other
two. In-fact, (we're going to use symbols now) if G is any number greater
than 6. 3 and L is any number less than 6.3, we want times' to be defined
in such a way that (7.5 x 6. 3) is more than (7.5 x L) but less than {7. 5 x G).

And of course tic same lind of wants apply to multiplying any non-integers
at all.

As you alrealy know, the way you learned leng ago to multiply 7.5 x 6. 3
does satisfy the desire that (7.5 x 6. 3) lie between (7. 5 x G) and (7.5 x L).
The kind of multiplication ycu know therefore does satisfy the second desire.
Does it satisfy the {irst desire ~- that it be useful ?

This question can only be answered by experience, and experisnce shows
that the kind of multiplying you know is very useful, indeed. In Experiment 3,
for instance, we used the rule that the a ea of a rectangle can be computed by
multiplying its length times its width. For that purpose, then, the kind of
multiplying that you already know is useful. The fact is that that kind of multi-
plying is found to be useful in numberless other cases, too. This usefulness
tells us that the kind of muitiplying that you know is an operation worth giving a
name; Wwe call it "'multiplying." We represent the operations you have to go
through to multiply one number by another by the "times sign", x.

A S S 9
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But notice that in physical situations, it often happens that two quantitics
pop up. Does it follow that multiplying them together will give as a useful
product? Only experiment can answer that question. Physical science is
founded on experiments that show us when it is meaningful to multiply two
quantities together and when to do many other things with quantities.

Once we have set’led on what multiplying means, dividing follows aulo-
matically. For instance, you know that .3 x 7. 5) is 47. 25. But suppose
you didn't know that. Suppose you wanted to know what number you have to
multiply by 6.3 to get 47. 25. You say to yourself, ''Surely there must be
some number which, when [ multiply it by 6. 3, gives me 47. 25. What is that

number?'" We will lay aside the question -- ~egretfully, because it's an
intriguing question ~-- "'Why must there be such a number? Maybe I only wish

there were one and there really is no reason to believe that it must exist. "
We will lay aside this question and assume that it does exist.

Now we will use symbols again. We say ""There is a number that gives
47. 25 when you multiply it by 6.3. We don't know what the number is, so we /
will call it Q. Then, whatever Qis, it has to be true that

6.3 x Q=47.25."

Furthermore, whatever Q is, it has to be found by doing something or other
with the two numbers, 47.25 and 6.3. This ''something or other' is called
"division. " Just as we represent the operation of multiplying by the ""Times :
sign, ' we vepresent division by the "fraction bar', /. For instance,
"6.3 x 7. 5" means ''the result when you multiply 6.3 by 7. 5." So also, :
''47. 25/6. 3" means "the result when you divide 47. 25 by 6. 3. " But notice
one very important thing: division is not commutative. Although ""6.3 x 7. 5"
means the same as ""7.5 x 6. 3, " in divisior "47. 25/6. 3" does not rean th:2 i
same as ''6.3/47. 25."" Sometimes the fraction bar is written horizontally:

7. 2
47. 25/6. 3 and _‘_1_6_5_5_ both mean ''47. 25 divided by 6. 3.

Of course you already know how to carry out the operation of dividing one
number by another, but it is very important from now on that you now what
it means. It is especially important that you know the relationship between
multiplying and dividing. The relationship is very simple, but you must know
it.

First, notice that 47. 25/6. 3 means the resu’t when you divide 47. 25 x 6. 3.

"fha.t is, 47.25/6.3 is one nurnber, though it may look like two. Divide 47. 25
by 6.3 to see what you get; you ought to get 7. 5. In other words, ''47. 25/6. 3"
and "7.5' are merely different names for the same number. Wa may write
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where the equals sign, as before, means !is merely another name for.'" Now
let us take this number and multiply it by 6. 3. This we can do, because we
know how to multiply two numbers. Since ''47. 25/6. 3" and "'7. 5'" are merely
different ways of writing the same number, we of course have to get the same
result whether we multiply 47. 25/6. 3 by 6. 3 or multiply 7. 5 by 6. 3, that is,

47.25 x 6.3 = 7.5x 6.3
6.3

Now keep in mind that 47. 25 x 6. 3 is one number and 7.5 x 6.3 is also one
number., Moreover, thé’y 3re the same number. Multiply 7.5 x 6. 3 and you
will get 47. 25. In other words, 47. 25 is still another name for the number

that may also be written "7. 5 x 6. 3" or é—Z——;‘i x 6.3." Thatis,

47. 25
6.3 x6.3 = 47.25

Look at this last expression. The thing on the left hand side of the
equals sign means ''The number you get when you divide 47. 25 by 6. 3 and
then multiply the result by 6.3.'" But this result, says the thing on the right
hand side of the equals sign, is 47. 25. In other words, if you divide 47, 25 by

6. 3 and then multiply the result by 6. 3, you get back unchanged the 47. 25 you
started with.

The result is true for any numbers at all. Let's use symbols, Suppose .
that A and B are any numbers at all. You know how to divide one number by
another, and so you could calculate A/B if you knew what numbers A and B
were. GSince you don't know, we will say that you would get Q if you carried
out the division. That is,

=Q

W}

and A/B and O are merely different names for the same number. But remember
also that ''dividing A by B'' means "finding that number which when multiplied

ty B gives A." In other words, Q is the nurnber which when multiplied by B
gives A; or Qx B = A, Now we multiply both sides of the equations abeve

by B. The products have to be equal, because we are really multiplying the
same number by B. It then looks like this:

w5

xB=QxB

Remember that «w2 are entitled to say these two things are equal because A

and Q are the sa:ne number; and if we multiply that number by B, we get B

only one result, whether we call the result "2 x B" or "Qx B." But Ox B = A,
you remember; be absolutely sure you know B why !




-46-

That is, A is still another name for ":% x B'" and '"Q x B." Therefore

In words: If you divide any quantity whatever by a second quantity, and then

multiply the result by the same second quantity, you get the first quantity
back again unchanged.

This is a very important conclusion. Notice that we proved it from the
definition that A/B means a number (call it Q) such that B times Qis A. We
will have much occasion to use this property that ''dividing is an operation
that undoes what multiplication does.' Be sure you understand that this last
sentence (the one in quotation rnarks) is irue not merely because somebody
says so. Notice that we proved it rmust be true for any numbers, because
we never committed ourselves as to what numbers A and B are. Then
starting with the definition of what dividing, means (what does it mean? ), we
showed that the quoted sentence has to be true.

Let one number (say A) be divided by another (say B), to produce the

quotient A/B. Then let A/B be multiplied by a third number, say C. We would
write the final result,

‘B—x C.

Now, let A be multiplied by C to give the number A x C. Then let vhis resnls
be divided by B. We would write the final result,

Ax C
B

You probably already know that you get the same result this time as the firs’
time. That is, it doesn't matter whether you first multiply and then divide,
or first divide and then multiply. In other words,

A _ AxC
5xC B .

A " "Ax C* . . .
Since T x C and “"I";""" are different names for the same thing, it docsn't

matter &vhich one you write. We usually write it the second way&g{c se it
seems to lock nicer. But remember when you have to work out g it
doesn't matter whether you first divide A by B and then multiply by C; or
first multiply A by C and then divide by B; or first divide C by B and then
multiply by A. The same idea holds even when you have a more complicatcd

fraction like ‘g X g X C To work out this fraction you may do any of the
multiplications or divisions in any order you please. But the order is impor-
tant if ome of the operations are addition or subtraction.
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Why don't you take some complicated fraction like 3x11x14 and

multiply and divide in different orders to satisfyfyourseltz élnﬁtl)?o}é go always
get the same result? Carry the division to three decimal places for each
trial.

6. Solving Equations

"We studied all about squares and their diagonals today, '' Tom told his
brother Jerry when he got home from school. '"We found that, for any square
at all, the ratio of the diagonal's length to the edge Jength is always the sarne
number, "

""Oh. Well how long is the diagonal of a square?' asked Jerry.
"It depends on the size of the square,' Tom replied.

''"But you said the length of the diagonal was always the same for any
square =t all, "' Jerry said.

''No, I did#it. I said the ratio of the diagoral to thelength is always the
same. The ratio is the square root of two. If you have a big square,' Tom
went on to explain, ''the edge and diagonal are both big. If you have a little
square, the edge and diagonal are bothiliftle. But whether you have a big
square or a little one, the ratio of diagonal to edge is always the same. "

"Oh, I see,' said Jerry, beginning to get the idea. '"If you have a
bunch of different squares, you also have a bunch of different edge-lengths
and diagonals. But if I take any one square and divide its diagonal by its
edge, I always get the same number, no matter which square I choose. "

'""Right, "" Tom = assured him.

""Then if I have two squares with different edges, '' Jerry said, ‘''the
diagonals have different lengths. I can sec that. "

"Right again. If the squares have different edges, the bigger ore has to
have the bigger diagonal. You see, if they had the same diagonal, then
when you divided the diagonal by the bigger edge you would get a smaller
ratio than when you divided the same diagonal by the smaller edge. And
that's not allowed -- you must always get the same ratio. The only way you
can get the same ratio is if the square with the bigger edge also has the bigger
diagonal. "

'""Okay, ' said Jerry. ''Then if a square has a certain edge, there is
only one diagonal it can possibly have in order to make the ratio exactly J2.
If the diagonal is bigger than that one thing, then the ratio would be bigger
than J2Z and if the diagonal were smaller than that one thinge the ratio would
be less than (2. Am i right so far?"
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"Yes,'"" Tom answered, not sure what was comin next.
g

"A square with a certain edge can have only one certain value for its
diagonal,' Jerry repeated. ''Then if I tell you the edge of a certain square,
you should be able to tell me its diagonal, shouldn't you?' he asked.

Tom hesitated, then admitted, "I guess I ought to be able to, now that
you remind me that a given square can have only some zertain length for its
diagonal. But I don't think I see how to do it. "

Tom and Jerry were right, of course. If you fix the edge length of a
square at some definite value, the diagonal length is also automatically fixed,
whether you want it to be or not. You can think of all the possible squares in
the world. Then when you ask '"What is the edge length of a square?', immedi-
ately you realize that it can be any length at all, depending upon which square
you are talking about. The edge length of a square (any square, not some

particular one), in other words, is a variable. The diagonal length of a square ix

is also variable, because you can find a square having any le ngth you please
for its diagonal. You are free to choose, out of all possible squares, any
edge length o> any diagonal length you please, But you cannot do both., Once
the edge length is chosen -~ once you select some particular value for the
edge length -- the diagonal length is fixed whether you like it or not.

Now let's see whether we can help Tom, who had a feeling he ought to

be able to solve the problem his brother posed, but wasn't sure how to do it.
Suppose we have a square whose edge length is 8.73 cm. How long is its
diagonal? First, we admit from the beginning that we don't know (yet) how
long the diagonal is; but since we want to talk about it, we'll give it a tempor-
ary name -- say D. Now when you divide D by the edge-length, 8.73 cm, you
must get 1. 414. (We have three significant figures in 8. 73 and thereforc carry

2 to four significant figures to have one extra significant figure for safety. )
We therefore know that

D

=1.414
8.73 cm

where '""D/8.73 cm' and "1, 414" are merely different names for the same
number. Next, we multiply both sides of this equation by '"8. 73 cm.'" Eince
the two sides are the same number and we are multiplying both by the same
quantity, the results must be equal. Hence

D
8. 73 cm

x 8.73cm = 1.414 x 8.73 cm

Look at the left-hand side of the equation -- do you see what we have donc ?
The left-hand side says '"Take D and divide it «by 8. 73 cm and then multinly
it by 8.73 om.'" By this time you know that multiplying and dividing some-
thing by the same quantity leaves that something unchanged. Hence .
x 8. 73 cm'is just another name for D. 'So’in the equation above, v+

»:7 - L] | - . . -
1’}na,y3 rcgglace the'l¢ft hand side by its other name D, and we then have

D = 1.414 x 8. 73 cm.
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But this equation tells you that the thing we didn't know, D, is equal to
1.414 x 8.73 cm, or, if you multiply it out, 12.34 cm. Now Tom knows how
to calculate the diagonal of a square if he knows the edge. Do you!

If we wanted to, we could carry out the whole chain of reasoning in the
preceding paragraph using symbols only. Like this: It is always true that

where D and E are respectively the diagonal and edge lengths of a square.
Since J2 has no units, you know from the rule for dividing quantities that
D and E must be expressed in the same units -- cm, feet, miles, it doesn't
matter as long as they both have the same units., We can multiply both sides
of this equation by E, getting |

D

2 x E = j2 x E.
EX J2 x

The left-hand side, of course, is just D, so finally
D = J2 x E.

So, for any square, you can calculate the diagonal by multiplying the edge
by -/2. D will then be in the same units as E.

When we have an equation like D/E = /2, and manipulate it in such a
way that we end up with an equation that has D all by itself on one side, we
say that we have ''solved the equation for I.. "' Much of physical science deals
with the solving of equations for things, like D in Tom's problem, that one
feels ought to be determinable, but are buried in an unsolved equation. You
will see many examples of this as we go along. Here are a couple more.

Suppose you know the diagonal of a square; can you then calculate what
the edge rmust be? For any square, D/E = J2. This is an equation, and we
would like to solve it for E; for if we had the equation in thec form '""E=something
or other, ' then we could calculate the ""something or other'' and we would
bave FE. Can this be done? Well, let's sece.

Start with D/E = _[Z

Multiply both sides by E _g_x E = J2E

Drop the E's on the left side

because %x E is merely D JZx E

o
!

‘_)2 x E

Divide both siles by _JZ2 =

D
i ..

-

i VP
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Drop the S2's on the right

side because ¢ X E jg f'Z‘Q = E
merely E ~ -

Write the equation in reverse, D
since if X = Y, then surely E = 7
Y = X, '

And there you have it! To get the length of the edge of a square, you need only
divide the diagonal by _2.

Do you see the idea behind this method of solving an equation? Let's try
it once more, this time using symbols entirely. Suppose that A, B, and C are

three quantities, and it is known that A/B = C. Solve the equation for A. You
think like this:

A
1. I have | B - C

I want the A all by itself, so I have to get rid of the B that appears on
the left. I may not just throw the B away, because I could not then
be sure that the equation left would still be true. But I know that the
equation would still be true if I do the same thing to both sides. Is

there anything I can do to both sides that will get rid of the B on the
left? Sure there is:

A
2. Multiply both sides by B B *B=Cx8B
and now I can

3. Cross out both B's on the left A = Cx B

The A is now by itself and the equation is solved.

You notice we have now many times made use of th. fact that an expression
like2 x Q or B_x Q (where P and Q are numerical quantities) may be
simp%ﬁed by noticing that any tirne a quantitiy, P, is both multiplied and
divided by the same quantity, Q, the first quantity, P, is left unchanged. This
fact is often expressed by saying:: when any quantity appears, alone or as a

maultiplier, in both the numerator and denominator of a ‘raction, you may can-
cel out that quart’ty without changing the value of the fraction.

Take the eguation C/D =T\‘, and see whether you can (a) show how to
compute C if D is known, and (b) compute D if C is known.

In general, you can solve an equation only if there is only one thing ir it
that is not known. You could not, for example, find the diagonal of a square
from the equation D/E = /2 if you didn't know the edge.

Now you need some practice in solving equations. Here are some for
you to work on. In ail of them, remember the units.
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The area of a rectangle of length L and width W is A = L x W. Solve this
=, equation for L and also solve it for W, Then find how long a strip of paper
)} has to be if it is 2. 54 ¢cm wide and has an area of 86, 2 square cm.

The area of a triangle is A= 1/2x B x H, where B is the length of its
base and H is its altitude. Solve this equation for ‘B and also solve it for H.
Also show that for any triangle, B x H/A is always the number 2. What must
be the altitude of a triangle enclosing 32. 7 square cm if its base is 4. 96 cm
long?

The area of a square is given by A = E2, where E is the length of its
edge. Solve this equation for E. (Here is a hint: What is the square root
of E2? That is, what must you : multiply by itself in order to get E2?) If a
square has an area of 2. 56 cm, what is its edge?

The volume of a rectangular parallelopiped (this is the official name for 1_
a thing shaped like a square-cornered box (like a cereal box, say), is given by ]
the equation V= L x W x T, where L is the length, W the width, and T the
thickness. Solve this equation for T. How thick must a slab of wood be if it
is 9. 24 cm long and 4. 14 cm wide and has a volume of 46. 3 cubic cm?

If a car travels at a uniform speed, S, then the distance it can travel
in time, T, is D= T x S. Solve this equation for T and then compute how

) long it will take a body moving at a speed of 6. 71 cm per second to travel
| 88.4 cm.

The area of a circle, A =TTR2, where R is the radius. Solve this equa-
tion for R and compute the radius of a circle whose area is 628 sq. cm. Use
'l = 3, 14, which is correct to three figures.

The price of a pile of hamburger is given by P = Cx W, where Cis the
cost per pound (in cents) and W is the weight in pounds. What are the units of
P? How many pounds of Lamburger could you buy for 248 cents if the cost is
62 cents. per pound?

7. Once Again, Lightly:

When one is investigating physical quantities, he soon learns that some
quantities may change in value while others keep always the same value. An
electric train running around a track, for instance, may speed up or slow down,
so that its speed is a quantity wuose value changes. Such a quantity is called
a variable. The weight of the train, on the other hand, remains the same while
it runs over the track, and its weight is therefore a quantity whose value does
not change. Such a quantity is called a constant.

One also finds that some constants, though their values remain the same
during any ome investigation, may change in value from one investigation to
another. The weight of the electric train, for instance, may remain unchanged
in the incident mentioned above, but you know very well that the weight of a
train can be changed. Such constants are often called temporary constants.

”/‘"’;
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They are veally variables whose values are only temporarily unchanging. On
the other hand, some constants are quantities whose value never change. Such
: y a quantity is the ratio of circumference to diameter of a circle, whose value

i for any circle whatever, is always 77.

Just as one may do arithmetic with numbers, itis permissible to do
arithmetic with quantities that are not numbers. One may add and subtract
quantities only when they are measures of the same quality -- length and length,
for instance, or weight and weight. But one cannot add length and weight, or
temperature and time. Adding such quantities is forbidden, not by law, but
by the simple fact that the sum of two unlike qualities seems to have no meaning.
The sum of two quantities is another quantity of the same quality as the things
added -- length plus length gives a length, for instance. The numerical part
of the sum of two quantities can be obtained only if the two quantities added
have the same units; the numericalpart of the sum is thon identical with the
number-sum of the numerical parts of the two things added.

[Lae

L. 2 ™
REVE Rt

Quantities may be multiplied or divided, however, regardless of the units
they have. The product (or quotient) of two quantities is a new quantity that
measures a quality which is in general different from the qualities measured
by the two things multiplied or divided. The units of the product {(or quotient)
are thereforc:diffexent from'those of the thing: raultiplied or divided. Being
''mew'' quantities, logic says you may give their units any name you please;

__ but convenience (so that pecople can talk to and understand each other, for
;/ instance) says that it is better to have rules that tell how to form the names
’ in a uniform way.

It is important to distinguish the name of a quantity from the quantity
itself. Thus a certain given stick has a certain length which is the same
quantity to everybody. But one person may give this quantity the name of
'""36 inches'', another may name it ''3 feet', still another may name it
'"91.5 cm. " These are all different names for the same quantity. When the
numerical measure of a quantity is unknown or variable so that its numerical
; value cannot be stated, it is often convenient to give it a name not involving
numbers. Such a name is called a symbol -~ as the quantity representing tae
length of the stick above, either tecause it is unknown or changing, might
be named "L,

When a quantity has two differen. names, a statement giving these two
names is called an equation. The two names are called ''sides' of the
equation and may involve symbols and combinations of symbols as well as
: nwmabers. Using rules derived by logic from definitions, it is possible to
‘ transform an equation into ~“her equations all of which are, by logic, known

to be true. When such a t* sformation is carried out in such a way that a
symbol which originally wa. . .ried in a combination now stands by itself as
W one side of the equation, the equation is then said to be solved for that symbol.

The body oi rules that tell how equations may logically be manipulated
belongs to mathematics. Physical science consists of finding equations to be
manipulated and discovering the meanings of the new equations so obtained.
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Further Classroom Discussion

Barbara measures a certain stick and later David mecasures it too. Pete looks
at the stick and sees that it has a certain length, He asks Barbara how long it
is, and she tells him 25. 5 inches. Then he asks David who tells bim 67. 3 cr.
Pete can see that the stick has only one length, yet Barbara and David gave him
different answers. What is the trouble?

According to the rule given in Section 3 of this unit (which you also
learned long ago anyway!), when you add two quantities they must be in the
same units. What can it mean, then, when you are told that a certain base-
ball player is ''six feet and two inches'' tall? Doesn't this mean you are adding
six feet to two inches? What about the label on the can of sauerkraut that says
it contains ''two pounds and three ounces'?

The most natur. 1 units of area are those formed by multiplying a length-
unit by itself, like ''foot-feet' or ''centimeter-centimeters.' (These, of course,
are usually called ''square feet' and ''square centimeters. ') The least natural
are those made up out of thin air, like acre. What would the area unit, the
inch-foot, be?

Similarly with volume, The cubic foot (or '"foot-foot-foot'') and the cubic
centimeter (or ''centimeter-centimeter-centimeter'') are the most natural and
the gallon and bushel the least. Conservationists often use tke "'acre-fiot' to
tell the volume of water in a reservoir or lake. What is an acre-foot?

Here is an English lesson for you. The unit of any quantity is a noun, and
the number of the quantity is an adjective. When the number is greater than
pne, the unit is put in the plural. Just as you say ''three men'' rather than
''three man'', you should say 'five feet'' and '"sixteen tong.' Itis improper to k
say ''That man is six foot tall" or 'I need three ton of coal.' When the whole | !
quantity (number and unit) is used as an adjective, however, the unit is put
in the singular. Just as you say ''There are two men on that bicycle, " but
"That is a two-man bicycle, "' so also is it proper to say "I know a tive-foot
quarter back'' and ''ten-ton truck.' When the unit is a compound, you pluralize
only the last member: ''The reservoir holds 22 acre-feet of water. "

It is alsc improper to use the name of the unit for the name of the quality.
You do not say "What is your year?' when you mean '"What is your age?'';
nor do you say ''This stick has a bigger foot than that one', when you mean
'""This stick has a bigger length than that one.' What did the automobile
engineer mean when he said "I bored out the cylinder in order to increase
its cubic inch'"?

You can determinafe speed of a rifle bullet by measuring the length of
time the bullet takes to travel a certain distance and dividing the distance by
the time. If the distance is measured in feet and the time in seconds, what _:
units will the speed have? Ballisticians often express the speed of a rifle
bullet in "foot-seconds.' How should they express it?
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The speed of a ship is often expressed in knots. What is a knot?

Try this experiment. Get three bowls of water, one containing water as
hot as you can comfortably stand it, one containing water as cold as you can
stand it, and one at room temperature. Place one hand i.: the hot water and
one hand in the cold water and leave them there for about 30 seconds. Then
quickly remove both hands and plunge them into the water at room temperature.
Make two judgements of the temperature of the water in the third bowl, one
by feeling it with your right hand and one by feeling it with the left. Do they

"feel' the same temperature? Is the temperature of the third bowl then a
variable?

A company was founded 35 years ago, and this year three of its employes
retired. Two had been with the company since it was founded and the *“other
for 30 years. At their retirement banquet, the president of the company
commented that together they represented a century of service to the company.

Does it make sense to'speak of a century of service to a company that is only
35 years old?

You will remember in Experiment 8 how you showed that the ratic of
circumference to diameter of a circle was always the same, whether you
measured it in centimeters or inches or widgets. It looked as though the
ratio would be the samea no matter what upits you used. Of course you could
notprove this to be true even by carryir - ~ut the experiment a miilion times
using different units each time and alw v . finding that the units made no
difference in the ratio. You could nevc be sure that the very next unit tried
wouldn't give a different ratio. (Notice, though, that you would have very
weil-founded reason to believe it, even though you hadn't proved it. )

Suppose that the circumference and diameter were measured in centi-
meters, and found respectively to be C aad D. Then

Ratio for cm measurements = C

—

D

Now take some other unit of length, any at all. If this unit is a fixed amount
(what good would a unit of measurement be if it were not fixed in size?) then
certainly some number of them would be contained in onc cm. This number
might be more or less than one, but it has to be some fixed constant. Call
this number N, just to give it a name, so that there are N of these units in
one cm. How many of these units will there be in C cm? How many in D cm?
-- if there N in one cm. The answers are respectively Nx Cand N x D, of
course. In other words, if the circumference had been ~ieasured in the new
units, since it measured C cm it would have measured N x C new units.
Similarly, the diameter would have measured N x D units. The ratio, circum-
ference/diameter, in the new units would then be

Ratio for new units = CXN
Dx N
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Now notice that the rig»t-hand side of this equation is a name for the quantity
< multiplied by N and then divided by N. By this time you know that the result

1s simply Bunchanged. Then -g-is another name for =%\ and we can write
- x

Ratio in new units =

wie)

+

wherc remember that C and D are the numerical meuasures in centimeters. We
have then shown that the ratio in centimeters is the same as the ratio in any
other units. Now you don't have to carry out that experiment a m:llion times
and even then not eliminate the fear that the million-and-first one may go
wrong. You have proved that the ratio must be the same no matter what units
You use, as long as both circumference and diameter are ne asured in the same
units,
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Unit III

Functions and Proportionality

1. Whatis a Functipn?

The idea -of a function is one of the most basic ideas in all of physical
science, though you musi not suppose that functions are confined to physical
science alone. While the notion of function is not at all a difficult one, it
might be best to grow into it gradually. Basically, functions deal with rela-
tionships between two (or more) variables.

First, you should remind yourself that you often run across cases where
two variables are related to each other. You are aware of such a relationship
when you say that one thing depends on andther. We are particularly concerned
with velationships between quantities, however; that is, on one quantity's
depe.nling on another. Suppose, for instance, someone asked you how long
it takes for your electric train to run around a certain track you've laid out.

You would probably say '"That depends ---"", wouldn't you? Depends on what?
Well, the time it takes the train for one circuit of the fixed track depends on how
fast the train goes, doesn't it?

How long is the diagonal of a square? It depends on how long the side
is. You tan have any length at all for the diagonal, and any length at all fox
the edge; they are both variables, if you consider all possible squares. Yet
oance you have chosen a certain edge-length, then the diagonal length is fixed;
and this is what we mean by saying that the diagonal-length depends on the
edge-~length. (Of course, the other way around, too.) Or, if you have a
variable-speed train, you can have any length of time you want for circuiting
the track (at least between certain limits; there is a fastest speed you train
can travel and there may be a slowest speed too), or any speed you want. But
once you have chosen the speed, the time for one circuit is fixed; you no longer
have an choice. This is what you mean when you say the time depends on the
speed.

Or, suppose you were walking up a ramp. How far above ground are
you as you walk up the ramp? Well, it depends upon how far along the ramp
you've walked. Within certain limits, you can walk any distance along the
ramp you please, or you can be as high off the ground as you please. But once
you have chosen a certain distance to walk along the ramp, you will be as
high off the ground as that point brings you, and you have no further choice in
the matter.

How far will this spring stretch if I hang a fish on it? It depends on the
weight of the fish. I can have any weight fish that I please, or can stretch the
spring any length that I please (within limits, of course). But if I choose a
certain weight for the fish, then I no longer have any choice about the spring
extension. Each weight has its own extensioi. whether I like it or not. Also
the other way around. If I choose to extend the spring by a certain amount, .
then there is only one weight that will extend the spring exactly that much.
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Now the idea of a function is very simple. When one variable depends
on another, the first one is said to be a function of the other. More exactly:
when two quantities are so related that, as soon as one of themis fixed in
value, the other nne is too, then the second one is called a function of the first.
The function is the one that is automatically fixed by making a choice for the
other. In the examples above:

The time it takes for an electric train to make one circuit of a given
track is a func‘ion of the train's speed.

The length of a square's diagonal is a function of its edge-length.

The distance you are above ground-level as you walk up a ramp is a
function of how far along the ramp you walk.

The amount by which a spring stretches is a function of how much weight
is attached to it.

It is often (but not always) true that when one quantity is a function of
another, the second is also a function of the first., This is the .ease with
each of the four discussed above.

Try to cite some other pairs of variables which are functions one of the
other.

You might now go back to Section 6 of Unit II and read again the saga of
Tom and Jerry. You will remember that Tom and Jerry had noticed that you
can have any length at all for the edge of a square, or you can have any length
at all for tke diagonal of a square. But you cannot have both at the same time.
Once you choose a certain value for the edge, the diagonal length is no longer
subject to choice; it is fixed at some certain value whether you like it or not.
The two boys then carried their thinking one step further. They said; if the
diagonal of a square is fixed when I am told what its edge-length is, then I
ought to be able to figure out the diagonal-length when I am given the edg.-length,

What Tom and Jerry were saying is this: '""The diagonal-length is a func-
tion of the edge-length. IfI actually draw a square with an edge -length you
give me, then the square will automatically adopt exactly the right diagonal -
length. If a square is clever enough to do this without thinking, then surely
I ought to be clever enough to figure it out without drawing it. Drawing it
would be ‘''cheating'' because that's really the same as having the square figure
it out for me. "

We learned that, for all squares, the quotient, diagonal-length Jdivided
by edge-length, is clways 2. This we learned by experiment. Then by
logic we deduced that D = E x (2. Thus by a combination of experiment and
logical thought, we found a way of calculating the unknown diagonal-length from
the given edge-iength.
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There you have in a nutshell the whole goal of physical sciance. If you

know (or suspect) that some quantity is a function ol some other, try to find

some way to calculate the first quantity when the second one is given to you.
For instance:

Ycu drop a stone from the top of a tall building and notice that the longer
you wait, the farther the stone falls (until it hits the ground). You conclude that
the distance traveled by a falling stone is a function of the time of falling. Can

- e e e dy

you find out how to calculate distance fallen when time »f fall is given?

You notice that the weight of a piece of copper depends upon the size of
the piece; that the weight of a piece of copper is a function of its volume.

Can you discover how to calculate the unknown weight of a piece having a
given volume?

You observe that the distance that a spring extends is a function of ths

weight attached to it. How can you calculate the unknown extension of a
spring to which a given weight is attached?

You can see that the distance above ground attained by a p.rson walking
up a ramp is a function of how far along the ramp he has walked. How can you
calculate the height when the distance along the ramp is given?

Now would be a good time to do Experiment 10. Afterward we will
have the usual

Points to Di'scuss in Class

How does the very nature of the experiment indicate that the height is a
function of distance along the ramp? Notice that once you chose a distance
there was only one height to measure corre sponding to that distance.

What curious circumstance did you find about the ratios of height
divided by distance for the straight ramp (last column in Table I)? Within
the error of measurement, would it be fair to say that the ratio of height/dis-
tance is a constant for any one straight ramp?

What would you suggest doing on the first line where you had to divide
zero by zero? What d- s it mean to divide something by zero? To try to
see what it means, recall the definition of ""dividing. "' The quantity, A/B,
means that number (say Q) which when multiplied by B gives A. That is

4 = C meansthat A = B x Q

B

whatever numbers A and B might be. Now suppose that B is zero. This
would mean that A/0 is the number which, when multiplied by 0 gives A,
That is

= Q means that A = 0 x Q.
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Suppose first that A is not zero. Zero times any number is zero, isn't
it? Therefore, 0 x Q is zero regardless of what number Q may be. Hence
A, which is equal to 0 x Q, must be zero. But we supposed that A is not
zero. Now clearly A cannot be both zero and not zero, and something there-
fore must be wrong with our argument. What is wrong?

e R e o 4

We started by supposing that A/0 is some number Q and A is not zer o;
and ended by finding that A is zero. Since this is not possible it must be that
our supposition is wrong. Now we supposed two things:

A is not zero
A/0 is a number {which we called Q)

Certainly therc is nothing wrong vsith making A anything we please, including
2, 17, 45.9 or any other number not zero. There is nothing wrong with the
first assurnption. Therefore the second assumption must be wrong: A/0
cannot be a number if A is not zero. This is worth repeating:

When A is not zero, % is not a number.
This is a statement sometimes loosely quoted as '"You can't divide by zero. "

Now suppose that A is zero. It still must be true (using the same old
definition of dividing that

A = Q means that A = B x Q.
B

If A and B are both zero, this last sentence becomes

.g. = Q means that 0 = 0x Q.
Now notice that the last equation is true for any Q at ali. Hence 0/0 may be
any number at all: it is not defined or determinable. This too is worth
repeating:

g— is not defined.
Since 0/0 is not defined by the process of dividing, you are of course free
to make it mean whatever you would like it to mean under the particular
circumstances where you find it occurring,

What would you like "0/0'" to mean on the first line of your Table I, in
order to make all the lines consisten:? Now you can make the statement for
all distances, including zero: ''The ratio of 'height above ground' divided by
'distance along the ramp' is a constant. " (When the ramp is straight!)
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This question arises: Can you predict (that is, calculate without
measuring) the height above ground for a given dirtance along ramp? You
have a suspicion that it mipght be possible, because you ran into a similar
situation before: You found that the diagonal-length of a square is a function
of its edge length, and then found a way to calculate the diagonal-length when
you knew the edge-length. Can you calculate height when a distance is given?
Of course you can! Let H represent "height above ground'" and let D represent
""distance along ramp." Then from your experiment, you seem entitled to say

H
B‘ = some constant

For your ramp what is this constant? Take its value as the average of the
ratios in the last column of Table I. Place your value in place of ''some con-
stant'' in the last equation above and then solve tae equation for H. Now you
can predict the height above ground that would be attained by walking along the
ramp any distance you please. Calculate the height above ground for a distance
along ramp of 15.00 cm. Record this valr : on data sheet #2 of Experiment 10,
in the Lox '"Calculated value of H for D = 15, 00 cm. "

Did you find the ratio for the crooked ramp #a Table II also constant? May
you for the crooked ramp write an expression like "H/D = some ccnstant?
Notice that for the straight ramp you may write the expression

H=kxD

where k is some measurable . constant; but for the crooked ramp you cannoct.
You can easily calculate H when given D for the straight ramp, but you have ro
way of doing that f~r tne crooked ramp.

Now for both ramps, height is a function of distance, isn't it? Why?
Because for any given distance alcng either ranip, there was always one and
only one height to measure. In the case of the straight ramp, however, we
found an easy way to calculate the function (height) from the variable (distance).
For the crooked ramp we have found no way to do this. For a straight ramp,
height is a known function of distance; for a crooked ramp, the height is an
unknown function.,

Of course, to say that the function is unknown does not mean that it is
unknowable. It would be possible to write an equation, far more complicated
than H = k x D, for the crooked ramp, though it hardly seems worth doing.
Straight lines occur very frequently in the world. but a curve shaped exactly
like your crooked ramp does not occur cften enough to make it worth studying.
The broad goal of physical science is to find useful relationships of this kind.
That is, the goal of physical science is:

(1) To recognize what physical qualities can be measured as quantities;

(2) To seek out those cases where two (or more) variables are so
related that one is a function of the other(s); and

(3) To express this function in the form of an equation.
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2. Functional Relationsaips

When one variable is known at least to some extent as a function of
another, that information may be useful. How can it be communicated? Let's
visit Tom and Jerry again.

Tom said to Jerry '"You know that ramp in our backyard? Well I made
some measurements on it yesterday and I found that as you walk up the ramp,

the height you are above the ground is a function of how far up the ramp you
wallk. "

Jerry wasn't quite sure he knew what the word "function' meant, so he .
asked, ''Does that maan that if I walk up the ramp a certain distance, then the
height I am above ground at that point is fixed by how far up the ramp I walked? "

"Yes, that's it exactiy. "

'"Well, I use that ramp every now and then myself, and it would be useful
to me to know how far above the ground I happen to be for any distance along
the ramp." Jerry got out his notebook and pencil, then said to his brother,

''I want to write this down. Tell me how I can know how far above ground I am
for different points on the ramp. "

Tom was prepared for this, because he made a table just like your Table I
in Experiment 10. He showed it to his brother, who looke ' at it carefully and
then protested:

'""But, wait a minute. This table is good for only 10 different points on
the ramp. Suppose I want to know how far above ground I am when I'm
standing at some distance not in your table? "

Tom was a little crestfallen. He had gone to some trouble to make
the table, was proud of it, and was happy that his brother might make use
of his work, Now Jerry had picked on a serious defect in it. "I could go
back, "' he offered, "and measure another 10 points. Ther. you would be
sure to be near one of the entries in the table no matter where you stand. "

'"'I'm afraid that won't do, " Jerry replied. ''"No matter how many points
you measure, you can never be sure that exactly the point I need will be among
them. Isn't there some way you can tell me the height for every point no matter
where it is?"

Tom didn't see how he could do this right away, so let's see whether we
can help him.

You already know that one variable is a function of another when they are
so related that the firstis automatically determined when the second is fixed,
Thus if you are told that X and Y are variables and Y is a function of X, then
you immediately know that Y has some fixed definite value when you assign
at your pleasure some definite value to X. The variakle (X in this case) to
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which you assign any value at pleasure is often called the independent variable
-~ 'independent'' because you may assign its value independently of anything
else. The function (Y in this case) is often called the dependent variable --
'""dependent'' because its value depends on the already-assigned value of the
other and cannot be assigned at pleasure. Of course, z we noted before,
when Y is a function of X, it is often true that X is a function of ¥, In such

a case, it may be convenient to call Y the independent variable and X the
dependent one. The two terms, independent and dependent variable, are used
only as a matter of convenience. In much the same way, you can imagine a
conversation like this:

""Did you know that Smith has a brother?"
"Yes. Smith is a good friend of mine but I hardly know ais brother, "

The participants in this conversation have quite clearly in mind which person
is Smith and which is his brother; yet the truth is that both these persons are
Smith and both are Smith's brother.

Then if Y is a function of X, we can assign at pleasure a value to the
independent variable ¥; and know that the dependent variable Y automatically
has its value fixed. But to know that Y has some definite value when X is
fixed at, say, 10.07 cm, is a far cry from knowing what that value is. In
other words there is a difference between knowing merely that Y is a function of
X, and knowing exactly what functicn of X the dependint variable Y is. Any
means of telling what function of X some other variable Y is, is called a
functional relationship.

One way of communicating a functional relationship between two variables
is by a table. Such a table would give a selected list of values for the variable
X; and opposite these selected values of X would be listed the corresponding
values of the function Y. Such a tabular representation of a function, however,
has the very serious defect that Jerry had put his finger on in the exciting
drama above. Even if the table stretched in fine print from here to the moon,
it could not give the value of Y for every possible X, By its very nature, a
tabular representation of a functional relationship can give only a limited number
of values of the two variables. This is quite satisfactory in some cases,
especially in cases where the independent variable is, by its very nature, one
that can have only a certd n number of values. An example might be

Independent variable: A year of the twentieth century

Dependent variable: The total rainfall that year in Dallas.

Here a table would be complete, because there is no year 1958, 5. Such a
variable is called discrete: no two possible values of the variable can be any
closer than a certain amount (in this case one year) apart. Our concern here

is with continuous variables, those in which you can have two values of the
variable as close together as you please. The points on a line, for instance,
may be 1 cm apart, or 0. 001 cm, or 0. 0000000001 cm, er even closer than that
if you wish.
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3. Grths

One can get around ‘he discrete nature of a tabular representation by
using a graph. As you already know, you make a graph by plotting a series
of points with respect to two axes. You choose a certain length on the hori-
zontal axis to represent one unit of the independent variable and a cextain
length along the vertical axis to represent one unit of the dependent variable.
Ycu then take one pair of values of the two variables and locate the point on the
graph in much the same way as you locate a city address as the intersection of

two streets. When all the points have been plotted, you connect them by a
suitable curve.

Now is the time to finish kxperimeat 10.

Points to Discuss in Class

When one constructs a graph from a set of points plotted from experimental
data, the problem always arises: How shall I draw a line through these points to
complete the graph? You have this problem right now in the graphs from Experi-
ment 10. (In fact, you were told to draw the lines lightly in pencil because they
are only temporary: we want to discuss what you should do before doing it
permanently. ) The 'line" drawn through experimental points of a graph is
cailed a curve, and this is true even when the '"curve'is a straight line!

Before you can sensibly decide how to draw the curve, you must first
understand why you draw the curve at all. Why do you? Keep in niind that a
curve is a functional representation: it is supposed to tell you the value of the
function, H, for chosen values of the independent variable, D. But the plotted
points alone give no information not already in the table; they only present
that information in a different way. Why draw the graph?

One reason for drawing a graph is that you can view the whole set of
points at once and comprehend their relationship more easily in a picture than
you can in a table. [ In the same vein, you realize that a map of yourstate that i.
has all the cities and towns ''plotted" on it is easier to comprehend than a
table that lists the latitude and longitude of every city and town -- yet both map ...
and table give exactly the same information.}

Another reason for drawing a graph is to satisfy Tom and Jerry's problem:
How can I find ocut the value of H (the dependent variable) for values of D (the
independent variable) that I didn't measure? In other words, our measurements
of H and D must necessarily be limited in number. We therefore make D a
discrete variable -- by spotting in only a few chosen values -- when it really
is a continuous variable which may have any value at all. It may have all
possible values between any two of the values you happened to choose to measure.
One of the purposes of making a graph, then, is to supply the in-between
values which you could never fill in completely if you and all your classmates

§
worked from now until Doomsday without taking out time to eat, sleep, or piay
pinochle.
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Now, how can you supply the in-between values if you don't measure
them? The strictly logical answer to this question, of course, is ""You can't"!
But that answer is so disappointing that we look elsewhere fur help. Think again
about that ramp -« either the crooked one or the straight one. Imagine yourself
a little man walking along the ramp. You find that 5 cm from the bottom
places you 1. 5 cm from the ground and 6 cm from the bottom places you 1. 8 cm
from the ground. You now have a feeling that if you stood 5. 5 cra from the end
you ougit to find yourself somewhere between 1.5 and 1. 8 cm from the ground.
Of course, it is entirely possible that the ramp could make a sudden dip between
5 and 6 cm from the bottom so that at 5.5 cm you would perhaps even be flat
on the ground. But even in this case you have a feeling that if you took measure+
ments sufficiently close together -- yet not infinitely many -- such irregularities
would eventually reveal themselves, and you could obtain the true tendency by
assuming that the true value of the function at an intermediate point lies between
its value at two nearby surrounding points. Faith in this principle stands very
impertantly as a foundation of physical science. It even has a name; the prin-
ciple is often called the ''principle of continuity.' One way of stating it is to
say ''In the absence of reason to believe otherwise, a small change in an indepen-
dent pbygical variable will produce only a small change in a variable dependent
upon it. "' The principle seems so reasonable that atl physical scientists place
almost unquesiioning faith in it, [It is only fair to say, however, that
occasionally importaht physical happenings are over looked because an experi-
menter places too much faith in the principle of continuity. j Without using the
principle, we could never predict anything. Noone would ever attempt to
build a bridge, for instance, because the erigineer would always say: ''No, I
won't be responsible for building this bridge. Noone ever built it before.
Therefore I don't know that it will be safe, and it would cost too much to build
it only to find out whether it is gafe. "

When you draw a graph, then, you suppose that intermed-ate points will .
lie between their nearby points on each side. The word ""between'' is not
exactly defined (indeed the whole principle of continuity is n: : exact), but has
the general meaning indicated in the discussion above.

On: way to satisfy the principle might then be to connect successive
plotted points by straight lines. Do you see anything wrong with doing so?
Suppose you did so and then decided to measure another experimental point
between two already taken. _If this point did not fall exactly on the straight
line you drew, then you would have to draw two new straight lines in place
of the one you had. In other wo¥ds the character of the curve would change
if you took one additional measurement. Does it make sense that thé charac-_
ter of a functional relationship of Nature would depend upon whether vou made
10. or 11 measurements? Isn't it more sensible to look at the points;.;a decide
that the shape of the curve you should draw is already partly outlined by the
way the points seem to form their own cazrve? Of ccurse the ""eurve' they seem
to form may be a straight line. The first rule then is draw in the graph in such
a way as to follow the curve that the points themselves seem to outline.

i
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The points you plot are laid down from experimentally measured quan-
tities. Is an experimental quantity ever known exactly? Is there a possibility
then that the ''true'’ curve would not go exactly through some of your points ?
Why not? The second rule in drawing a graph then is to be guided by the plotted
points, but if one or more of them appear to be "off'" frora the curve that
the rest seem to outline, do not be afraid to draw the curve so that it misses
the off-points.

Do you ‘notice anything special about the plotted points for the straight
ramp in your graph for Experiment 10? You know that the curve must go
through the origin (where H and D are both zero) because if one does not go up
the ramp at all (D = 0), he experiences no rise off the ground (H = 0). The
rest of the points should fall on a straight line pas sing through the origin. Erase
your lightly penciled line for the straight ramp and use a ruler to draw one
straight line that connects all the points as best you can. Remember that you
must expect some (or even most) of the points to be not quite on the line. Try
to draw the line so it goes '"down the middle, " leaving about as many plotted
points on one side as on the other.

Do the points for the crooked ramp seem, even allowing for a reasonable
amount of experimental error, to form a straight line? They shouldn't. Erase
the lightly penciled curve for the crooked ramp. and using the suggestions above
for drawing curves for graphs, sketch freehand a curve through these points.

It might be a good idea to use a different color pencil for the second curve.

Finally, read from your graph for the straight ramp what H should be
when D = 15. 00 cm. Record this value in the bex marked '""Graphical value
of H for D= 15. 00 cm' and compare it with the calculated value in the box
above it.

4. Monotonic Functions

You often state a dependence between two variables in sentences like the
following:

The farther I walk along the ramp, the higher I get above the ground.

The larger the volume of a piece of copper, the greater is its weight.

The heavier the fish that I hang on this spring, the more the spring extends,
The longer the piece of wire I cut from this spool, the more it weighs.

The longer the edge of a square, the longer is its diagonal.

The greater the diameter of a steel ball-bearing, the greater is its weight.

The longer the time a rock has been falling, the farther it has fallen.

Do you see how all these statements are similar?

M U
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Each of the statements cites two variables, first an independent variable
and then a dependent variable which is a function of the first. To make sure
you see this point, it would be a good idea for you to restate each of these
statements in the form: Dependent variable is a function of independent variable.
For example, the first sentence would read '"My height above the ground is a
function of how far I walk up the ramp. ' Now vou restate the others.

But each of these statements says more than simply that one of the vari-
ables is a function of the other. It tells partly the nature of the function. The
first one says not only that height is a function of distance, but also that as the
distance along the ramp increases, so does the height above the ground. Each
of the statements says that the two variables are so related that increasing the
value of the independent variable causes the dependent variable to increase,
too. Stated in this form, the third sent-ace above says '"Increasing the weight
of the fish hanging on this spring causcs the extension of the spring to inctrease, "
Try your hand at recasting the other sentences in this form.

There would be no point in calling all this to your attention if it were true
that all functions behave like this; that is, if all functions wer e such that
increasing the indeperdent variable causes the dependent variable to increase,
too. But all functions do not behave like this. For instance:

The farther I walk down this ramp, the less is my height off the ground.

The harder 1. squeeze on this spring, the shorter it gets.

The greater the speed of my electric train, the less time it takes to
circuit the track.

The greater the diameter of a round cake pan, the less the height to
which a pint of batter will rise when poured into it.

The greater the diameter of a wheel, the fewer revolutions it will
make when it rolls a hundred feet.

See how well you can recast these sentences in the form "The height I am
above the ground is a function of how far I've walked down the ramp. "

Notice again, however, that each of these new sentences says more than
merely that one variable is a function of another. Each also tells something
of the nature of the function, For instance, the secondone says ""As the
squeezing force exerted on this spring increases, the length of the spring
decreases.' You shouldnow recast each of the other sentences in this form,

just to be sure that you are getting the point.

So you see that the word function is not a very explicit word. To say that
Y is a function of X is to say only that Y has a definite fixed value when the value
of X is fixed. The implication in general is that when X changes, Y is forced
also to change. But to say merely that Y is a function of X does not say any-
thing about how Y changes when X changes. In some functions, when the
independent variable increases, so does the function (or dependent variable). ‘
In other functions, when the independent variable increases, the function decreaseﬁ
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The first example on page 65, for instance, says ''My distance above the
ground is an increasing function of the distance I walk along the ramp.'" Now
you recast each of the other examples in the first group in this form.

In contrast, a function of the kind in the second group of examples
(page 66 ) -- one that decreases as the independent variable increases -- is
called a decreasing function. The second example in this group, for instance,
says '"The length of this spring is a decreasing function of the squeezing force
applied to it. "' You should now rephrase the other sentences in this group in
such a way as to use thephrase, "decreasing function. "

A function that is either an increasirg function or a decreasing function
is called a monotonic function. Can you see where the word ""monotonic' comes
from? When two variables are so related that, as the independent variable i
increases, the function always increases or always decreases, then the latter
is called a monotonic function of the independent variable. The idea of a mono-
toric function is very simple: it is one that always changes in the same direc- j
tion as you increase the independent variable. The function may either increase ‘
steadilv or decrease steadily, but it never changes its direction.

Now,you might be saying to youself "Why all the fuss about calling a i
function monotonic? I can see that when you increase the independent variable,
the dependent variable either increases or it decreases. Why bother to drag
in the adjective 'monotonic'? A function has to be either increasing or decreasing,

doesn't it? Then any function must be monotonic, so why use this unnecessary
word?' There is a reasnn; do you see it?

The truth is that there are many functions tlat are not raonotonic. Of
course, no variable can both increase and decrease at the same time; but it
is entirely possible thet a function may at first incrcase as the independent
variable increases, and th.a later decreasa. Or vice versa. For instance:

Think of an arched ramp, and how your height above the ground changes
as you walk continuously in one direction along the ramp.

A baseball thrown directly upward will at first increase its height as

time goes on, then it will reach its highest point, then decrease height as it
falls back to earth.

Think of the tip of the minute-hand on a clock at exactly one o'clock., As
time goes orn the tip of the minute-hand descends until it reaches its lowest
point at one-thirty but then it begins to ascend again.

Think of an empty drinking glass, open end at the top, ard push it slowly
downward in a pail of water. What happens to the water level in the pail as you
push the drinking glass slowly downward?
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These are functions that are not monotonic; can you think of still others? (Of
course, any function has to be monotonic in a little limited portion of the
range of the independent variable. )

Now go back to Experiment 10 and look first at the two data tables. Each
of these tables, you will recall, gives H (height above the ground) as a function
of D (distance from the bottom of the ramp). Do your two tables show that H
wag an increasing function of D? Now look at the graphs you made of these two i
functions. What do ycu see as a characteristic of a graph of an increasing . -
functton? How would the greph have looked if the ramp had sloped downward
rather thar upward? How would the graph have looked if you had used an
arched ramp? The graph of an increasing function always slopes . up to the
right. The graph of a decreasing function always slopes down to the right.

The graph of a monotonic function always slopes in one direction -- either
generally up or generally down to the right. The graph of a function that is

not monotonic has what immediately seen characteristic? This is one of the main
uses of a graph: it allows you to see clearly and immediately the general

behavior of the function, which may be quite a chore to dig out from the tabu-
lar representation.

5. Proportionality

The two graphs from Experiment 10 bothrepresent increasing functions
-~ they both slope upward everywhere to the right. But you notice that they
differ in one important respect: the curve for the crooked ramp is somewhat
curvy whereas the curve for the straight ramp is straight. The curve for the
creoked ramp has a changing slope; sometimes it slopes only very gently
upward -- almost flat -- and at other times it beccrne s more steep. The slope
is always upward to the right, to be sure, but is sometimes more and some- :
times less steep. The curve for the straight ramp, in contrast, never changes its
its slope; it never becomes more nor less steep, but keeps on going with the ‘
same steepness everywhere. You recognize then that we can think of two
classes of increasing functions: that simple kind in which the increase is steady
with a never-changing slope; and a more complicate kind in which the slope
is always increasing but yet changes so as to become sometimes more and
sometimes lrss steep. Do you see how the graphical representation of these

two functions reveals this character so much more easily than the tabular
representation?

But now go back to the two data *.bles in Experiment 10 and look at the
ratios of H/D calculated there. Recall that for the straight ramp we found
that H/D is a constant whereas for the crooked ramp H/D was rot constant.
Again we can think of two classes of increasing functions: a simple class in
which the ratio of "dependent variable dividid by independent variable' is
constant, and a class in which this ratio is not constant. Both are increasing
functions, you understand. But in the simple class the two variables, depen-
dent and independent, are so locked together that, no matter how they change,
they always do so in such a way that their ratio remains unchanged. In the
other class, the two variables are also locked together so that a certain assigned

value of the independent variable fixes unarguably the dependent variable, but
their ratio does not remain constant.
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Observe that we have classified increasing functions by two different
schemes. In one scheme, we lumped into one class those that had straight
graphs and into the other those whose graphs are not straight. In the other
scheme, we placed into one class those functions in which the ratio of 'func-
tion/independent variable'' is constant, and into the other class those for which
this ratio is not constant:

Scheme #1 Scheme #2
One class  Graph is a straight line Graph not a straight line
Other class Ratio of deperdent/indepen- Ratio of dependent/indepen-
dent is constant dent not a constant

Notice too that for both ramps you found Height to be a function of Distance.
But for the straight ramp you found this function to belong to the first class
according to both schemes of classification and the crooked ramp to belong to
‘he second class in both schemes. The intriguing question comes up: is this
always true? That is, is a function whose graph is a straight line always a
function whose ratio of dependent/independent is & constant; and is a function
whose graph is not a straight line alway - one for which this ratio is not con-
stant?

Now here is a very important bit of logic. Simply because we have se
two different schemes of splitting a set into two halves, it does not follow that
the two splits are identical. There are lots of ways of cutting an orange in
half.

For instance, you might split your class into two group boys and
girls. Someone else rnay split them into two groups in a different way: say
those who have had measles and those whe haven't. You might then find a
certain boy who did have measles and a certain girl who did not, and leap to
the conclusion that the two splitg are identical: the boys are the ones who
had measles and the girls the ones who did not. Of course, you know that you
cannot jump to that false conclusion.

Similarly here. The fact that we have two schemes for classifying
functions, and have found two .cases where the splitting is identical does
not mean that it is always so. But it is still an intriguing question and we

ought to look into it further. That's one purpose of Experiment 11, which
you ought now to do.

Points to Discuss in Class

Suppose you wanted to measure the position on a vertical yardstick of a
pencil that you are holding two inches in front of the yardstick. If you held your
eye at exactly the same horizontal height as the pencil, you would get one
reading. If you held youreye above the level of the pencil you would get another
reading; and if you held your eye below the level of the pencil, still another.
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Which is correct? Why was it important in the experiment to sight horizon-
tally across the hook to the ruler? The error made in a measurement because
the eye is not in the correct position’is called an error of parallax. You can
see how impozrtant it would be in careful measurements to avoid this error. It
must always be considered when, as in this experiment, the ruler and the
thing to be mez sured cannot be brought together.

What did your calculations show about the ratio, extension divided by
load, for the springs you used? Did everyone in your class find this ratio
constant? What are the units of this ratio? Would it be correct to summarize
the results of this experiment as found by your whole class in this statement:
"The ratio of the exiension of a spring to the weight producing that extension
is a constant''? In fact, this statement has been found by numerous experiments
to be true for all elastic bodies. This finding is often called Hooke's law,
after Robert Hooke who first stated it as a general rule of Nature in about 1660,

If we represent the extension by E and the attached weight by W, Hooke's
law can be written more succinctly as

where k is some constant. Show that a completely equivalent way of saying
the same thing is to write

E = kx W

This iast equation is worth special attention. Notice that it is solved for the
dependent variable. This equation then gives two different names for the
dependent variable: one, of course, is E itself; the other is kx W. Thus the
expression ' E=kx W' i5 still another functional representation of E, telling
exactly what function of the independent variable W, the dependent variable E

is. You now know of three types of functional representations: tabular, graph-
ical, and this last one in the form of an equation. When a function is represented
by an equation solved for the dependent variable, it is called an analytical
representation. Try to discuss various advantages and disadvantages of
graphical, tabular, and analytical representations of functions.

You found experimentally that E/W for spring is a constant. When
W = 0, E of course is also zero, because if there is no load there is no’
extension. What will you do about the ratio 0/0 for the first line of each table

in Experim
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What kind of constant is the k in the expression E =k x W? Is k+a constant
for any one spring? Do all springs have the same constant, k? Remember that
k is simply another name for the ratio, E/W. Suppose that I attach a certain
load, say 10 grams, to two different springs, one a weak one and the other a
stiff one. Which spring will give the greater extension? Which spring will have
the larger value of k? Suppose I have two springs, a stiff one and a weak one,
and find they are both extended the same amount, say 10 cmi:: Which is supporting
the greater weight?
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Look at the expression, "E/W = k''. Suppose I have two springs, one
~ weak and one stiff. On each I hang the same weight, W. Will the extensions
j) be the same for the two springs? Call one extension Ey, (meaning extension
' of the weak spririg) and the other Eg (meaning extension of the stiff spring).

For each spring, E/W must be some fixed value, k, which is not the same for
different springs. Call them ky for the weak spring and kg for the stiff ope.
We now have

' Es/W = ks and Ew/W = kW
for stiff spring for weak spring

If W is the same for each spring and Eg is less than E;, (because a stiff spring
extends less than a weak one under the same load), then how will kg and ky,
compare? Make a general statement: ''Of two springs, the stiffer one will
have the value of its spring-constant, k., "

Or, suppose you have two springs, one stiff and one weak, and extend
them both the same amount, by hanging different weights on them. Which
will need the greater weight? Let us call W and Wy the two weights that
will extend the springs the same amount, E. Then

E/Wg = kg and E/Ww = kg

\) If E is the same for each spring and Wg is greater than Wy, (because a stiff
spring needs more weight tc extend it the same arnount as a weak spring),
then which will be larger, kg or ky? How does this compare with the general
statement you made at the end =f the last paragraph above?

Now look at the graphs you made for the two springs in Experiment 11.
Did you get essentially straight lines in both cases? Here then is another case
where a function whose ratio to its independent variable is constant gives a
straight-line graph. You now have a little more reason than before to believe
that a function will have a straight-line graph if the ratio of function to depen-
dent variable is a constant. Of course we still haven't proved it (why not?),
50 let's look into the matter a little more carefully.

Suppose you have a triangle with one right angle and arranged like this:

— |

h

This may be any triangle at all that has one right angle. Let us call the
horizontal leg of the triangle h and the vertical leg, v. If we measure h and
v in cm, we will of course get some one certain number for the ratio, v/h.
Suppose we now magnify this triangle exactly 3. 694 times. The triangle will
of course still be the same shape, but 3. 694 times as big.
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The horizontal leg will now measure (3. 694 x h) cm and the vertical leg will
measure (3.694 x v) cm. The ratio (3. 694 x v)/(3.694 x h) is still the same
because the 3. 694 will cancel out of numerator and denominator. Now you can
see that the same would be true if we had used 2, 241, or 89, 643, or T or Jz,
or any other number for the scale of magnification; for whatever the scale is,
the nuraber will always appear in both numerator and denominator and there-
fore cancel out. In other wnords, magnifying a triangle will nct change its
shape, and will keep the r _.io of vertical leg to horizontal leg unchanged. Now
if the triangle does not change in shape when it is magnified, then we can fit the
unmagnified and magnified triangles together like this,

3
. = et A h H +

and find that the long sloping line is one straight line, AB. This will be true
whatever the shape of the initial triangle and whatever the scale of magnifica-
tion. You then sece that if AB is a straight line, the ratio v/h equals the ratio
V/H and this will be true for any straight line AB whatever and no matter what
the positions of the two lines v and V might be. The converse is also true: if
the ratio v/h equals the ratio V/H, then AB is a straight line. Do you see
that, if the last two statements are true, then we can say:?

A function whose graph is a straight line through the origin
is a function whose ratio to its independent variable is constant; and

A function whose ratio to its independent variable is constant
always has a graph that is a straight line through the origin,

(We have discusscd in the long paragraph above the matter of equivalence
between a straight-line graph (through the origin) and the constancy of ratio
between a function and its independent variable. This discussion is not a proof,
though it is nearly one. Perhaps you can see some of the faults that keep it
from being a proof. The main one is our supposition that "magnifying'' a tri-
angle by making two of its legs a certain number of times bigger would leave
the ''shape' unchanged. When you study geometry you will learn how to prove
this without faults. Our discussion only tries to make it seem reasonable.
Also, though we ''nearly proved' the statement "If AB is a straight line, then
a certain ratio is constant.' We didn't even attempt to prove "If the ratio is
constant, then AB is a straight line. " Proving one does not prove the other.
(Does '"Every ginkle is a foop. ' mean ""Every foop is a ginkle''?) It happens,
however, that both the indented statements just preceding the present para-
graph are true. You will actually prove them when you study geometry. )

When two variables are so related that their ratio is a constant, the
variables are said to be proportional to each other. If Y is a function of X such
that Y/X is any constant, then Y is said to be proportional to X, or X to Y.
Notice that there is nothing to prove here. The following two statements say
the same thing because of the phrase ''is proportional to'" is defined that way:
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""A is proportional to B' means "A/B is a constant, '

Using the expression 'is proportional to, ' restate Hooke's law for a spring.
Also, make similar statements for the diagonal and edge of a square, and the
circumference and diameter of a circle.

You should try to get a comfortable and clear feeling for the meaning of
pProportionality. Suppose that A and B are two variables such that A is a when
the value of B is b. Then a/b is some constant, say k. Now suppose we double
the value of B so that its value is now 2b. The value of A must now be such that
when it is divided by 2b we still get the same constant k. What must be the
value of A so that ?/2b = k? We know that a/b = k, so that we can write

- _ 2
2b b

where' ''?'" stands for the value that A has when B has the value 2b. Now rom
remember that ? /2b is just a number and a/b is just a number, and the equa-
tion says they are the same number. Multiply this number by 2b; we must get
the same result when we multiply ?/2b by 2b as we get when we multiply a/b
by 2b, simply because ?/2b and a/b are really the same number. Then

2bx ? _ 2bxa
2b b

Now you know that you may cancel out of numerator and denominator anything
that appears in both. Then cancel 2b from numerator and denominator on the
left and b’ from numerator and denominator on the right. You have

? = 2a

In other words, the value that A must have when B has the value of 2b is 2a.
That is, doubling B requires that A be doubled. You can see that the same

thing will happen if you triple B, halve it, or multiply it by 4, 0.52, or any
other number.

Thus an easy way of looking at a proportionality is this: Two variables
A and B are proportional when their behavior is such that multiplying one of
them by some number automatically causes the other to be multiplied by the
same number.

6. The Proportionality Constant

When one variable is proportional to another, their ratio is constant,
This constant is of course dependent upon what two variables you are considering; .
to say that the ratio of two proportional variables is constant does not mean
that this ratio is the same regardless of what variables you are talking about. ,
The constant that is the ratio of diagonal-length to edge-length for a square is - - .
not the same constant as the ratio of circumference to diameter for a circle.
Even when you deal with Hooke's law, the constant is not the same for one
spring as for another. But as long as you are talking about one particular
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shape, the squre, the ratio of diagonal to edge is always the sarie; as long

as you are talking about one particular shape, the circle, the ratio of circum-
~ ference to diameter is always the same; as long as you are talking about one
particular spring, the ratio of extension to weight is always the aame.

We have seen that the statement "Y is proportional to X' means that,
no matter how Y and X may change, both the following statements must be
true:

Y/X = k and Y = kxX

where k is some consiant whose value depends on what the variables Y and X
happen to be. Notice carefully that the two equations above are completely
equivalent. Neither equation carries any information not contained in the
other. This must be true because either may be derived from the other (Can
you still carry out this derivation?) purely by logic without bringing in any
new information. If no new information is brought in when deriving the second
equation from the first, then clearly the second equation cannot contain any
information not contained in the first.

You see then that saying "Y is proportional to X" Jot only says that their
ratio is constant; it also says that I can obtain Y when you tell me X merely
by multiplying the X you give me by the constant. And I can do this for any X
you give me using always the same constant. This constant is called the constant
of proportionality (or proportionality constant). In other words, when one
quantity is proportional to another, their ratio is called the constant of propor-
tionality. i

Now suppose I iell you: 'Y and X are two variables that are proportional
to each other." You immediately infer that their ratio is a constant, don't you?
But then you think a little and realize that the quantities, Y and X, have two
ratios. One of them is X/Y and the other is Y/X. Which of these two ratios
is constant? When one says that Y and X are proportional, which of the two
possible ratios is the one that is constant? The comfortable answer is '"Both
are constant. ' In other words, when someone tells you that X and Y are pro- ...
portional, you don't have to worry whether he means that Y/X is constant or
that X/Y is constant. If one is constant, the other must be.

s

Do you see why? The reason is quite simple. Syppose that

= k

S

where X and Y are any two numbers whose ratio is k. If this equation is true,
you have already shown that

X = kxY

where '""X'" and "'k x Y'' are merely diffr.ent names for the same quantity,
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Let us divide this quantity by k; we get the same result whether we divide X
by kor (k x Y) by k, because X and k x Y are really the same quantity. There-
fore:the results must be the same quantity under different names, or

X _ kxY
k k

But here's the old story again: we can cancel out the two k's on the right hand
side and write

X _
x ¥

where X/k and Y are different names for the same quantity. Divide both sides
of this equation by X, Then vou hgve

X .Y
kx X X .

Now we could cancel out the X's on the left, but a new trouble arises. Doing

so will leave us with a fractior on the left that has no numerator, and therefore
has no meaning. There is an €asy way around this trouble; we just have to

be sure that something will be left in the numerator after the X's are cenceled
out. We can be sure of this by putting something in the numerator. But clearly
We cannot put any old thing in there. We must insert something that will leave
its value unchanged, so that even after it is inserted, it will still be equal to the
right hand side. Do you see that we can put a 1 there? For doing so merely
means multiplying by 1, and any number may be multiplied by 1 without changing
its value. Then we have

Xx1 _ Y
kx X X :
or canceling out the X's, we have
1.y
k X

Thus we have shown that if X/V = k, a certain fixed number, then Y/X = 1/k,
But if k is a fixed number, then there is only one result you could get by
dividing k into 1, Hence 1/k is a constant if k is. Therefore if X/Y is a cone
stant, sois Y/X, and it doesn't matter which ratio you take as constant when
someone tells you that X and Y are proportional,

But you have to be careful. Suppose someone tells you "X and Y are
proportional to each ether and their proportionality constant is 7, 17." Does
he mean that X/Y is always 7. 17 or that Y/X is always 7.17? You cannot tell,
Both ratios are constant, fo course, but you don't know which one is 7. 17. Thus
when you tell someone the proportionality constant betwe:n two proportional
variables, you must always tell him which way the divisiun is to be carried out,
Thus if I aay "The circumference and diameter of a circle are proportional




g T
i
-

R

-76-

to each other and their proportionality constant is 3. 14", you might wonder
what I mean. In this case a little thought would tell you that I must mean
""circumference divided by diameter' bezause you know that the circumference
is always larger than the diameter and dividing diameter by circumference
would give something less than 1 and could not therefore give 3. 14. On the
other hand, I could say to you '"The extension of this spring and the weight ¢
you hang on it are nroportional to each other and the proportionality constant is
7.17 cmm/g. ' Because the units are given, there is no question but that I

mean the ratio ""extension divided by weight, ' because the only way you can get
units of "em/g' is to divide centimeters by grams. But the direction of dividing
must be giver, either explicitly or by implication.

The proportionality constant in the functional relationship between two
propnortional variables is often itself of interesting physical significance. Let
us look at a few cases in order to acquire a feeling for the meaning of propor-
ticnality comstants. In each of the three illustrations following, you should
first read the introductory quotation and make sure you see clearly what it
means. Recstate it in other words; tell yourself definitely what the two variables
are; tell yourself which is the dependent and which the independent variable;
try to see clearly the sense and significance of a statement like ''If I double
the independent variable, the dependent variable will automatically double'’;
and try to see whether this latter .catement is in accord with your common sense
and experience. Repeat: do i for the introductory quotation in each of the
following examples. o

1. "The pri»é¢ of a pile of hamburger is proportional to the weight of
the pile." If »+& let P be the price (in cents) and W be the weight in pounds,
then P/)Eﬂ;@id a constant. What is the meaning of this constant? Suppose that

you pr% 120 cents for a pila weighing 2. 5 pounds. Then

PR
‘A“’"@:‘ﬁ\

P _ 120 cents - 48 cents/ d
W ~ 2.5 pounds cents/poun

In other words, the proportionality constant in this case is simply the price
per pound, which is the same for any amount you buy (not considering quantity
discounts).

2. "The distance traveled by a uniformly moving car is proportional
to the time it travels.'" Let us call the distance traveled, D, and the time
of the trip, T. Then D/T is a constant. If, for instance, the car travels
105 miles in 3. 5 hours, we have

105 miles . '

D _
= =

Here the proportionality constant is simply the speed of the car.

In each of these two cases, the proportionality constant has a fami‘iar
meaning. In the ratio P/W, you have simply the unit cost; in your ordinary
everyday thinking, the higher the constant P/W, the more "expensive' ig the
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material concerned. In the ratio D/T, you recognize the proportionality con-
stant as the speed. In your ordinary ..inking, the greater is the constant D/T,
the faster the car has been moving. In the next case, the ratio may be less
familiar but the thinking is exactly the same.

3. '""The extension of a spring is proportional to the weight attached to
it." If a spring stretches E cm when a weight of W gran: is attached to it,
then E/W is a constant. If in a particular case the spring stretches 8. 76 ¢m
when a weight of 5. 34 g is attached, then

E - 87cm . ;¢4 cm/g.
W

5.34 g

Here the proportionality constant may be a little less familiar but iry to see
its resemblance to speed and unit cost. Here the vnits of the proportionality
constant are ‘‘centimeters per gram. ' Just as unit ccst means the price you
must pay per pound of hamburger; just as speed means the distance you travel
per hour of driving; so does the proportionality constani here means the dis-
tance the spring stretches per gram of weight hung upon it. The large.' the
value of this constant, the more the spring stretches per gram attached, or the
ma e stretchable it is. Here the proportionality constant conveys an idea of
the stretchability of the spring, in much the same way as unit-cost and speed
are measures of costliness and speediness.

Notice a very important point: the idea of ''stretchability'' may have been =

a vague notion in your mind, hardly at any rate ainumerical one. If someone

asks you '"How long is this stick?'' or '"How heavy is this rock?", you immedi-
ately bring to mind aumerical answers and might reply ''Six feet' or "Five

pounds. " But if someone had said '"How stretchable is this spring?', you
probably would have had no thought of numerical measure and might have
answered ''Oh, rather limber'" or "Pretty stiff. "' But if you are building a

machine that requires a spring of just the right stiffness, you don't send an
order to a spring-manufacturer for '"One spring of just the right stiffness'' and
expect to get what you need. You must somehow designate numerically how
stretchable the spring is to be. The proportionality constant in Hooke's law

is a nemerical measure of stretchability. Now if someone asks you ''How

stretchable is this spring?', you need not be vague; you can give him a numer-
ical answer ''17. 2 centimeters per gram., "

Now one final point in connection with proportionality constants. Recall
again that ""A is proportional to B'' means

A = kxB

where k is some constant regardless of what A and B might be. If someone
should ask you, "All right, A is proportional to B, and the proportionality
constant A/B is k. I want to know what value A would have when B has the
value b, What is it?'" Since A is a function of B, the question must have an
answer because giving a value to the independent varizble must give a definite
value to the dependent variable. (Why is this true?) The answer of course

is given by the last equation above. To find what value A has when B is b, you

i S
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just multiply k x b. Suppose the question is asked the other way around: '"What
value must B have in order to give A the value a?'' This question is also easy
to answer. You should now be able to solve the above equation for B and show
that

B = Alk,
Be sure that you —an show this.

For instance, suppose you have a spring whose constant is 1. 64 cm/g.
Suppose the extension of the spring is 5. 86 ¢m; what weight must be hanging
on the spring to produce this extension? From the given spring constant, you
know that E/W = 1. 64, when E is in centimeters and W in grams. Then

W = E/I.64

and all you need do to find the weight is to divide the extension by 1.64. In
this way the spring becomes a weighing machine.

Now you are ready to do Experiment 12,

Points to Discuss in Class

Within the error to be expected in your measurements, did you find the
ratio, weight/length, constant for one size cf rod? Did both sizes of rod give .
the same proportionality constant? May you reasonably conclude that, for an
aluminum rod of given cross-section, the weight of the rod is proportional to
its length?

What is the meaning of the proportionality constant, weight/lzngth? Think
back to the measurements you made (Experiments 6 and 8) on squares and
circles. You found that the ratio of diagonal/edge for a square is the same for
all squares regardlcss of size. The value of this ratio is purely a property
of being square, aud does not depend on how big the square is. You found that
the ratio of circumference/diameter for a circle is the samec for all circles.
The value of ‘nc ratio is purely a.property of being a circle, and does not
depend on how big the circle is. Experiment 12 showed you that the ratio
of weight/length for an aluminum rod of fixed cross~sectior. does not depend
on how long the rod is. The ratio does depend on the diameter of the rod (How
do you know this?), and you would probably guess that it depends also on the
material of which the rod is made. For a rod of 0. 635 cm diameter, you
found a ratio of about 0. 86 g/cm (its value depends somewhat on which partice=
ular alloy vou used), We can scarcely eacape the conclucion that 0, 84 gf/cm
is purely a property of aluminum rod 0, 635 cm in diameter. You can have an
aluminum rod of this diameter any length you please, just as you can have a
square of any edge=-length or a circle of any diameter you please. The weight
of such a rod, like the diagonal of a square and'the circumference of a circle,
may be any thing you please. Neither the length nor the weight of this size
aluminum rod is a property of this size rod, for they may have any values
at, all, But'the ratio of weight/length cannot have any value at all., Once
you fix on aluminum rod, and once you fix its diameter as 0. 635 cm, then you no
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longer have any choice in the matter: the ratio of weight/length is 0. 86 g/cm
whether you like it or not. The quantity 0. 86 g/cm is therefore a property of
this size aluminum rod, and not of what piece of the rod you happen to be
talking about.

This property is often called ''linear density!', the ratio of weight/leagth
for any material of fixed cross-section, whether it is platinum wire Jiner
than a human hair or a giantsteel girder weighing hundred of pounds per foot.
Try to see the similarity among speed (say miles per hour), linear density
(say grams per centimeter), and unit cost (say cents per pound), You can
think of speed as the rate at which you accumulate miles behind you as you travel
along; the speed is the number of miles accumulated in one hour. Unit cost
is the’ rate at which your grocery bill piles up behind you as you throw pound
after pound of pork chops on your grocery cart; the unit cost is the number of
cents indebtedness accumulated per pound of pork chops bought. Linear density
is the rate at which you use up grams of pencil as you feed the pencil into the
pencil sharpener; the linear density is the grams of pencil ground up per
centimeter of pencil fed in. Think of other ''something per something'' quantities
and see how they all have a similar interpretation. You will have made a long

step toward really understanding physical science if you can get a feeling for the
real meaning of "X per Y. "

If you have not already done so, make graphs for the data in both tables
in Experiment 12. Plot weight vertically and length horizontally, placing both
plots on the same graph. Label the two curves appropriately. Does the
linearity of the curves confirm that weight is proport >nal to length?

Which curve is steeper, the one for the larger or the smaller rod? Can
you relate the steepness of the curve to the magnitude of the proportionality
constant? Which size of rod accumulates weight faster behind you as you run
along its length? Which curve rises faster as you move to the right? Are the
last two questions related? If you are shown a graph with two straight lir s
through the origin plotted on it, can you tell at sight which has the lar ger
proportionality constant?

If a steel girder weighs 175 pounds per foot,how much will 12 feet weigh?
If a glass tube weighs 0. 65 g/cm, how much will a piece 82 cm long weigh? If
a copper wire 16 ¢cm long weighs 0. 00144 gram, how much will 97 cm weigh?
(Hint: first find out how much 1 cm weighs. )

7. Once Again, Lightly

When two variables, say X and Y, are so related that assigning a value
to X automatically fixes the value of Y, then Y is said to be a function of X.
The variable whose value you assign (X in this example) is often called the
independent variable and the function (Y in this example) is often called the
dependent variable.




To say that Y is a function of X implies that, given X, you can find Y.
Any rule that tells you how to find Y when X is given is a representation of
the function. Functions may be represented tabularly, graphicaily, or ana-
lytically., Each of these three has its own advantages and disadvantages.

It is often found that steadily increasing the value of the independent
variable causes the dependent variable either to steadily increase or to
steadily decrcase; that is, causes the dependent variable to change always
in the same direction. Such a function is called monotonic, and a monotonic

function clearly may be either an increasing function or a decreasing function
but cannot bz both,

A special and very important kind of monotonic function cccurs when Y
and X are so related that Y/X always has the same value no. matter how X
(and Y ) may change. In this case, Y is said to be proportional to X. Any
of the following six statements is exactly equivalent to any other of them:

Y is proportional to X

Y/X = k (where k is some constant)
Y = kxX
X/Y = 1/k

X = (1/lkxY
The graph of Y vs. X is a straight line that passes through the origin,
The constant, k, in the above table is called the proportionality constant.

The proportionality constant often has a simple physical interpretation, its

meaning being, of course, dependent upon the meanings of the two variables,
X and Y.

F'urther Classroom Discussion

To say that Y is a function of X does not tell you very much. It says
only that (in general) the value of Y changes with the value of X but not how
it changes. To say that Y is a monotonic function of X says a little more.
Notice how each of the following statements says a little more than the last,
until finally the last statement says it all:

is a function of X.

is a monotonic function of X.
is an increasing function of X,
is proportional to X.

= 7.12 times X,

MR
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t‘{' If two variables, U and V, are connccted so that U is proportional to V,
- does it follow that U is a monotonic function of V? If W is a monotonic function

of 2, it is necessarily true that W is proportional to Z? Draw graphs to
illustrate your opinion.

Consider the units of a proporiionality constant. In the statement, ''The
diagonal of a square is propozriional to the edge, ' we found that the proportional
constant (which one?) is J2. We also found that this pProportionality constant
remains equal to J2 whether the measurements are made in inches, centi-
meters, or widgets. Suppose that the Hooke's law constant for a certain
spring is measured to be 3. 42 centimeters/gram. Would the units be the
same if the measurements of extension and weight had been measured in
inches and pounds respectively? Can you formulate a general rule telling
when the numerical value of a proportionality constant does depend on the
units used for the two variables and when it does not?

You might hove noticed that most of the written matter in this book is
explanation, questioning, discussion, or illustration of certain central points.
There are a few sentences here and there, however, which are not of this
nature, but are statements of the central points themselves. The whole
book could be enormously reduced in size if all the discussion, explanation,
and illustration were removed and only those statements retained which carry 1‘
o the me~t of the points to be made. This attitude is very different from , say,
a history textbook, where practically every sentence carries meat not contained
in any other sentence. Most people would find it very difficuli o undersiand a
textbook on the basic principles of science if there were no explanations and i
illustrations and just-plain-talking-about the central points. You should :
learn to tell the difference between the meat and the dressing, however, aad '
understand that many pages may be spent trying to make clear the meaning
of a relatively few scattered central points. It is only these points that you
are expected to learn, however; the rest is only to help you learn. For example
the first section of this unit, beginning on page 56 and going all the way dowm to
"Points to Discuss in Class" on page 58, contains only one sentence ( or possibly
two ) that is really essential, All the rest is to help and prepare you to under-
stand the meaning of that one sentence. Can you find this one central point?

Each of these central points is usually one of three possible kinds:

Definitions
Experimental Findings
Derived €onclusions

For instance,: consider the sentence "When two variables are so related
that their ratio is a constant, the variables are said to be proportional.'" This
g is a definition of the v'ord "propostional." This is not something you are ..-
| commanded to believe, for it contains nothing to believe. It ig merely a signal
to you that from now on we are going to use the word '"proportional' in a cer-

tain way, and if you want to understand what we are talking about you had better
learn the way we are going to use it.
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Next, consider Hooke's law, which says ""The exiension of a spring is
proportional to the weight attached.' This, of course, is not a definition;
it makes a direct statement, presumably of fact. But is this sentence some-
thing you are commanded to believe? No, because you carried out an experi-
ment (you and thousands of other people) in which you gathered data that led
you to the apparent truth of the statement. ~ This then is an%xperimental
finding, whose truth is discovered by expetiment.

Finally, consider the statement '"The extension of a spring is equal to
the attached weight multiplied by a constant.' This is not a definition either;
nor is it directly an experimental finding, for what you found experimentally
was that the ratio of extension to weight is a constant. But once you found that
"E/W = k" (this was an experimental finding), then purely by logic you manip=
ulated this equation to show that"IF it is true that E/W = k, THEN it is also
true that E = W x k." Thus you are not commanded to believe this, but are
led to see that '"If the experimental finding is correct, then this derived con=-
clusion is also correct.' A derived conclusion is a statement whose truth follows
logically from another statement. If you believe the first, then logicaliy you
must also believe the second, but you are not commanded to believe it without
being shown why it is believable.

Physical science is like this throughout. You are never commanded to
believe anything. If ever a forthright statement is made and you do not fully
understand why you are expected to believe it, question it. Do not accept it
unthinkingly, like an obedient puppy dog.
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Unit IV

Weight, Volume, and Density

1. Measurements of '""Amount"

Jerry was stringing a length of wire from one post to another in his back
yard in order to make a rack to dry his raccoon skins. The posis were ten
feet apart and he had only 9 1/2 feet of very thin wire. Seeing that he needed
a larger piece of wire, he called to his brother.

""Tom, ' he asked. '"I need a little more wire than this piece you gave me.
Find me another bigger piece, will you please?"

"'Coming up, " Tom called, and a minute later he brought his brother a
six-foot length of very heavy wire. Jerry looked at the piece in disgust,

"€an't you see that that piece is even shorter than the one i have?' he

said. ''I distinctly asked you to bring me a bigger piece of wire, and look what
you brought me. "

Now it was Tom's turn to be annoyed. '"But this piece I just brought you
is bigger than the one you have. It may be shorter, but it's a lot bigger. And
you'd say so, too, i. you weren't so mad. "

"Youlre right,' Jerry apologized. '"Yau didn't know what I wanted it
for, and since you didn't, I sauould have said I wanted a longer piece, not merely
a bigger piece. "

Tom and Jerry's little disagreement didn't turn into a fight, but serious
arguments often result from the fact that two people are using the same word
in different senses., The violent drama above resulted from Jerry's use of the
word ''big' to mean ''long,'" while Tom's understanding of the word was quite
different. What did Tom mean? There is no point in arguing that you should
never say "'big" when you mean ''long'', because the truth is that you won't often
be misunderstood. But in scientific speech, one must always be careful to say
exactly what he means, even to the extent of avoiding the use of words that are
imprecise in meaning. Here is another example:

Suppose I have a block of wood and a block of iron. The wooden block
is the size of a brick and weighs 1.5 pounds. The block of iron is the size of
a half-brick and weighs 9 pounds. I set them before you and ask, 'Is there
a larger amount of wood in the wooden block than there is iron in the iron
blcck?'' Don't worry about tryiug to answer this question, because it cannot be
answered. The reason it can't be answered is simply that it isn't a question,
even though it looks like one! And the reason it is not a question is just that
the word '"amount'' is not defined. If both blocks were iron, however, the
question, ''Is there a larger amount of iron in this brick-sized block than there
is in this half-brick-sized block?' can be answered. In this case, we can
regard the word ""amount' as defined with suffieient precision, because all
reasonable interpretations of the word would lead you to agree that the larger
block contains the greater amount of iron.
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Since, then, the word ""amount' does not have sufficient precision for all
our purposes, we must agree that we will not use it when there is any chance
for confusion. If we had asked whether the iron or wood block had the greater -
volume, there would have been no difficulty; and if we had asked which has the
greater weight, there would have been no difficulty. This is because volume
is defined as a certain measurable geometric property of the block, and weight
is defined as a certain measurable physical property of the block. "Amount"
is a more general term of rauch less precision. (All this does not mean,
however, that you should never use the word "amount. It is just that you

must learn to avoid using it when it is not sufficiently precise for the purpose
at hand. )

The present unit deals with two quantities that can be used to express
amounts of matter. One is volume, the other is weight, and the senge in
which we shall use the terms are indicated in the preceding paragraph, though
they are not defined there. Definitions of weight and volume are extremely

difficult to formulate, and we shall rely simply on your already having a good
enough idea of what they mean.,

If you have two different pieces of the same material then, you would
expect that ''the larger piece would have the greater weight.'"" We have already
seen, however, that this quoted statement is not very useful as a functional
relation. A functional relation must involve two measurable quantities. It is
true that weight is a perfectly definite measurabie quantity, but what is meant
by 'largeness, '' or ''size''?

Suppose you have a set of round sticks all the same diameter and all
of the same material, but of different lengths., Would you say that '"size" might
be taken to mean 'length', so that one could say ''the weight of one of these
sticks is an increasing function of its length'"? You have already investigated
this question in Experiment 12, and found that the weight of a stick of fixed
material and fixed cross section is not only an increasing function of its length,
but is in fact proportional to its length. In this case, ''size" and "len gth" could
be used interchangeably. Suppose you have a set of circular cylinders all the
same length, but of different diameters. Would it be correct to say:

The weight of a cylinder is an increasing function of the size?

The weight of a cylinder is in increasing function of the diameter?
The weight of a cylinder is proportional to the size?

The weight of a cylinder is proportional to the diameter?

Let's try Experiment 13 and see.
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Points to Discuss E.E_, Class

What do you notice this time about the ratios, weight/diameter? Allowing
for experimental error, would it be fair to conclude that the weight of an f
aluminum cylinder of fixed length is proportional to its diameter? 5

What about the graph you made of weight vs. diameter? You have seen
that, when two variables are proportional, their graph is a straight line
through the origin. May you conclude from the graph that the weight and dia-
meter are proportional? How does your answer to this question agree with
your conclusion from the preceding paragraph?

Suppose thac the spring you had used in Experiment 11 had been lost or
damaged so that you had to begin Experiment 13 with a new spring whose
spring constant you didn't know. Would it be neccessary to do Experiment
11 completely over again to determine its spring conttant? If the ratio for a
given spring extension/weight, is the same for all weights (this is what you
found in Experiment 11, did you not?), then how many measurements of
""extension versus weight' do you need to determine the ratio?

If you have to make only one measurement of extension and weight to get
the spring sonstant, then the function, extension versus weight, must be
knowable from just one measurement. But this implies that the graph alsn is
knowable from only one measurement, for the graph is only another way of
representing the same function. Is one measurement, (thatis, one point on
the graph) enough to tell you the whole graph? Remember that, if two variables
are proportional, their graph is a straight line through the origin and through
the one point you can plot from the one measurement you made. How many
straight lines can you draw passing through the origin and the one plotted
point? A spring whose spring constant is known is said to be calibrated.

In the present experiment with aluminum cylinders of fixed length but
different diameters, you found that weight is not proportional to diameter. Is
the weight a. monotonic function of the diameter? Notice again the important
logical point that a monotonic function is not necessarily a proportional
function, although a proportional function is necessarily monotonic.

Now that we have found that weight is not proportional to diameter in this
case, we feel a little let down. It is one thing to find that weight is not pro-
portional to diameter. It is quite another thing to answer the question: What
function is it? In this case it is not difficult to find the angwer. Go back to
your data sheet for Experiment 13 and compute the square of the diameter
for each line of the table. How many significant figures are you entitled io in
these squares? What will be the units of these quantities? Enter their values
in the second-last column of the table, Put a suitable heading in the blank
space over the column, including the units. Now try working out the ratio,
"'weight divided by square of the diameter''. What are the units of this ratio?
Enter these new iatics for each line of the table, putting a suitable heading ..
over the column, including units,
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N You should now be able to formulate a stztement: ""For aluminum
J cylincers of fixed length, the weight of the cylinder is proportional to .

We can write an analytical expression for this last statement in the form
W = k x D2

where W means the weight of the cylinder and D is its diameter. Now once
you know k (which is constant as long as you are talking about cylinders of
some fixed material and fixed length), you can always calculate W when you
are given D. The value of k you found in Experiment 13 was about 5. 39 g/cm”;
that is, W/D2 = 5,39 when the weight is expressed in grams and the diameter
in cm, Would the value of the constant still be 5. 39 if the weight and diameter
were expiressed in ounces and inches instead?

Mow if W = 5,39 D2, you can easily calculate W whenever D is given.
How would W change if you double D? That is, you know that doubling D will
cause W to increas:; can you make a general statement about how much W will
increa: e on doubling D? Suppose D has the value of d before doubling, and,
of cou:rse, 2d after doubling. The weight, W], before doubling will then be
W1 =5.39 xd°. The weight, Wj, after doubling will be Wp = 5. 39 x (2d)°.
The ratio, W»/W, then, is

Wo  5.39x(2d)2 '(ngz
W1 T 5.39x4d2 Codc

the las: fraction coming from the permissible cancellation of 5. 39 from top
and bottom. Now (2d‘}2 means ''(2d) x (2d)"', doesn't it? And that means
"2xdx 2xd." Thus we can write

XV_Z. - 2xdx2xd
W, dxad

= 4

Be sure you see where the 4 comes from. Then if WZ/WI = 4, it follows that
Wy =4:x W;. Thatis, W) is fowr times as great as Wj;. Therefore doubling
the diameter will multiply the weight by four. This is true, u. course, no
matter what the diameter before doubling might be; because all we said was
that d is the dizmeter before doubling, and we never committed ourselves to
any particular value for d.

Does it surprise you that doubling the diameter does not merely double
the weight, but quadruples it? If you think of the circular cross-section of the
cylinder, this would mean that doubling the diameter of the circle quadruple ;.
the area of the circle, wouldn't it? Draw two l-inch circles side~-by-side and
just touching each other on a piece of paper. Then draw a 2-inch circle whose
center lies at the point of contact of the two small circles, Is the 2-inch circle
more than twice as ''big' as.a l-inch circle? Actually, its area is four times

" as great.

. - - . e T T mm——— s
L e T O T AT 3 O kR R 1 S O BN Y SN NN T A AT T e TP ENELT R Y T, 03 - Sk A Lo

SRR I A kRt



. "'""r”‘

MEEEAMT S et it L S s

TSRy e SRR R e T A T Ry ARSI g T e AT AT RTINS SAL TR P T T A AT ST i, RS T T T

ciop

-87-

Do you see now that saying that "'weight is proportional to size' for a
certain kind of material (like aluminum) may or may not be true? If yvou have
a bunch of sticks all of the same cross-section but of different lengths, itis
certainly quite reasonable to refer to the length of the stick as its size; and
in this usage of the word '"size’', the weight is in fact proportional to size, If
you have a bunch of sticks all the same length but of different diameters, it is
again certainly reasonable to refer to the diameter of the stick as its size; but
in this usage of the word ''size', the weight is not proportional to size,

If it sounds confusing to you that weight sometimes is proportional to size
and sometimes is not, don’t worry ahkcut it. It would be confusing to anyone.
But you should see that the whole reason for the confusion lies in using the word
""'size'' in two different meanings. If you avoid this ambiguous use of the word
and replace it by ''length'' in the first case and '"diameter' in the second, every
bit of the confusion disappears. You then have that weight is proportional to
length but weight is not proportional to diameter. Things are made very simple
by the correct choice of words, aren't they?

Let's look into one more case. Do Experiment 14 now.

Points to Discuss in Class

What does the inconstant ratio, weight/diameter, tell you about the pro- |
portionality between weight and diameter? Does the curve of your graph agree with
with this conclusion? Does the curve appear to be similar to the one you |
obtained in Experiment 13? The similarity between the two graphs suggests
that perhaps the ratio, ''weight/square of the diameter" might be constant
here, too, as it was in Experiment 13. Try it, using the sixth column to
record the quantity, (diameter)z, and the seventh for the ratio, weight/@iameter)
How many significant figures are you entitled to in the ratio? Do you get a con-
stant ratio this time?

2.

Would it be correct to say tlat the weight is an increasing function of the
diameter? Would it be correct to say that weight is an increasing function of
the square of the diameter? Would it be correct to say that the weight is pro-
portional to the square of the diameter ?

If the weight is proportional neither to the diameter of the sphere nor to
the square of the diameter, can you suggest something to try next? When your
class agrees on what to try, do it, using the last two columns of Table I. What
units do these quantities have?

2. Density

The last three experiments have shown you that when you are talking
about pieces of aluminum, the weight of the piece is proportional to
the length, when the pieces are rods of the same crcss-section
the square of the diameter when the pieces are rods of the same length
but different diameters.
the cube of the diameter when the pieces are spheres.
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Or, if we say the same things symbolically, we could write

W; = k] x 1

=
N
]

kzxdz

W3:k3Xd3

In these equations: Wy, W2, and W2 represent the weights of, respectively,
rods of the same cross-section, cylinders of the same length, and spheres;
and k), k2, and k3 are the corresponding proportionality constants. Nothing,
either in these equations or in the corresponding word-statements above, tells
you what the numerical values of the k's are; but you measured them in your
experiments.

Now this is the kind of finding that causes a physicai scientist to scratch
his head and pace the floor, or at least to squirm in his chair. Here we have
some pieces of the same material, all aluminum, and the weight of the piece
varies in a crazy way with the size, being sometimes proportional to some
dimension, sometimes proportional to the square of some dimension, and
sometimes proportional to the cube of some dimension. Isn't there some way
we can unify all these findings into a single larger idea, so that we don't have
80 many diverse individual ideas separately to remember? One of the main
goals of physical science is to find such unifying ideas. Let's try it in this case.

The thing that strikes us as possibly unifiable here is this: All the metal
pieces were of aluminum, and there should therefore be an underlying same-
ness about the three functional relations. Still, there are three different k's,
each of which had to be separately measured. Might there not be a way to
relate one k to another, so that you would have to make only one measurement
for aluminum, and then all the k's would follow from that one measurement?
This might be possible, so let's think some more about it.

Suppose I have a piece of aluminum of a certain weight. Then in my
imagination I add another piece of aluminum to it; the weight of the piece will
of course increase. But let me add this second piece in a special way. I will
add it to a "'rod of fixed cross-section' in such a way that the augmented rod
is still of the same cross-section but a little longer. Or, I will add the same
piece to a ''cylinder of fixed length' in such a way that the augmented cylinder

is still the same length but a little larger in diameter. (I can do this by ''coating"

the added piece like a sheet of wrapping paper around the curved surface of

the cylinder, but not on the flat ends.) Or, I will add the same piece to a "Sphere"«:;

by buttering it uniformly over the entire surface of the spke re so that the
augmented piece is still a sphere only & iittle larger.

Now siace the piece I added was each time the same piece, whether it was
added to rod, cylinder, or sphere, it is clear that the weight of the piece. must
increase the same amount each time, no matter what the shape we started with.
This suggests that what really counts in determining the weight of a piece of
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aluminum is the volume of aluminum contained in the piece. Surely, you say,
you vould find that the weight of a piece of aluminum is an increasing function
of its volume. Perhaps we could investigate this guess, and find out whethcx
it's true; and if we're lucky, perhape we could even find out exactly what
increasing function it is,

NMow do Experiment 15, after which we will have more

Points to Discuss EP_ Class

Did you find that the weight of a chunk of aluminum is an increasing
function of its volume? Did the constancy of the ratios and the linearity of
the graph show that weight is proportional to volume ? Suppose that, after you
had finished with the eight blocks you used in this experiment, you had been
given an invisibly small piece of aluminum as your ninth block. The weight
and volume would both be zero of course. You therefore could not compute
the ratio, weight/volume. On the other hand, you have learned that you may
call the ratio, 0/0, anything you please. What would you like to call it in this
case?

In analytical form, we find by experiment that

where W is the weight of the piece, V is its volume, and k is some .onstan:.
What are the units of this constant when W is in grams and V in cc? Would the
numerical value of k be differznt if we measured the weight in pounds and the
volume in gallons? The value for k is about 2. 7 g/cc, depending somewhat on
what particular aluminum alloy you uscd.

Do you understand the meaning of the statement, "W/V is a constant for
all pieces of aluminum'? The weight and the volume of aluminum chunks are
variables,. You may have a chunk of aluminum of any weight you choose; you
may have a chunk of aluminum of any volume you choose. But you cannot chocse
both. Once you have fixed on some certain volume for a chunk of aluminum,
the weight is fixed whether you like it or not. You have all the freedom you
wish to choose either the volume or the weight, but you cannot choose the
ratio of weight/volume,

The thing to notice in the last sentence above is that you cannot choose
the ratio. There always is a ratio, of course, but its value is '""chosen for you'',
The aluminum itself, so to speak , does the choosing of the ratio, and your
experiment shows that it always chooses the same ratio. Another way to put
the point is to remini you of what you found in Experiments 6 and 8, You found
that the ratio of 2 for diagonal/edge for a square is purely a property of being
rquare and not on what square you are talking about. You found that the ratio
of T for circumference/diameter for a circle is purely a property of being
circular and net on what particular circle you happen to be talking about. Now
in this experiment you found that the ratio of 2.7 g/cc is purely a property of
being aluminum, and not on what piece of aluminum you're talking about. The
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weight of a certain piece of aluminum is not a property of aluminum, for the
weight depends on what chunk you ars dealing with., The same is true of vol-
ume. But the ratio of weight/volume is the same for all pieces of aluminum,
does not depend on what piece of aluminum you measure, and is purely a prop-
erty of being aluminum,.

The ratio of weight /volume for any kind of material is called the density
of the material. From now on we shall! use d instead of k to symbolize the
ratio, and we can write

This equation may be taken as the definition of density. From it you should be
able to derive mathematically that

W =d x V and V = W/d

You shi.uld not bother to try to memorize these last two equations. You must,
of course, memorize the defining equation {if you expect to remember it), but
it is foolish to memorize the other two because they are so easily derived from

the defining equation.

You should try to get a feeling for the meaning of the quantity called
density. Try to see the close analogy in mex.ing among density and, say, speed
and unit cost. Speed is the rate of piling up distance as time goes on ~- say
miles covered per hour traveled. Unit cost is the rate of piling up your grocery
bill as you but more hamburger -- say dollars of grocery bill per pound of
hamburger. Density is the rate of piling up weight as mo re and more volume
is added -~ say grams of weight accumulated per cc of volume added.

Wkat is the weight in grams of one cc of a material whose density is d?
I.et W; be the weight of one cc of the material. Its volume, of course, is 1 cc.
According to the definition, then, density = weight/volume = Wi/l =Wy. That
is, Wi = d. In words, the weight of one cc of the material is numerically
equal to the density. Othrrwise stated the density (in g/cc) of a material is
simply the weight fin graris) of one cc of the material. Do you see that this
statement is merely another way of wording the last part of the last sentence
of the preceding paragraph?

You should be able to compute the volume of a piece of aluminum if you
know its weigtit and you should also be able to compute the weight if you know
its volume. Let us take a look at two such probiems.

First, what is the weight of 17. 6 cc of aluminum, given that the density is
2.71 g/cc? There are many equivalent way. to work this problem, differing
mostly in the thought processes used to arrive at the required arithmetic. The
worst way is to substitute in the formula, saying som-*hing like this: we are
given that V = 17,6 cc and that d = 2. 71 g/cc. From one of the above formulas,
we know that W =d x V. Then W = 2,71 x 17. 6 = 47. 7 grams, which is the
correct answer.
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Now you should ask: If this method gives the correct answer, why would
anyone call it the "worst" way? If the method works, what is wrong with it?
The main answer is that blind unthinking substitution in a formula deprives
you of a chance to think. If you baby yourself by working problems always by
a recipe, then you deprive yourself of the chance to acquire a real and comforte
able understanding of the ideas. Refuse to baby yourself; force yourself to think.
Then one day when you have to think, it won't be a stranger to you. Noone

hires a scientist because he knows 2 lot of formulas or because he can substitute

numbers in formulas. That's wi.a’ encyclopedias and computing machines are
for! Whether you are going to be a scientists, a housewife, a baseball player,
farmer, or salesman, you wiil have to learn to think. Now is the time to start.

Let's do the same problem by thinking; it's extremely easy! You say to
yourself: I am asked to find the weight of 17, 6 cc of aluminum. (I'm not going
to find the answer just by sitting in my chair and waiting for someone to tell
me the asnwer. I probably won't be able to find the answer by looking it up in
a book, because the chances are slim that anvone has ever worked out exactly
this problem before. I don't want to ask som: one else the answer, because I
want to be the kind of person tla t other people ask, not the kind that has to ask
other people. I have no recourse but to work it myself, ) I could work out the
weight of 17. 6 cc if I knew the weight of one cc, because the weight of 17. 6 cc
is evidently just 17. 6 times the weight of one cc. (How do you know this?)
Now I'm given the density as 2. 71 g/cc; what does that mean? Why that means
that aluminum weighs 2. 71 grams per cc; that is, each cc weighs 2. 71 grams.
Well if one cc weighs 2. 71 grams, how much does 17. 6 cc weigh? That's all
there is to it!

Another way to approach this problem is useful to know about because
the same idea can be used to work much more complicated problems where
even the best ''thinkers" might get lost. In this pProcedure, one thinks only of
the units.involved. We are given 17. 6 CC and asked to find the number of
GRAMS. We are asked to go

From To
cc grams,

You now ask yourself: according to the rules for working with units, how can
I "change' cc into grams? The first thing you must do is put in ""grams'' where
you dor't have grams. You can do this by multiplying by grams:

CC X grams gives cc-grams

according to the rule on page 35. Thus multiplying cc by grams would give us
cc-grams, which still isn't what we want but at least it has "grams' in it! We
still have to get rid of the unwanted cc that occurs in cCc-grams. Suppose we
divide what we now have by cc. We would then have

'CC X grams
cc

1«
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But you recognize now that we are multiplying and dividing by "cc'", and we may
therefore cancel them out:

CC X grams
cc

gives grams
We can rearrange the thing on the left as follows

cc x BIams gives grams
cc
and then we have what we want: In order to convert ''cc'' to '"grams'', we have
to multiply by a quantity whose units are grams/cc. But those are the units
of density. Hence to "convert'" a volume (in cc) to a weight (in grams), you
must multiply by density (g/cc). The arithmetic now follows immediately: you
must multipl, 17.6 x 2, 71 to get the answer in grams. Easy, isn't it?

Now let's work another problem: What volume would 43. 9 grams of alum-
inum occupy, if the density is 2. 71 g/cc? Given the weight, find the volume.
Of course, one way to v.ork the problem is to substitute the given numbers in
the formula (page 90). But this is the baby way and you prefer to use the
thinker's way! Let's see whethe r we can think it out,

One way is to lean on what you know of arithmetic. You say to yourself:
I have a block of aluminum that weighs 43. 9 grams. The density of aluminum
is 2.71 grams/cc, which means that each cc weighs 2. 71 grams. In my block
of 43.9 grams, then, every cc of it weighs 2. 71 grams. The number of cc's
in the block then is the number of (2. 71 grams)'s in it. That is, how many
times is 2. 71 ~cutained in 43.9? Thus the volume is 43.9/2. 71 or 16. 2 cc.

Another way is to pretend that you already know the answer and use syme
bols. Suppose we call the unknown volume, V. Now if I have a block of aluminum
whose volume is Vcc, and each cc weighs 2. 71 grams, then the weight of the
whole block is 2, 71 x V grams. But the weight of the whole block is also given
as 43.9 grams. Hence

2.71 x V = 43,9,
From this you should easily be able to show that V = 43.9/2. 71 ce.

Still another way is to think only of the units. We are given grams and
we wish to find cc: How can we go

From To

grams cc
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Using the same reasoning we used before, you can see that we could convert
grams into cc by multiplying grams by cc/gram, for then we would have

gram x —.C€ gives  cc

because you may cancel out the '"gram'' upstairs and downstairs. Now you know
from your study of the arithmetic of fractions that multiplying by a fraction is
the same thing as dividing by that fraction turned upside down., (If you don't
know this, please pretend that you believe it for a moment and we'll prove it

in the next paragraph.) Therefore, multiplying by cc/gram is the same as
dividing by gram/cc. That is

ram ives cc
gram/cc - )
This last statement says that dividing the weight (grams) by the density (cc) gives
the volume. Thatis, the volume is 43.9/2, 71, same as before.

Now, if you did not see why it's true that multiplying by a fraction is the
same as dividing by the fraction turned upside down, think of it this way.
Suppose that we wanted to multiply any number, A, by and fraction, B/C, Say
the answer is P, Then

Ax%=P.

Now multiply both sides of this equation by C/B. Then

B C C
A = _— = —
XCXB PxB

Now the left-hand side of this equation is merely A because we can cancel out
the B's and C's that appear upstairs and down. ‘Then we have

A=Px &,
B

Now divide both sides by C/B. Then

‘A _ P x C/B
C/B C/B

But on the right-hand side, we are both multiplying and dividing by C/B; hence
they can be canceled:

But now if you go back, you will see that P was originally defined as A x B/C.
Therefore you have shown that E‘;\F is the same thing as A x B/C, QED
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EWhen you turn a fraction upside down, the new fraction is called the
reciprocal of the otler. Like brothers, if M is the reciprocal of N, then N
is the _zciprocal of M. (Do you see why?) We have shown tia t multiplying by
a number is the same as dividing by its reciprocal. You shauld be able by
yourself to show that dividing by a number is the same as multiplying by its
reciprocal.]

Before leaving the numerical problems we just worked out, there is some~
thing that ought to be called to your attention. Notice that we did not work
these problems by some set routine method that somebody told us to use. By
using logic, we worked out our own methods. We therefore know they have to
give the correct answer without our needing someone to tell us so. IT IS FAR,
FAR MORE IMPORTANT THAT YOU SEE HOW TO WORK THESE PROBLEMS
THAN THAT YOU MERELY GET THE RIGHT ANSWER. IT IS FAR MORE
IMPORTANT THAT YOU UNDERSTAND HOW WE REASONED QUT THE
METHODS THAN THAT YOU MEMORIZE THE METHODS AS RE CIPES. Keep
in mind that you can work out your own method to solve the pr oblem and do not
need formulas or someone else to tell you how. Of course you. might need
help in the beginning; the point is that a proper way to solve a problem is
decided by logic, not by someone's authority.

3. _é_ Unification

Do you remember that we left our friend, the physical scientist,
scratching his head and pacing the floor, way back on page 887 Well, now
we are in a position to help the poor fellow. You remember we had exhibited
some experimental findings in this way: If we let

W) mean the weight of an aluminum rod 0. 635 cm in diameter but of
variable length, L,;

W2 mean the weight of an aluminum cylinder 2. 54 cm long but of
variable diameter, D; and

W3 mean the weight of an aluminum sphere of variable diameter, D;

then the results of Experiments 12, 13, and 14 could be summarized in the
functional relationships:

W, = k) x L where k) = 0. 855
W2 = kp x D2 where kp = 5,39
‘.".’3 = k3 x D3 where k3 = 1.414

(The proportionality constants as you found them in your experiments are
already entered here. These numbers may not be exactly the same as yours-
they depend somewhat on the particular alloy you used-but yours should have
been close to these.) Our head-scratching, floor-pacing physichl scientist-
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now was wondering to himself like this: Here I determined three different
propoitionality constants. All are concerned with weights of aluminum blocks
of certain specified shapes. Surely, since all the blocks are of the same
material, these three different proportionality constants are somehow related.

What is the relationship among them? And then our physical scientist starts
thinking. |

Suppose I forget for the moment that I have already measured the propor-
tionality constant, k), between weight and length of aluminum rods 0. 635 cm
diameter. Instead, let me work out the weight of such a rod from the known
density of aluminum, To do so, I would have to find the volume of aluminum
in the rod and multiply it by the density:

Wi =dx V (1)

The density,d, I know; what about the volume, V? Well, these rods are

cylinders, and I can always find the volume of a cylinder from the geometric
formula

———

V=%—xD2xL

where D is the diameter of the rod and L is its length, Now this last equation
says thatI- x D2 x L is another name for V. Therefore I may replace
the V in equation (1) above by its other name and obtain

)/

W1=dexD2xL (2)

Now look at this last equation carefully. We are talking exclusively
about aluminum rods of just the one diameter, 0.635 cm. In this equation,
then, d is a temporary constant, being the density of aluminum; D? is a tempor-
ary counstant, being the square of 0.635; and of course 17 /4 is an absolute
constant whose value you can work out. Since d, D2, and T7/4 are all constants,
if you multiply them together, there is only one product you can get; that is,
their product is a constant. That is,

w1=(_7‘r'_xde2)xL. (3)
This equation is identical with equation (2) except that the first three
factors have been lassoed together in parentheses to emphasize that a.l together

they are simply one constant. Now if you compare equation (3) with the first
equation displayed on page 94, you will immediately see that ky is simply
another name for —Z-x d x D2, Since you know, or can easily work out,

the numerical values of || /4 and d and D2, you should now compute the value
of k) and see how closely it agrees with the value you obtained for the propor-
tionklity constant in Experiment 12.

Remember that d and D2 both have units (what are they?), while 'TT/4
is without units. Then, applying the rule for units when multiplying, what are
the units of (1L x d x DZ)? What did you get for the units of kj in Experi=
ment 12? Youthave now determined k] in two ways: experimentally in
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Experiment 12, and now theoretically. Do the two determinations agree both
numerically and with respect to their units?

Now let's tackle the second proportionality constant, k2, relating
weights and diameters for aluminum cylinders of length 2. 54 cm. Of course
equation (1) still applies, with the change that W] now becomes W2. But we
are also again talking about cylinders, so that the formula for volume remains
as before and we can use equation (2) with W) changed to W,:

szdx--’:l[-xszL @)
The quantity T1 /4 is still a constant, of course, and since we are still talking
about aluminum, so is d a constant. With the other factors, however, there is
a difference. This time we are talking about cylinders of fixed length and
variable diameter, so that L is a constant but not D*. Thus we can rearrange
the right-hand side of (4) and lasso quantities as follows:

W2=(—¥;—-xde)xD2 (5)

Here again, the quantity in parentheses is, all together, a single constant.

If you compare equation (5) with the sew nd equation displayed on page 94, you
will immediately see that kp is merely another name for (-II- x d x L).
Since you know the numerical values of d and L, you should‘be able to work
out the value of k2. Do it, and see whether the k, you get by this theoretical
method agrees both in numerical value and units with the value you obtained
from Experiment 13.

You ought now to be able to compute k_, the proportionality constant
relating weights of aluminum spheres to théir diameters. Notice that equa-
tion (1) still applies (chenge W, to W3, of course) and recall that the volume
of a sphere is —{T D3/6. Compare the computed k3 with the experimentally
measured value you obtained in Experiment 14. Do they agree in both numer-
ical value and units?

So you see that the three proportionality constants, kj, kp, and k3, are
closely related after all. The main feature that makes physical science such
a pleasing study is the continual recurrence of unifying ideas like this one,
unifications that can be thought out just by the power of logical reasoning,.

4. Densities of Various Solids

Now you understand that the density of aluminum is an intrinsic property
of aluminum in the sense that every piecce of aluminum in the world has always
the same density. One of course feels that the same should be true of any
other material that can be definitely specified. You should now do Experiment
16, which is concerned with the determination of the densities for sever al
other materials.
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‘Points to Discuss lr_l_ Class

The densities you measured ranged from a low of about 0. 6 g/cc for
wood to a high of about 11. 3 g/cc for lead. (The exact values will vary because
there are different kinds of wood and plastic, different alloys of lead, brass,
and steel. ) How is this variance in density reflected in the grpphs of weight
vs. volume for the five materials?

Do all five curves have the same slope? Recall that one way to think of
density is as ''the rate at which weight is accumulated as you add more volume
to the pile. ' If we add more volume to a pile of lead and also to a pile of wood,
which pile will have its weight increased the more for each cc added? As you
move to the right on these curves, you are increasing volume, are you not?
Which curve rises more rapidly as you move to the right? Do you then feel
why it is that the greater the density of the material, the steeper is its curve,
weight vs. volume?

For any material, a piece of zero volume of course has zero weight,
Thus the origin (where weight and volume are both zero) must lie on the curve
for weight vs. volume for every rmaterial. Thatis, the curve of weight vs,
volume must always pass through the origin, for any material at all. If the
curve is known to be a straight line, how many other points do you need in
order to draw the curve? How many pieces of a material must you measure
(weight and volume) in order to determine the density? If the ratio, weight/
volume, is always the same, how many pairs of weight and volume must you
measure in order to know the ratio for all weights and volumes? Do you see the
interconnection among theselast three questions?

You are given that the density of brass is 8.4 g/cc and the density of
steel is 7.7 g/cc. See whether you can answer the following questions:

Which is the heavier, a block of brass or a block of steel, if they both
have a volume of 1 cc?

Which is the larger volume, 1 cc of brass or 1 cc of steel?
Which has the larger volume, 1 gram of brass or 1 gram of steel?

Two cylinders, one brass and one steel, are both 3 cm in diameter and
both weigh ten grams, Which is longer?

Which is heavier, a one-gram block of brass or a one-gram block of

steel?

It is desired to make a metal block measuring 2 cm x 3 cm x 4 cm,
weighing not more than 200 grams. Can this be done with brass or steel,
neither or both?
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Will it take a greater weight of brass or of steel to make a statuette
whose volume is 22 cc?

W.ll it take a greater volume of brass or of steel to make a miniature
baseball bat weighing 10 grams?

Which has the greater density in pounds per cubic.inch, brass or steel?

Suppose that you can make weighings with your spring that are good to
0.0l grim. If you weigh a block of metal whose weight is just more than 1 gram,
how may significant figures would you be entitled to in the weight? If you
weigh a block whose weight is just more than 10 grams, how many significant
figures in the weight? If you knew the volume of the sample accurately to
four significant figures, how many significant figures would you be entitled to
in the density of the l-gram block? In the 10-gram block? If you wanted to
obtain the highest precision possible using your apparatus to determine the
density of aluminum, would you choose to make your measurements on a small
or large piece of metal?

Which is heavier, wood or lead? You w uld probably answer lead, of
course. Yet you know that 10 poinds of wood is certdinly heavier than 1 pound
of lead. What do you mean when you say ''lead is heavier than wood''? Notice
tha t we commonly use the word ""heavy'' in two quite different senses: in one
sense we use the word to mean ""having a great density." There is nothing
wrong with this double use of the word as long as you are aware of possible
confusior and avoid it when you should. It is this double meaning of the word
""heavy'' that forms the bese for the riddle "Which is heavier, a pound of lead
or a pourd of feathers?' Either ''lead' or ''neither'" is the correct answer,
dependir.j; on which meaning of the word "heavier" the questioner nas in mind,
It is nonsensical {o spend hours arguing over the ''correct' answer, when
the real point is '"What does the question mean?' Once it is settled what the
question :means (and any good dictionary will give both meanings for the word
''heavy''], there is no longer any argument. Many passionate arguments are
the resul: of unagreed meanings of words. You should learn to recognize this
fact and juard against it.

Sirice different materials have different densities, it ought to be possible
to use the property of density to identify an unknown material, Experiment 17

is a detective game based on this idea, Do it now!

‘Points to Discuss in Class

How did you come out in your identification?

If you were to rub off the paint on the two blocks whose den sities agreed
with none of those you measured in Experiment. 16, you would find them to
be brass. Can you explain the dis crepancy? It is not a different kind of brass.
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It is also entirely possible for two different materials to have the same
density -~ aluminum bronze and nickel steel might be examples., It is also
entirely possible that two different materials might agree in density toc the
second decimal place but disagree beyond that. Do you see why one has to be
careful when he uses only one property to decide identity ?

Suppose you had two samples of material that agreed in density, but vou
Were not assured (as in this cxperiment) that they are each one of five materials.
Could you safely conclude that thecy were the same material? Suppose in addi-
tion that they both had the same color, taste, and hardness. Could you then
safely conclude that they were thc same material? How many properties must
coincide before you can certainly say that two samples are the same material ?

5. ‘Density _cil_ii_cl}_lids

Nothing in the definition. of thc term density prevents its application to
liquids. It is perfectly meaningful to speak of the density of a liquid, because
one can measure both the volume and the weight of a sample of liquid and then

compute the ratio. Do Experiment 18 now, which involves the measuring of
the densities of some liquids.

‘Points to Discuss in Class

Of the four liquids, which has the greatest density and which the least?

Water does not mix with either benzene or carbon tetrachloride. If you
placed a few drops of water and a few drops of benzene together in a tube, vwhat
would you expect to happen? Try it, and tell which layer is which, and wly.
Close the tube with the thumb, skake it violently, let it stand a minute, and ..
observe what happens. Can you explain? Do the same experiment with water
and carbon tetrachloride. Now which layer is which? If two liquids do not mix,
can you tell from:tLaeir dencities which will float on top ?

Pipette once cc of carbon tetrachloride into a tube, then one cc of water,
then one cc of benzene (in {at ordexr). Explain what you observe. Close the
tube with your thurmb,shake it violently, let it stand a minute, and ebserve. Can
you explain what happened this “ime?

Refer to the densities of water and alcohol as you determined them. Which

would you expect to float on top if they were placed together in a tube? Try it,
and then explain what you observe.

Tom and Jerry go to the drugstore, Tom to buy a pound of benzene and
Jerry to buy a pound of carbon tetrachloride. The druggist gives each of them
a full bottle, but Jerry's is much smaller than Tom's, Why?

Did you notice that in this experiment we used the '""No-load position' of
the spring as the position with the vial hanging on it, whereas the spring wac
calibrated with truly 'no load"? Does this bother you? It should! You calib-ated
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the spring and found the weight hanging on it to be pProportional to the length
the spring extends beyond its length when nothing hangs on it, Suppose that
you were to calibrate it again, this time first hanging a bucket on it (thereby
giving the spring an initial extension) and then looking for the functional
relationship between ''weight added to the bucket'' and ""extension of the spring
beyond what thelwucket extends it." The questions come up: What right have
you to suppose that these new variables are proportional? And even if they
are, would the proportionality constant be the sarae?

The answers to the questions are: "Yes, the new variables are propor-
tional and the proportionality constant is the same. ' The procedu;?;rou used
in Experiment 18 is valid, even though you calibrated the spring without the
bucket. But PLEASE, you are not to accept someone's word for it. You have
a duty to ask why the procedure is valid. Here is why:

When you calibrated the spring, you found that
E=kx W (1)

where E is the extension of the spring beyond where it hangs with no load at
all, W is the weight hanging on it, and k is a constant as long as we are dealing
with that particular spring., Now suppose you are interested in the weight of

a certain pay load, W_. We could find tke value of Wp by hanging it by itself
on the spring, observing the extension (call it Ep), and then calculating Wp
from the equation

E. = k x Wn (2)
bod i o
as you have now done so many times. (Here, notice that E_ i. the extension
beyond no load at all that you would get if you attathed the pay load by itself. )
Suppose, however, that ‘the pay load is a liquid that you cannot ha.ng.gr.l the
spring by itself. You therefore put itin a bucket, and hang both the bucket
and the pay load on the spring. Let us call the total weight (bucket plus pay
load), W.., and the extenstion it causes (beyond no load at all), Eq. Equation
(1) still applies of course, for the W and E in that equation mean total load and
extension beyond no load at all. Therefore

Now the total load, W, is made up of two parts. Wp, the pay load,
and Wy, the weight of the bucket. That is

This means that '"W_ + Wg'' is another name for W, and we may replace the
W that appears in I()3) by this new name. Equation (3) then looks like this:

Er = k x (Wp + Wp). (4)

R
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But now youlknow that if you multiply the sum of two numbers by a multi-
pliex, you get the same result as if you multiply each of the numbers separately
by the multiplier and then add. That is

kox (W, + Wg) = (k x W,) + (k x Wg).

p)
We mry then replace the right hand side of (4) by its new name given by the
last equation:

g1 o= kox W) o+ (k x Wp). (5)

Now consider what happens if you hang only the bucket on the spring. Equation
(1) still applies, of course, and we know that the bucket will extend the spring
an amount proportional to its weighti. If we call Ep the extension beyond no
load at all produced by the bucket, then we know that

Let us subtract EB from ET: we get, of course, ET - EB' But equations
(5) and (6) give us two other names for Er and En. We can use these two
names instead and write

Er-Ep = (kxW,) + (k x Wg) - (k x Wg).

Look at the right- hand side of this equation. It tells you to take the number
(k x Wp) and then add tc it {k x WB), and after you have done that, to subtract
(k x WR) ) away again,
You know that adding and subtracting the same thing to any number leaves the
number unchanged. (Does this remind you of the numerical property that
dividing and multiplying by the same number leaves things unchanged?)
Therefore the last equation above could be written

ET"EB = kXWpc

If you now iook at the right-hand side of this equation'. and the right-
hand side of equation (2), yourwill see that (k x Wp) and Ep and (E¢ - Eg)
are all just different names for the same quantityy. That is,

Ep = Ep - Epg.
This last equation is what we are looking for: it says that the extension E
that the pay load would produce by itse; (if you could attach it) is simply
(the total extension it would produce when added to the bucket) minus {the
extension produced by the bucket alone). This is what we wished to prove,
and we now know that treating the position of the spring with bucket attached
as a ''no load'" position is an entirely valid procedure.
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You found the density of water to be about 1. 00 g/ cc and of alcohol about
0.79 g/cc. You now know that alcohol and water mix together. What would
you expect the density of a mixture to be? This question is looked into in Exper-
iment 19, which you should now do.

Points to Discuss _1_:2 Class

Since water and alcohol have different densities, yet mix together com-~
pletely, you can see that a mixture of the two could not ha—e the same density
a&s both pure materials, for the mixture could have only one density, Your
intuition would “ell you to expect that the density of the mixture would depend
on its composition, for a mixture with only a little alcohol in it would have a
density nearly the same as water, whereas a mixture that is mostly alcohol
would have a density nearly the same as alcohol. Thus gradually adding alcohol
to water would have to bring the density all the way down from about 1. 00 g/cc
eventually to about 0.79 g/cc.  The principle of continuity suggests that this
change would be a gradual one, with out big jumps in it.

Do your experimental findings indicate that the density is a function of
composition? You have exhibited this function in two wayg -~ tabularly and
graphically. Is density a monotonic function of composition? Is it proportional?

Since you cannot write an equation ''d = k x c'" (where d is the density
and c is the composition), the question comes up: Can we write an analytical
representation of this function in some other way? It is not easy to answer this
question. A physical scientist would feel that there must be some analytical
expression connecting density and composition, but the truth is that physical
science has not yet progressed to the point where we can say just what that
expression is. We must therefore be satisfied with the graphical and tabular
representations. At the same time, however, most physical scientists feel
that this limitation is only temporary and that eventually such an analytical
expression will be worked out. It will probably be very complicated. Lesson:
physical science is incomplete; not everything in its domain is understood.

This may surprise you. Physical scientists are able to work out problems
of seemingly vast complexity, like say the ~=ths of the planets around the sun,
Yet they cannot work out a problem of seemiag simplicity like the density of a
mixture of alcohol and water. Why is this? The answer is simply that the
density problem is only ''seemingly' simple. The astronomical problem can
be solved by representing a dozen or so bodies by a dozen spheres that attract
each other. Complex as this problem turns out to be, it can be handled; and in
fact it is enormously more simple than the alcohol-water mixture, which must
be treated as a collection of millions of molecules that attract and interfere with
each other, and have complicated and even changing shapes. The astronomical
problem only seems more complex than the alcohol-water probiem; probably
because it deals with a physically large system that you must look at from a
distance while the other is so physically small that you can hold it in your hand.
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Suppose you added 10. 00 cc of water to 10. 00 cc of alcohol. What would
be the volume? You may be tenpted to add the numbers and answer 20. 00 cc.
But are you sure that ''adding the two volumes of liguid together in a iest
tube'' is equivalent to '"adding the two numbers together by arithmetic.' Is this
a case where ''putting together' does not mean "adding"'? You ought to be
suspicious about this! Adding 10 cc of water to 10 cc of water does indeed
give 20 cc; the same is true if both samples are alcohol; but do you really have
a well-founded reason. to believe that it also is true when one sample is alcohol
and the other water?

Well you don't have to sit and argue about it! You cancalculate it from
data you now have. Since you know the densities cf pure alcohol and pure water,
you canalculate the weights of 10. 00 cc of water and of 10. 00 cc of alcohol. Do
it. Refer to the table at the bottom of the second work sheet for Experiment
10. You then can add these weights together to get the total weight, and you
can divide the weight of alcohol by the total weight to get the composition (frac-
tion of alcohol). Now you can look on your graph to see what is the density of
a mixture of this composition. Look up this density, and then knowing the
density and the total weight of the mixture, you can calculate its volume. How
does the actual volume compare to the sum of the individual volumes?

If you had a mixture of alcohol and water and you wanted to know what
percentage of the solution is alcohol, how would you go about analyzing it?

6. Concentration

Tom and Jerry were visiting some friends in New York City, and they
found it very different from their small home-town in Texas. Packed like
sardines in a can, they were riding on one of the subways.

"Whew!", Jerry exclaimed, trying to make a little room so he could
move his arms. 'I never saw so many people in my life. How many people

are there in New York City? "

""About 8 million, " Tom re
subway with us. "

"Well, I'm glad there aren't that many people in Texas, " Jerry sighed.
I like the open spaces. Say, how many people are there in Texas, anyway? "

'""About 8 million, same as in New York City. "

""Now wait a minute, ' said Jerry in surprise, ''I've never seen anything
like this at home. If there are as many people in Texas as in New York City,
how come it's so easy to move around at home? People in Texas aren't nearly
so crowded as they are here in New York City. You must be wrong about the
populations yau told me. "
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Was Tom wrong with his figures? No, actually the population bf Texas
is about the same as that of New York City, yet one gets the impression of far
more people on the average in New York than at most places in Texas. The
point is that crowdedness of people and number of people are two different
things. Ten people in a telephone booth would be rather crowded, but ten
people in a football stadium might be so far apart that they couldn't converse
comfortably. Question: is '"crowdedness'' a quality capable of numerical
expression, or is it another of those qualities where you only ‘'feel'a difference?

If you think about it a moment, you will realize that crowdedness refers
to the number of people packed into a given space. Suppose we take the "given
space'' to be one square mile. The area of New York City is about 400 square
miles and of Texas about 250, 000 square miles. Can you calculate the number
of people on the average in one square mile? Do so, and you will find there
are 20, 000 people per square mile in New York City but only 32 people per
square mile on the average in Texas. No wonder you notice a difference!
Notice that you obtained the crowdedness by dividing the number by the space
they occupy.

Another word for crowdedness is ''concentration.' You can talk about
the concentration of many different things. For instance, you could speak of
the concentration of sugar in a sugar syrup, of salt in different samples of
salt water, of acetic acid in different samples of vinegar, and so on,

If I gave you two samples of sugar syrup -- one thin and watery and
almost tasteless and the other thick and sweet --, and asked you which contzins
the more sugar, you might answer, the thick one. But if I gave you a whole
tank car full of the thin syrup and only a thimble of thick, you would have to
agree that the thinner one actually contained the more sugar.

The confusion here is similar to that cited on page 98 about whether
wood or tead is heavier. You remember we saw the root of that puzzle as the
ambiguity in meaning of the word heavy; sometimes it refers to weight and some-
times to density. With the sugar solutions, too, there is an ambiguity. When
I ask which syrup contains the more sugar, do I mean actual amount of sugar
or do I mean concentration? The proper answer, perhaps, is that the tank-
carful of thin syrup contains more sugar. If I had asked "which has the greater
concentration of sugar?', the answer of cour se would be the thimbleful of
thick syrup.

Whatever the stuff whose councentration you are talking about, the definition
of concentration is:

Concentration of Stuff = Amount of Stuff
Space it occupies.

You can express both amount and space in lots of different ways, and therefore
express concentration in lots of different ways. From the rule regarding units
when dividing quantities, you can see that the units of a concentration are
always ''something per something. " Here are some examples:




i - vs L gl 3o K L AR o R T
DI iC b R A i LR R e A e Mt A s C At T B R T S e e R I T T w*ﬂWﬁ#MﬁW b .

-105-

People per square mile
Monkeys pe:r barrel
Grams per cc

Pounds per gallon
Parts per million

en per cent

Notice that density is itself a kind of concentration. It measures the actual
weight of matter packed (crowded) into a unit of volume.

Your intuition tells you that the concentration of black jelly beans in a
one-pound box of different-colored beans increases as you increase the number
of black jelly beans there. Your intuition also tells you that the concentration
of black jelly beans decreases if you increase the size of a pile of beans that
contains always 15 black ones. Intuition means a Jjudgement not based on con-
scious reasoning. Sometimes your intuition is wrong and sometimes it is right
Either way, a good rule for the scientist is: Never ignore your intuition., If
you have an intuitive feeling about something, you should investigate it. A
scientist's intuition will often lead him to important discoveries or, just as
importantly, to errors he may not otherwise have noticed. Of course, you
never base a conclusion finally on intuition, but a strong hunch is always worth
investigating to see whether logic and experirment bear out the conclusion your
mind leaped to. The difference between a scientist and a gambler is that the

scientist. applies logic and experiment to his hunches to see whether intuition
is supported by reason.

A simple illustration is to see whether your intuition about the jelly
beans above agrees with the definition. If you have a box of a certain size
filled with jelly beans of different colors, your intuition tells you that the more
black beans you put in the box, the greater is their concentration. Now what does
docs the definition say? Conceniration is the quantity you get when you divide
the number of black beans by the volume of the box. . If you
have a box of constant volume, then the concentration is found by dividing the
number of black beans always by the same number. That is, concentration is
then a fraction whose numerator may change but whose denominator is constant,
You know that undqr these circumstances, the larger the numerator, the larger
the value of the fraction (5/17 is bigger than 4/17, for instance, or 2.3/5 is
bigger than 2.1/5). Thus the more black jelly beans (i.e., the larger the
numerator) when the box is fixed in size (i. e., the denominator is constant),
the greater is the concentration (i. e., the value of the fraction). Your intuition
was okay in the first case.
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Your intuition also tells you that for a fixed number of black jelly beans,
the larger the box into which they are mixed, the smaller the cancentration.
This time the numerator is constant and the denominator changes. Does the
value of the fraction decrease as you increase the denomirator? (Is 3/17 1
smaller than 3/16? Does the quotient get smaller if you divide.a certain num-j

ber by successively larger numbers?) Is your intuition right again?

Would intuition tell you to expect the density of a sugar solution to depend
upon its concentration? Let's do Experiment 20.

Points to Discuss in Class

Did you happen to notice that the units of concentration and the units of
density are the same? Don't let this bother you; it happens now and then in
physic:1 science that two entirely different qualities are measured in quantities
having the same units. Density and concentration may be different qualities,
but they may have the same units. The point is that one must not confuse the
quality with the units in which the quality is measured. This point was mentioned
before on page 53. The head of the laboratory in a paint company instructs one
of his technicians, '"Measure the pounds per gallon of this paint. ' How can
the technician know what his boss wants? What two things are likely to be the
datum the boss is seeking?

Do you see how, though an idea rnay be simple, it rnay be a rather involved
process to reduce the idea to numerical measure? You think to yourself:
'""Density and concentration are simple ideas. To get the density of this solu-
ticn, 2ll I need is the weight and volume of a sample of it. To get the concen-
tration, all I need in addition is the weight of sugar in that volume. Easy,
let's go measure them." And then you see that measuring them turns out not
to be so direct and easy a business after all. Sometimes physical measurements,
though simple in meaning, have to be measured by very indirect and elaborate
methods.

What does your graph look like? Is density a function of concentration?
Can you find the density of any concentration you are given (within the range
of the graph), even though it is one that no one in your class happened actually
tc measure? Is demsily a monotonic function of concentration? An increasing
function? Is the density proportional to the concentration? The graph of
this function is a straight line; or better, is so nearly a straight line as to
allow being considered so for most purposes. If 'you have not already done so,
use a ruler to draw what looks like the best straight line through the points.
Remember that experimental error will inevitably find some of the Qoints a

little off. Try to draw the line so that you leave as many off-points on one side
of it as on the o‘her,

{\}) 7. Linear Functions

The density of a sugar solution is an increasing function of the concen-
tration, for the graph slopes always upward to the right. The steepness of the
slope is constant, because the curve is a straight line. The densitv is not
proportional to the concentration, however, because the straight lune does not
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go through the origin. Any function whose graph is a straight line is called

a linear function. A linear function is always monotonic, because the slope
never changes. Is a monotnnic function always linear? A linear function may
be either increasing or decreasing, depending upon whether the straight line
slopes upward or downward. A proportional function is always a linear function,
because a proportional function is merely a special case of linear function in
which the graph happens to go through the origin. Is a linear function always

a proportional function?

Let's go symbolic again! Suppose that V, =2 dependent variable, is pro-
portional to X, the independent variable. We learned before, you remember,
that: (1) the graph of Y vs. X is therefore a straight line; and (2), there is
some constant, k, suchthat ¥ = k x X for all the possible Y's and X's.

It is time now for us to get used to a certain convention regarding the
'times sign'', X. When symbols are used to represent quantities, we have so
far written their product using the 'times sign.' When we wished to represent the
the quantity "A times B'", we would write it as "A x B.' Most people, however,
simply omit the times sign when the quantities are represented by symbols.
This we shall do. Hereafter, when we wish to write the product of ""A times B",
we will simply write '"AB.'"" Then when you see two symbols written togetle r
this way, remember that it always means the product of the two. You will
quickly get used to this convention.

Two things you have to be careful ahout, however. One is that you use
the convention only when at least one of the factors is not a number. You may
write '"A times B" as ""AB''; you may write "2 times B' as "2B''; but you must
continue to write "2 times 2' as ''2x 2'. Do you see why? The other thing
to be careful about is that you never choose more than one lctter as a symbol
for some quantity. For instance if you chose to represent the extension of
a spring as "EX'", no one could tell whether you meant ""extension'' or the product
of the two quantities, E x X. Sometimes two letters are used to symbolize a
single quantity; if so, the symbol usually carries a bar over it to show that they
are tied together: like EX,

It is a characteristic of a proportional function, you remember, that it
can always be represented by the very simple analytical expression, y = bx,
where y is the dependent variable, x is the independent variable, and b is the
name of some constant whose value depends on the slope. The close intercon-
nection between the equation, y = bx, and a straight line through the origin leads
to the usage of speech: ''The equation of a straight line through the origin is
y = bx. " Since the equationof a straight line through the origin is so simple, one
wonders whether it is possible to. find the equation of a straight line that does
not go through the origin. Such an equation would then be an analytical repre-
sentation for any linear function just as ''y = bx'' is an analytical representation
for any proportional function.
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This can indeed be done. Imagine any straight line not through the
origin, like the upper line in the graph
to the right. Think very carefully what _, : f'/
this graph means. €onsider how the poin%’/ O_—

Pmighthave been plotted. You would be
given a value for y and a value for x. P

d

Regardless of what kind of quantities y /

and x represent, you always think of themy /"
as distances when you make a graph., The 1N
point P must then have been plotted with a / (1N

x equal to the distance OR, and y equal to

the distance PR. Similarly Q represents T

the combination x = OS, y = QS. We writ : >
bars over the two letters (like PR) to indi= Ik S N X

cate that PR is one symbol for a certain distance -- not the product of two
quantities, P times R. Now draw a line through the origin parallel to the

first line, PQ. Suppose this new line intersects the two lines PR and QS at
T and U as labeled in the drawing,

This new line we already know can be represented by the equation,
Y = bX (where we shift to capital letters to avoid confusion with the small
letters we are using for the other line).: What does this mean? Well it means
that any point (like T) has an X and Y such that X = OR, V = TR, (Remember
that any pair of letters with a bar over it represents a single distance. In

other words, itis 2 quantity. ) Moreover, these two quantities X and Y are
related by the equation Y = bX. That is,

waem—

TR = b x OR (1)
Can you write a similar equation derived from the point, U? It would be
US = b x OS (2)

You should see very clearly that these last two equations are nothing more than

two cases of Y = b x X, an equation that holds for every point on the line OTU.
Now since the two lines VPQ and OTU are parallel, the distances 67,

PT, and QU are all equal. This is a property of parallel lines that you are

probably familiar with and that we will make use of here without proving it,

You will prove it when you study geometry.

The two distances PR and QS can obviously be written as the sums of
their components:

PR = PT + TR

QS = QV + US

7
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But in the paragraph just before this, we saw that PT and QU are equal ~-

that is, they are different names for the same quantity. Suppose we give this
quantity still another name, a, which is written in on the figure for you as a
label for OV (which happens to be still another name for it! ). Now we can
replace PT and QU in the last two equations above by their other name, a, and
write

PR = a + TR
6§=a+-ﬁ§

The quantities TR and US also have other names; they are given in equations
(1) and (2). If we replace TR and US in the last two equations by these other
names, we have

PR = a + b x OR (3)
QS = a + b x OS. (4)

If you look at these last two equations, you can't fail to see their
similarity: they both involve a and b in the same way. But they have a sim-
ilarity even more striking. If you look back at the drawing, you will see that
PR and QS are simply the y's of the two points P and Q; and OR and OS are
simply their x's. In other words, equations (3) and (4) say that for the two
points P and Q on the upper line, it is true that

y = a + bx (5)

Now this conclusion would be true for any point at all on the upper line,
for there was nothing special about the points P and Q that would make the
conclusion hold for just those points. In fact, why don't you try yourself to
go through the whole argument using the point L as ‘labeled on the drawing?
Furthermore, there was nothing special about the line VPQ: it could be any
straight line at all not going through the origin. Therefore equation (5) is the
equation of any straight line not through the origin.

It is important that you understand themeaning of equation (5). If you
draw any straight line on a graph, every point on the line has some certain
y and x. The y of any point on the line depends upon which point you are
talking about. You can specify any point you wish to call attention to by naming
its x. Thatis, once you name an x, there is only one point on the line that
has that x. Therefore you see that specifying an x specifies a point on the
line, and specifying a point on the line specifies its y. Thus, as long as you
are talking about points on this line, whenever x is specified, then automatically
y is fixed. As long as you are talking about points on this line, in other words,
y is a function of x. If you were talking about some other line, specifying the
same x would in general give you a different y, as you will readily see if you -
draw two different straight lines on a graph. Thus each different line you draw
will give you different y's for the same x; each different line, in other wozrds,
represents a different function of x.
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We have seen that the y and x of every point on a line are connected by
the anslytical representation

y = a + bx. (5)

It is customary to say that "'y = a + bx" is the equation of a line. fach
differc:at line, of course, has a different combination of a- and b; but once
you haie chosen some particular line, the a and b for that line are constants.
The rererse is also true: once you have chosen a and b, there is only one
straigit line you can possibly get. You should now take a piece of graph paper an
and try plotting the graph of equation (5) for some particular choice of a and ?
b. Suppose you choosea =2 and b = 3. Make yourself a little table like this:

i | I I I R I

Choose a series of any values you wish for x; calculate the correspanding y
from the equation, y = 2 + 3x, Write the ghosen x's on the first line of the
table a:d the calculated y's on the second line. After you have 6 or 8 pairs
of x-and-y, plot them on the graph and see that they form a straight line. It
would me a good idea then to choose another combination of a and b and repeat
the whule operation to see that this time, too, youget a straight line, but a
different one, of course.

“eep in mind now that every point on a given straight line has an x
and y such thaty = a + bx, where a and b are some fixed numbers. What is
the valie of y when x = 0? You see immediately that, regardless of what a
and b are, y has the value a when x = 0. Thus every straight line, whose
equaticn is y = a + bx, crosses the vertical axis (where x = 0) at a distance
a front the origin. In other words, if you see a straight line plotted on a graph,
you know first that that line has the equation y = a + bx, where a and b are some
fixed niumbers; and you can tell at sight what the value of a is for that line. It
is simply the value of y when x = 0, or the point where the line crosses the
y- axii. Itis less easy to tell the value of b at sight.

la the particular case where the line passes through the origin, the
distanice a is of course zero. Hence for a proportional function, y = O + bx,
Oor y = oX, as we learned before. Notice then that a proportional function is a
speciel case of a linear function in which the constant term (a) is zero or in
which the line crosses the y-axis zero-distance from the origin,

tlow finally let's get back to your sugar solutions. Look at the graph you
made from the data of Experiment 20. You found that the graph is a straight
line th:.t does not pass through the origin, The graph is a representation of the
functional relationship between density (d) of a sugar solution and its concen-
tration (c). We asked whether we could also find an analytical representation
of the :ame functional relationship. You now know that such an analytical
representation has to be of the form, d = A + Bc, where A and B are two
constarts. The trouble is that we do not know the actual values of these con-
stants., Can we find them? Yes, we can.
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In the first place, you know immediately that A is the value of d whcn

D c = 0. Thatis, A is simply the density of a sugar solution whose concentration i
is zero, or the density of plain water, 0.997 g/cc. Thus we can write immedi- ’
ately that :

d + 0.997 + Bc (6)

when the density is given in g/cc.

Now this equation says that ''d" and ''0.997 + Bc'" are merely different
names for the same quantity. If I subtract 0,997 frorn this qguantity, I will get
the same result whether I subtr:.ct 0. 997 from ''d" or from ''0.997 + Bc''.
That is,

d - 0.997 = 0.997 + Bc - 0.997.

Notice that on the right, we are taking the number Bc and adding 0. 997 to it
and then subtracting 0. 997 away again. This leaves us of course with jet
Bc. Hence

Bc = d - 0.997,

and this equation holds for all ¢ and d. Now solve this equation for B and you
P get

d - 0.997.
c

B

In this last equation, we do not know B, but we do know lots of dombinations ~&
of c and d. If you select (from the graph or from the table) a pair of valucs

of c and d that go together, you can place these values in the right-hand side of
the last equation, and work out numerically the right-hand side. If the c-ond-d
combinations all fall on the same straight line, you will get the same valuve of
B no matter which c-and-d combination you use.

Do you see the reason for the last statement? It isn't magic or dumb luck!
The point is this: all the c-and-d cowbinations fall on one straight line, There-
fore, as we proved, they have to cbey an equation of the form '""d= A + Rc." In |
our particular case, every c-and-d combination must obey the equation,
"d = 0.997 + Be'", where B is the same constant for every combination. Ilow
we showed by logic that: If it is true that d = 0. 997 + Bc, where B is a consisnt :
regardless of what c and d you are talking about, then it is true that B = (d-0. 9‘)7)/(‘;
where B is a constant regardless of what ¢ and d you are talking about. Ci:ny?

B

Everyone in the class should now calculate B from his own c-and-d com-
bination, which is the second line of Table Il in Experiment 20. Everyone will
get nearly the same value of B; not exactly the same because of experimentzl
error. Take the average of all for the best value of B. Now you can write
equation (6) with the numerical value of B put in. You will get an equation very
close to

- gr(’v.w

d = 0.997 + 0.378 c.
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Observe that this is a functional relationship between density and concentration ;
for sugar solutions. You can now predict the density of a sugar solution if "
you are given the concentration

8.  Once Again, Lightly

One must be careful in precise speech to be sure that such words as
''size, " "amount, "' "big," etc., a:.: used so that their meanings are under stood:
or else avoid using them. For example, ''length, "' ""volume, " and ''weight"
are all different but possible meanings your listener may attribute to your use
of the word ""amount, "

Der.sity of a material is the ratio of its weight to its volume, and is a
constant property of that material, regardless of which piece of it your are
talking about. Density can also be regarded as the proportionality.constant ;
in the statement '"The weight of a piece of material is proportional to its volume. "
A determination of density can often be used to establish the identity of the ‘
material of which a thing is made.

The concept of density applies to liquids, too. The density of a solution
is a function of its composition. For a solution of known components, its
composition can often be determined when its density is known.

Concentration is a numerical expression of ''crowdedness' anc is defined
as the ratio of the amount of material to the space occupied by that material,

Any function whose graph is a straight line is called a linear function,
and is always of the form y = a + bx. In this equation, a is the distance from
the origin where the straight line meets the y-axis. When the function is pro-
portional, this distance is zero, and the equation becomes simply y = bx.




Unit V
Motion in a Straight Line

1, Position and Distance

This unit deals with certain aspects of thé motion of rmoving bodies.
As you.know, motion is the business of going from one place to another; th-*
is, motion is a change in position of a body. Notice that one cannot observe
the motion of a body unless he can observe its position at some moment and
again at some later moment. Thus in order to talk about motion, we have to
be able to talk about position: especially, we have to be able to tell the person
we are talking to just where a body is,

Notice that telling someone where something is, is really the same thing
as giving an address. Here are. some examples:

Five blocks north and three blocks east of-the postoffice
Twelve paces south and twenty paces wast oi the elm tree
35° north latitude and 1310 west longitude

Ten inches . »m the corner of the table along the front edge.

You might try making up some "addresses' like this yourself. Can you,

for instance, tell someone how to find the pole-star in the sky? Notice that
you cannot tell anyone where the pole-star is -~ or where anything else is,

for that matter -- without telling how far it is from something else. Look a*
the examples above; they all fix an address by using some fixed reference point:
the post office, the elm tree, the corner of the table. What is the fixed refora
ence point in the third example? Most people locate the pole-star by using
two stars in the big dipper as reference marks. To repeat: you can locat:

a body only if you tell how far it is from something else. '"Far" and "from"
-=- distance and reference mark. You can see how the idea of motion is tied
up willy-nilly with the ideas of distance and position,

Now suppose you were way out in space by vourself «- go far away from
anything else that you could be regarded-as completely alone, Question: Are
you moving or standing still? You might find this a little gshocking, but the
modern scientist would say that this question has no meaning! For the only
way you could speak mea ningfully of your motion would be to speak of your
position at one moment and your position at a later moment. But you are
alone; there is no reference mark available to describe your position, and
therefore no way to tell whether you are moving. The modern scientist would
say, since it is not possible to learn whether you are moving, that the idea of
motion is without meaning to you. You might well say "But even though I can't

I can't tell, If I'm in a train with my eyes closed, I may not be able to tell
that I'm moving, but this doesn't mean that I'm not." You have a good point,
and it has been argued by scientists and philosophers for many years. The
point is that if the concept of position is without meaning to you, so is the
concept of motion,
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tell whether I am moving, this doesn't mean that I h-ve no motion, It's on', l..!
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Perhaps you could understand this more clearly if you imagined you:self
born in a spacecraft, floating in a sea of total erptiness all your life and
alone. Suddenly a voice from nowhere asks:

""Where are you?"

"I don't understand the question, " you reply. 'I'm here. There isn't
anywhere else. "

""Well, where are you going?"

""Again, I don't understand what you mean by 'going.' There is no: place
to go to; I can't tell one place from ancther. I'm here . .d I cannot be going
anywhere. I'm not moving, for I don't even know what you mean by 'moving’, "

Do you see that the "voice' couldu’t even explain to you what the word
""move'' means? The words "move'' and '"'motion" literally have no meaning
to you,

But let's get back to where we can describe the position of a body and
therefore tell where it is and whether it is moving, At first we will speak only
of motion along a straight line. This means tlat no matter when we observe
the body, it will always be somewhere on this line. We can then conveniently
describe the position of the body by choosing some point on the line as the
reference point and stating how far the body is from that point,

Notice, however, that there is an uncertainty here. If I say the body is
2l cm from the reference point, you will not know whether I mean 21 cm to the
left or to the right of the origin (another name for the reference point). Let
us then agree to the following convention. We will call one side of the origin
"plus'’ and the other "minus'. If the body lies on the minus side, we will
call its position "~2lcm''; if the body lies on the plus side, we will call its
positicn ''+2i em', “"hat should we call the position if the body lies right on
the origin?

Next, we must settle which side is o be plus and which minus. The
choice is only a matter of taste,of course, and mostly it doesn't matter which
we choose as long as we agree on it. We shall use the foliowing coavention
unless you are told otherwise: When the body is moving along the line, we will
say it is moving away from the negative side and toward the positive side. In
other words, if you stand so tha: the body is moving to your right, then the
minus side is on your left and the plus side .on your right, Okay?

Still another way to look at it is to notice that the body is always moving . ..
toward larger numbers. If the body is now at +1Q, it wil! later get to +15; if it
is novs at +2, it will later get to +6; if it is now at 0, it w. 'l later get to +3; 1f
it is now at -2, it will later get to +2. Also, if it is now at -10, it will later
get to -5, MN¢ 2 that -5 is a larger number than -10. You will have to get
used to the idea that -A is bigger than -B whenever A is emaller than B. You

use the same idea when you say that -15 degrees is warmer than -30 degrees; or
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that the second floor below ground is higher than the fourth below;or that 200 BC
is later than 300 BC. It's ah easy idea to grasp, so don't let it get you mixed

up.

Now we can easily find the distance between two points, The distance
between two points is simply the difference between their positions. (Actually,
you used this fact in all your spring experiments. ) Again there might be an

ambiguity. If you are given two positions, A and B, is the distance between them

A-B or B-A? Here again we will have to agree on one of the other. Since

the word ''distance' as we are using it here means '"distance the body has
traveled, "' we want to subtract in the way that shows how far the body traveled;
or, what is the same thing, we want to show how much its position has changed.
Now when we speak numerically of a change, we always in common speech
mean ''second minus first." How much did you grow in height in this year? To
answer you subtract your height last year from your height this year: second
minus first. How long did it take you to paint the fence? To anawer you sub-
tract the starting time from the finishing time: second minus first. How much
did the temperature change from noon to midnight? You subtract the noon
temperature from the midnight temperature: second from first,

So in our case also. ''Distance traveled" always means ''final position
minus initial position. " Since the body, in accordance with our convention,
always travels toward higher-number positions. we then will be subtracting
2 smaller number from a larger. Examples:

How far does a body travel if it starts at +10 cm and ends at +25 cm?
Answer: (+25) - (+10) = 15 cm.

How far does a body travel if it starts at =10 cm and ends at +25 cm? The
answer would be given by ''(+25) - (-10)", but how do you work this out? You
must remember that the only things we know how to subtract are ordinary
numbers. Numbers like 16, 1. 97, 2/3, JZ +25, and 0 are "ordinary'' numbers,
but what is this thing we are calling '"=10"? To be more precise, we will call
those numbers that lie on the plus side of the origin, '"positive' numbers
{instead of "ordinary" numbers); these new things that lie on the minus side
we will call '"negative' numbers. To repeat then: the only kind of numbers
you know how to subtract are positive numbers. What does it mean to subtract
a negative number? Subtraction of negative numbers has never been defined
for us, and it therefore does not yet have a meaning. We can give it any meaning
we want to, The first question then is not "What does 'subtracting a negative
number' mean?"'; for it doesn't mean anything yet. The first question is rather
'"What do we want 'subtracting a negative number' to mean?"

To decide what we want it to mean, we have only to look at how the whole
idea of subtracting a negative number arose. It came up because we defined
'"distance a body travels'" as '""B-A'", where B is its final position and A its initial
position. Since it is possible that A be negative, we immediately run into the
possibility of having to subtract a negative number. Whatever it means to
""'subtract a negative number,'" then, we want the result of "B-A'" tc mean the
distance a body travels in moving from position A to position B, even when A
is negative. So let's consider carefully the travel from a position, -P, toa

TSI

position, +Q.
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In making this trip, the body might be thought of as moving from the
position, -P, to the position, zero, and then on to the position, +Q, like this:
—> —> —>

——:.r-#

-P

O

+
+Q

In the second part of the trip (from zero to +Q) the distance traveled is (Q-0)

or simply Q. To get the total distance traveled, we must then add something

to Q. The total distance we have defined as "Q - (-P)", however, so that
"subtracting (-P) from Q' has to mean adding something to Q. What must you
add? Now the length of the first part of the trip from -P to 0 is actually just
tP. Why? Because that's the way -P was defined to begin with: If you lay

off a certain length to the right of the origin, we will call it +P and if you lay
off the same length to the left of the origin, we agreed o call it "'-P'". Thus the
total trip is Q + P. Thus we feel that we would like to define '"Q - (-P)" in

such a way that

Q-(-P)=Q+P (1)

It is worth pointing out to you again that the two preceding paragraphs
- are not a proof that Q - (-P) is the same thidg as Q + P. The intent of these
) two paragraphs is rather to show you that equation (1) is a reasomnable
definition of what ismeant by ''subtracting a negative number." We accordingly
take equation (1) as a definition of what the previously undefined operation of
'""'subtracting a negative number'" will henceforth mean, It is important that you
see that we could have defined it in anyway we wanted; but the way that we
finally choose to define it has the important property that then the distance
from -Q to +P gives what we intuitively feel "'Q - (-P)" ought to mean. Now

how far does a body travel if it starts at -10 and ends up at +25? Work it out
yourself.

Then finally we ask: How far does a body travel if it starts at ~Q and
ends at -P? The definition of distance says that this distance is "(=P) - (-Q)"
We have already decided that ''subtraction of (-Q)" means "addition of Q. "
Hence '"(-P) - (-Q)" means ""(-P) + Q'. Since addition is commutative (that
is to say, we Wakt it to be commutative if we can get it so), we can rearrange
"(-P) +Q'" to '"Q + (-P)". Then we would like it to be true that

distance from - to -F = (-P) - (-Q) = Q + (~P). (2)

In a picture, the situation looks like this:
i —_— —_—

-Q -P 0

R R e e
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Now you can see that the distance from -(Q to zero is more than the distance
from -Q to -P, Again, you can seethat

(the distance from ~-Q to zero) exceeds (the distance from -Q tc -P) by
a (distance equal to that from -P to zero.)

But the distance from -Q to 0 is Q (Remember? That's the way we defined
-Q to begin with!), and the distance from -P tc zero is P, Therefore the
indented sentence above can b~ translated by réplacing the contents of the first
parentheses by ''"Q'; the contents of the second parentheses by '"Q + (~P)" (you
get this permission from equation (2)); and the contents of the third parentheses
by "P". That is,

@) exceeds Q+ (-P) by P,

Next, we must realize what '"exceeds'' means. To say that ' exceeds
V by W’ means that "U is W more than V" or "U = W + V"', Thus we can write

Q = P + Q + (-P)o
Now subtract P from both sides of this equation. Then
Q-P=P+Q+ (-P) - P.

Now right away you see that we are both adding and subtracting P on the right.
Canceling them out gives

Q-P=Q+ (-P)

Turning this equation around will make the point a little more clear:
Q + (-P)=Q-P.

In words, adding -P to something is the same as subtracting P.

We can write equations (1) and (3) together like this to exhibit them
more compactly:

Q=-(-P)=Q+P

Q+(-P)=Q-P

Notice the symmetry: the first equation says that subtracting -P is the same
as adding P; the second equation says that adding -P is the same as subtracting
P. That's casy, isn't it? Whenever you want to add or subtract a negative
number, you simply drop the minus sign and do the opposite.
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Once again: these rules for dealing with negative numbers were not
derived or proved. They are definitions of what we shall henceforth mean by
adding and subtracting negative numbers ~-- something that had not heretofore
been defined. All the discussion was only to show the definitions to be reason-
able and consistent with the ones for positive numbers.

2. Velocig

A body that is moving is by definition a body that changes its position.
You have many times observed that two different bodies can change their posi-
tions at different rates. A rabbit, for example, can change its position from
here to there more quickly than a turtle can. You know already -~ and we
have several times before used this information -- that the speed of a body is
defined as the (distance the body travels) divided by (the time it takes to travel
that distance). Suppose, as a body moves along, that you measure the time it
takes to cover many different intervals. Suppose further that you find the
ratio, distance/time, to be constant for all the intervals. Then we say that the
body has a constant speed. For the present, we confine our attention to bodies
moving at constant speed.

The definition of speed as ''distance/time'' is familiar to you, but have |
you ever wondered why it is defined that way rather than, say, as ''time/distance"
The reason is closely related to the reason why concentration is defined as
""amount/space', and you should take off a few moments to think about it. The
meaning of the word speed, as you grew up using the word and hearing it used,
is such that the greater speed is to be assigned to the body that travels a given
distance in the shorter time. If you have two bodies traveling the same distance
in different tirnes, then, their speeds will be given by two fractions whose
numerators (distance) are the same but whose denominators (time) are different.
Which of the two fractions has the greater value -- the one with the smaller or
the one with the larger denominator? Does this agree with what you want speed
to mean? If you have two bodies traveling over different distances in the same
time, you want the one that travels the greater distance to have the greater
speed. If they travel different distances in the same time their speeds will be
given by two fractions having the same denominator (time) but different numer- :
ators (distance). Which of the two fractions has the greater value -- the one with |
the larger or the smaller numerator? Does this agree with what you want
speed to mean? So you see that someone's suddenly telling you that speed
means ''distance/time'' is not violating the conception of the word that you
already have. The new definition merely makes precise and numerical what
you already had in mind.

The two words, speed and velocity, have slightly different meanings. The
difference between them will concern us later; but as long as the motion is
along one straight line, their meanings are identical.

It is now time to do Experiment 21.
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Points to Discuss 3_1_1_ Class

Are the three curves straight lines? Use a ruler to draw the best
straight line you can for each plot. Do you notice any special relationship
among the three lines?

Since the curves are straight lines, they represent linear functions.
This means that the position attained by a body movirz at uniform velocity is
a linear function of the time. If we represent position attained by p and time by
t, in other words, it must then be true that

P = A + Bt, (4)

where A and B are constants for any one curve. They (A and B) may, of course,
be different constants for the different curves; all we know is that for any one
straight line, there will exist some A and B which have always the same value
for that line, This means that for any one travel of the body, there will exist
some A and B such that you can always calculate p from equation (4) when t is
given to you,

Can you find the values of A and B for your curves? You have already
learned (page 110) that the value of A for any linear curve whose equation is
equation (4) is the value of p when t equals zero. But the value of p whent =0
is the value of p at the point where the curve crosses the vertical axis (the p-
axis). You can then tell the value of A for any of your straight lines merely by
looking at the graph and reading the value of paat the place where the curve
crosses the p-axis.

But more than that, do you have a feeling for the meaning of A? When you
say ''t = 0", you are referring to the instant at which you started counting time,
What is the position (p) that the body has attained since you started counting
time? Well, this position is given, for any t, by equation (4). In particular,
what position has the body attained since the starting time up to the time when 1
t=0? You can see that the time ''t = 0" is the starting time; therefore the body |
is at this moment just on the verge of moving awy from where it was at the
starting time, but of course has not yet left there. At time t = 0, then, the
position the body has attained is the same as its starting position. Now notice
the elegant consistency among these three things:

(1) Your reason .tells you that the position of the body at time t = 0 is the
sarne as its starting position.

{2) Equation (4) tells you that the position of the body at time t = 0 is A,

(3) Your graph tells you that the position of the body at time t = 0 is given |
by the point where the curve crosses the p-axis.
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Taken all together, then: your reason, the analytical representation given by

equation (4), and the graphical representation given by your graph tell you that:
the starting position of the body
and the value of A

and the point where your graph crosses the p-axis
are all the same thing!

Do you see how neatly these all fit together? Do you see how the graph
makes vividly visual both what your common sense tells you of th¢ motion of the
body, and what equation (4) allows you to calculate about the motion of the body.?

One of your three curves looks something like the JK in the following
diagram: p K T

[ S

You realize now that the line-segment (''line-segment' means piece of a line)
OJ is d mply the value of A in the equation P = A+ Bt. This curve represents
a monotonic increasing function. Notice again that your reason and your
observation in doing the experiment show that the change in position >f the
body as it falls down the tube is indeed monotonic, for the body falls steadily
downward (in the d rection of higher numbers on the measuring tape) without
ever falling up. The graph pictorializes this observation. Try not to be con-
fused by the arrow at the left on the diagram: it points up as the direction of
increasing p, whereas the body actually fell down as p increases. Incu asing
p means motion downward in this experiment.

Suppose now we ask the question: What would be the position of the body
at any time if it starts at J and stays thereforever? The answer of course is
that the body is always at the same position; that is the curve is always the same
distance, OJ, from:the t-axis. This line is drawn dotted on the diagram. Do
you see why this dotted horizcntal line represents the ''motion' of a body that
starts at a distance OJ from e origin and never moves away? If it never moves, :
then its distance from the origin, OJ, stays always the same. The distance from
the origin at a later time (say at time M) must be the same as its distance at
the start. The distance at later time M is F/I-f, and its distan_c_g_ at the start is
OJ. The only way this distance would always be the same -~ OJ = ML = the
distance at any other t at all -- would be if the line JL is parallel to the t-axis.
Sc you see that « body that does not move (which means a body moving with

zero velocity) can have its motion represented on a p-t graph by a horizontal
line whose distance from the t-axis is always the same,
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Now consider the case you actually investigated, where the body does
move; where as time goes on, the distance from the horizontal axis does not
stay the same but continuously increases. Such a motion must be represented
by a line that slopes upward to the right; for as you move to the right on thLe
graph (moving to the right means "as time goes on', doesn't it?), the body
increases its distance from the reference mark -~ that is, moves farther and
farther away from the reference mark. Therefore as you move to the right
on the granh, you must represent the positicn of the body by points higher ana
higher on the graph. You can probably see also that: if the body is moving
fast, then the graph must rise steeply, because the position of the body moves
faster away from the reference mark; and if you move slowly, the graph rises
only gently, because the position of the body moves only slowly away from the
reference mark,

For instance, if the body is not moving at all, then by the time M (look
at the diagram) the body will not have moved any farther away from the:refer-
ence mark than it was at the beginning, and the position of the body will be
given by ML, which equals OJ. If, however, it is moving very rapidly, then
by the time M it will have moved well beyond its original position and KL will
be large. If it is moving only slowly, then by the > time M, it will not have
moved very far beyond its original - position and KL will be small. Perhaps
you can see that for a body of high velocity, the line JK will be steep because
it must rise rapidly whereas for a body of lower veloctty the line JK will be
less steep. If in fact the body is not moving at all, then the line JK would
have no steepness at all! It would be perfectly flat like JL.. The faster the
body moves, the steeper will be the line JK.

Now do Experiment 22, which will help you understand the relationship
between the steepness of the graph and the velocity of the moving body.

Points to Discuss 1a Class

All the curves in Experiment 22 are straight lines, Are they all equally
steep? Could you have predicted whether the faster fall would have had the
steeper or the more gentle slope? Can you tell merely by looking at the
graphs which curve goes with the highest velocity? Recall th¢ discussion on
page 97 regarding the steepnesses of several curves you previously drew. For
which of two moving bodies does position increase more rapidly -- the slow
body or the fast one? Which curve rises more rapidly -~ that for the slow or
the fast one? Which curve is steeper -- that for the slow or the fast one?

You should now have a feeling for the fact that the steepness of the curve
-=- position vs. time -- is somehow related to the body's velocity. The situation
is entirely analogous to the curves of weight vs:; volume that you obtained in
Experiment 16, where the stteper curve went with the greater density, We want
now to examine certain numerical aspects involved in the idea of '"'steepness. '
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J 3. lilope of a Straight Line

""Can you tell which of two ramps is steeper just by looking at them?",
Ton: asked Jerry.

"Sure, that's easy, ' answered Jerry. "Try me., "

Tom showed Jerry a piece of paper on which he had drawn two straight
ramps. The drawings looked like this:

/

"Okay, Jerry, which one is steeper?' Tom asked his brother.

"Why the one on the right, of course, " Jerry replied.
"'Why do you say the one on the right?"

""Because it goes up higher than the one on the left, " Jerry went on to
explain, ""The steeper the ramp the higher up it goes, "

Tom wasn't quite so sure. '"Now wait a minute,'' he cautioned. ''Look

here. I'll draw two other ramps, and then you tell me which is steeper.' Tom .

then made two new drawings that looked like this:

=.. . .
'"Now, which one is steeper?'' he asked.

'""The one on the right again, '' answered Jerry,

"But the one on the left goes higher," Tom reminded his brother.
""According to what you just told me, yc¢ ought to call the left one steeper. "

""Yes, '" admitted Jerry, "I guess « : poke too fast., The left one goes
higher, yet I can see that the one on the right is steeper. There must be
somithing more involved in 'steepness' than just:how high the ramp goes. I'm

not 80 sure any more, "

Do you think you can help Jerry to formulate his intuitive idea of s.eep-
nees info something numerical and definite ?

R I
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The idea involved is analogous to those involved in the disti ction between
weight and density, cr between amount and concentration. In the present case
we are trying to avoid the confusion between "height of a ramp,'' and '"'steepness
of a ramp." They are closely related, you realize, but are not the same.

ot o

Suppose you were an ant in the middle of the ramp somewhere, yet with
all your human sensibilities. You can see neither end of the ramp and have no
idea how far it goes up or down. Could you still tell whether one rarmp was
steeper than another? Of course you could, so right away you know that the
height of the ramp is not at all what determines its steepness. When you
determine the density of a material you take a unit volume of it and determine
its weight; when you determine the concentration of a solution, you take a unit
volume of it and determine the amount of material dissolved in it. What counts
in density is not merely the weigh¢. but the weight per unit volume. What counts
in steepness is not the height, but ..ow much the height increases pexr unit of
horizontal distance. This, if he had the necessary instruments, an ant could
determine.

Notice that we said above that steepmess could be thought of as the amount
thie height increases per unit of horizontal travel. Consider the ramp below.

B~

A
— e

We could select any two points we wished on the ramp, aay A and B. We could ¢
then lay out a horizontal line from A, like AC, and a vertical line from B,

like BC. Then BC is the amount by which your height increases as you walk
from A to B, and AC is the amount of horizontal travel. To find the ''height
increase per unit of horizontal travel", you would then divide BC by AC (they
are both numerical quantities, remember!).

There are iwo questions you probably ncw are asking, One of these is:
""But can I not express the steepness in other ways that are just as good? For
instance, why not say the steepness is simply the value of the angle at A?
Or why can't I say that steepness is "height increase per unit of travel along |
the ramp'' -- rather than per unit of travel horizontally?'" The answer is that ?
you can. This a a cat that can be skinned in sev:ral ways. For our purposes,
as you will soon see, it will be more useful to use the first suggestion above,
however, -- the "height increase per unit of horizontal travel." To avoid
ambiguity in the word ''steepness', then, we call this par ticular measure of
steepness, slope, and we then have the definition:

Increase in Height
Horizontal Distance

slope =

RIS ST T S I




=

e B L L e s

-124-

The other question you were about to ask is this: The two points,
A and B,_on the ramp were just chosen at random, and then the numerical
value of BC/AC was computed and called the slope of the line. Suppose some-~
one else had measured the slope of the ramp. He probably would not have ]
‘hosen the same two points A and B. In the drawing below, for instance, perhaps

@/1/.

g g C

Bfi"/
—F

the other person chcoses the two.points, D and E. Then he calls the slope
EF/DF. Now what is the :§lope: BC/AC or EF/DF or-perhaps something else
that still a third person might measure and compute?

The whole idea of speaking of the slope of a straight line breaks down
if different people get different slopes. Where do we go frcm here? Actually,
you have run into this very problem several times before, though it appeared
before in different disguises. For instanca:

How can we speak of the spring constant, k,, o - certain spring if k
means ''extension/weight', and its value depended o: what weight you happened
to use? Answer: the ratio, Yextension/weight',is always the same for. a .
given spring. (Experiment 11)

How can we speak of the density of aluminum if “ensity means "weight/
volume'' and its value depended on what piece of alumiuum you happened to
use? Answer: the ratio, 'weight/volume' is always the same for any piece
of aluminum at all.( Experiment 15)

In Experiment 10, you found that the ratio of "height above the ground"
divided by ''dictance along a ramp', for a given ramp angle, is constant.
This means, in terms of the drawing above that BC/AB and EF/DE are equal,
as is any other similar ratio for whatever points on the lir. you choose. In
fact, we saw an argument (pages 71-72) showing that this ratio is the same,
for a given ramp angle, regardless of what points you choose. Notice that
this argument was directed to showing that "height/distance along the ramp"
is a constant. It would be a good idea for you to go back and use the Lame
argument (with only slight modifications) to show that '""height/horizontal
distance'' is also constant. This ratio, too, is constant for any given angle
that the line makes with the horizontal.
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Now suppose we have any straight-line graph like this:

We choose any two points on the line, say A and B, and draw the usual lines
ACand BC. You now know that, for any choice whatever of A and B, the

ratio mz—é‘for this line is constant and is called the slope of the line.

Suppose we extend BC to the x-axis, hitting the axis at N, and extend AC to

the y-axis, hitting it at M. Also draw BL parallel to the x-axis and AK parallel
to the y-axis., Could you plot the point A if its x and y are given? Certainly
you can. Now backwards: can you find the x and y of a point if you are shown
the point? Certainly you can! The xrand y of the point A are respectively OK
and OM; and the x and y of the point B are respectively ON and OL, Be sure
you see that:

OK andyA=m

i

for point A: >N

for point B: xp = ON and yg = oL

Next, we shall compute the quantities EEand C (look at the drawing),
whose values we need to find the slope of the line. You can see that BC = BN-CN,
€an't yoi?.©  But BN is equal to OL and CN is equal toOM. Do you see why ? '
But you just saw above that OL = Yyp and OM = yp. We then have

BC= BN - CN

OL - OM

= YB -V,

You should also now be able to see that AC = MC - MA = ON - UK = Xp = Xp.

S ———

We now have shown that 'y - YA'' is another name for BC and that "xg - x,"

—————

is another name for AC. Then we have from the definition of slope that

= 5
slppe of line AB = ,X{B'.'.",ZCA’ (5)
5B A
Remember that A and B were selected in no particular way: they were

any points on the line AB, Equation (5) then says that the slope of any straight
line may be found by
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(1) choosing any two points on the line;

(2) finding the difference between the y's of the points;

(3) finding the difference between the x's of the points;
and (4) dividing the y-difference by the x-difference.

All you have to be sure of, in applying this 1-2-3-4 recipe for finding the slope,
is that the two points you use to find the x-difference are the same two points
you used to find the y-difference, and that you subtract in the same direction
both times,.

Scientists usually use the symbol A to represent the difference between
two quantities. .2 is a capital letter of the Greek alphabet, is pronounced
""delta', and is the Greek equivalent of our letter D, meaning difference. For
istance, £ x means a difference in two x's, [y means a difference between
two y's, AT might mean a difference between two temperatures. The symbol
4> is an exception to the rule that two symbols written together is an instruc-
tion to multiply. is nota symbol for a quantity and therefore " A times
som t.ing else' doesn't mean anything, , always means a difference. When
you see twn \'s used in the same expression you must always remember that
the two differences they represent must be ''corresponding differences, ' If I
talk about Ay and »x at the same time, this means that the ''difference in
y's'' is worked out for the same two points as the "difference in x's.'" With
this undcrstanding of how we shall use the symbol, A , we can now write
equation (5) more compactly as

slope of a line = 4Y {6)

\)

D
»

Remember: when you work out Ay and  Ax to find the slope, you mustt
find 2y for the same points that you use to find Ax.

You might notice that we can symbolize our definition of velocity (or
speed) by using the compact  notation. On page 118, we defined velocity
as (the distance the body travels) divided by (the time required to travel that
distance). Let us write this definition as an equation.

distance the-body travels
time required for the trip .

velocity =

In turn, we have defined distance as the difference between two positions, The
'"distance the body travels'' is then the differerce between its position at the
end of the timing interval and its position at the beginning of the timing inter-
val. . &y LT o g ol : ) If we let p stand
for position, then Ap is the change in position or distance traveled, The
"time for the trip' is evidently the difference between the time at the end of the
interval and the time at the beginning of the interval. We can represent this
difference as At. Now you can see that AP and At are ""corresponding
differences'' in that they are measured over the same interval; hence we may
use them in the same expression. The definition of velocity above then becomes
very simply

velocity = 7‘(?—{_‘ ]

» e s e o e+ e e e
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4, SloBe 9_{_1 Linear Function

By this time you know that any straight-line graph may be represented
by a linear function, y = a + bx, where a and b are constants depending on
what line you are talking about. Keep in mind that, once a and b are fixed,
whatever they are, you are talking about one and only one straight line.

Now remember exactly what the relaticnship between the line and the
equation is. Every point on the line has some pair of x and y. But you cannot
- choose any old x and any old y you please. Once you have chosen an x, then
‘ there is oniy o.ie point on the line that has this x; and the point has only one y.
So choosing an x automatically fixes a y: y is a function of x. But whatever the

y and x might be, you can always calculate the y that goes with a chosen x by
putting tha: value of x in the equation y = a + bx and calculating the value of
"a + bx.' In other words, for every point on the line, the x and y of that
point satisfy the equation y = a + bx. See?

Let us choose two points on the line, say A and B, whose x's aré

8
Q —T
i A :
@) ™ N " N

.AaxX apart. In the figure, then, o x = MN, and we can write

For the point A:: Yp < OP and = OM

XA

For the point B: = OQ and xpg = ON

¥p

But the equation y = a + bx is satisfied by every point on the line. Hence,
for example,

Yo = & bx .

We have other names for XA and yp as given above ion the line 'For the point
A." If we place these values of X and y 5 in the equation, we get

OP=a+bxOM (7)

You should be able to see that substituting similarly in the equation,
Yp *© 2 + bxg, gives

T — _—
?\/TD OQ=a+bxON (8)

i Try it yourself!
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Next, let us find an expression for OQ - OP. You can see from equa-
tions (7) and (8) that

6_5-6_15=(a+bx6ﬁ)-(a+bx6—1\7f). (9)

Look at the last part of equation (9). We are subtracting the sum of a . and
b x ON., You know that subtracting the sum of two numbers is the same as

subtracting each number individually. Therefore we can rewrite equation
{9) like this

OQ-OP=a+bxON-a -bx OM,

Right away you see on the right hand side that a and -a appear, and may of
course be canceled out. Do you remember why? Then you have

OQ -OP=bxON - b x OM, (10)

Look at the right-hand side of this equation. It brings up a principle
that we used before and will have occasion to use again, Itis an »~ithmetical
property of numbers that multiplying the sum of two number by a multiplier
gives the same result as multiplying each of the numbers separately by the
multiplier and then adding. In symbols,

a(b+ c) = ab + be. .

This property of numbers is called the distributive principle, and applies to
subtraction as well as to addition. We used the distributive principle on
page 101, and wish now to use it again.

The right-hand side of equation (10) consists of the difference of two
terms, each multiplied by the same number, b. Using the distributive prin-
ciple, we can rewrite the right-hand side of equation (10) like this:

OQ - OP = b(ON - OM).

Now if you return to the drawing on page 127 you will notice that OQ - OP is
QP and ON - OM is MN. We therefore have

P = bx MN,
We can solve this equation for b (Do it yourself!) and ohtain
b = QP/MN.
But now do you see that _Si—D-is the amount by which y changes in going
from the point A to the point B? This means that QP is merely what we have

previously called " Ay"; and similarly MN is just Ax., We therefore can
rewrite the last equation above as

b = ay/ 4 =x (11)
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Compare this equation with equation (6). You will remember that we defined
the slope of a line in accordance with our intuitive feeling of what the word
''steepness' means, arriving at the fraction Y& y/A x'' as a reasonable defini-
tion, Earlier, we had learned that ''y = a + bx" is an equation that represents
any straight line at all, Now we find, by logic alone, on comparing equations
(6) and (11), that the constant b in the equation for a straight line is nothing
more nor less than the slope of that line!

5. Velocity and Slope

Let us now return to the grapks you made in Experiment 21. You hav=
three straight lines, each of which therefore can be represented by an equa-
tion of the form ''y = a + bx', where, of course, the a and b may be different
for each line. You already know, in fact, that the a's are different; for a
tells where the line crosses the vertical axis.

In the particular case of your graphs of position vs. time, we have

noted before the convenience of using p to represent position (the quantity
plotted vertically), and t to represent time {(the quantity plotted horizontally)
Instead then of writing 'y = a + bx'" as the equation of one of these lines, it will
be more appropriate to write ''p = A + Bt''. Now choose any two points on

the topmost line on your graph. Choose them so they are well-separated, and
label the lower one A and the upper one B. (You are actually to do this; not
just imagine it's being done!) Draw lines through A and B parallel to both

M 3
N A/ -

K L
S| -

axes as in the accompanying drawing, with the intersections as labeled there.

Notice that point A represents the body when the time is OK and the position of

the body is 6-1-\1_, and the point B when the time is OL and the body's pousition is

OM. The time elapsed in going from A to B is therefore OL - OK and the

distance traveled in that time is OM - ON, But OL - OK is simply KL and

OM - ON is simply MN. Thus MN is the distance traveled by the body in the

time interval KL. By our definition of velocity, therefore,

v = Ap/At = MN/KL. (12)

From this equation, calculate the velocity of the falling ball for each of the
three curves you plotted in Experiment 21. Follow the diagram above. After
choosing two points A and B, draw the lines AC and BGC and measure BC and
AC. Since BC = Apand AC = at, you can calculate the velocity., Record the
calculated velocities at the bottome of Table I. Is your supposition borne out
that a given size ball of a given material will fall through a given oil column
always at the same velocity?

P — we T v,




Now let us go back and apply equation (11) to the equation of motion at
constant velocity, p = A + B Equation (11) says *hat the slope of a line is
the constant, b, in the equation, 'y = a + bx", of that line, and is also given
by the fraction, Ay/ s x. Applied to our particular case, equation (i11) says
that the slope of a line is the constant, B, in the equation, ''p = A+ Bt', of
that line, and is also given by the fraction, 4Ap/ At. In other words,

B = ap/ At, when you are talking about the line, p = A + Bt. If you look at
equation (12), you will see that the velocity of a body is also Ap/A t. We have
this interesting and important conclusion: For a body traveling at constant
velocity, the position of the body is given by ''p = A + Bt'" where B is the
velocity of the body,

e s p el SR N Ll hoad T ok S s S et e Lt TR L e oy L

We now can attach special significance to both the constants, A and B,
in the equation, p = A + Bt. We saw earlier that A is the value of p when
t = 0; that is, A is the position of the body at zero time, We might call this
position, p,. Now we learn that B is the velocity of the body. We then have
the analytical expression in general,

P = P, t vt (13)

where p is the position of the body at any time, t, and P, is its position at
time zero, and v is its vele-ity,

It is only fair to say that we could have arrived at equation (13) with
far less labor. You could reasnn as follows: If the body has position, p,,
at time zero, then its position at a later time, t, will be Po Plus the distance
it moves during the time, t. If its velocity is v, then the distance it moves in
time, t, is vt; hence its position at time, t,will be Po t vt. This three-line
derivation is perfe~tly rigorous, but our purpose in using the longer derivation
involving the general ideas of slope, linear functions, graphs of linear
functions, A4's, etc. was to develop your feeling for those ideas as well as
to arrive at equation (13). We will use those geaeral ideas again.

Now back to Experiment 21, You calculated the velocities of fall for
the three runs and found these velocities to be identical (within experiinental
error). According to equation (13), the velocity is the slope. All three
curves should have the same slope. Do they? The fact that the three curves
are parallel is a reflection of their all representing motion at the same velocity.

By the same token, curves representing motion at different velocities
will have different slopes. The motion would still be represented, of course,
by equations like (13) but the values of v and hence the slopes will be different.
Now make calculations of the velocities of the three (or four) runs of Experi-
ment 22. Do it in the same way you calculated the velocities in Experiment
21, and record them at the bottom of Table II. Compare these velocities with
your judgement of the slopes of the curves. Does it seem reasonable to you
that greater velocity should mean greater slope?

A e et e
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What is the slope of a horizontal line on the graph? How much does P
increase for any interval of t on a horizontal graph? What then is the value
of 5 p for any interval? What then is the value of the slope? What kind of
"'motion' does # horizontal line represent? Do slope and velocity agree?

Equation (13) gives p as the sum of two terms, P, 2nd vt. You learned
long ago that you can add two quantitites only if they have the same units,
Can you show that p, and vt have the same units?

You remember that (page 124) we could speak of the slope of a straight
line because a straight line has always the same steepness; that is, its slope
is constant. You learned that the falling balls in the last two experiments gave
you straight lines when you plotted p versus t. These curves then have a cone
stant slope, since all straight lines have a constant slope. You also learned
that the siope of a p vs t curve is the velocity. It follows therefore that the

fact that you got straight lines when you plotted p vs t proves that the motion |
of the balls was under constant velccity.

6. Accelerated Motion

Up to this point we have confined our attention to uniform motion; that
is, motion at constant speed (or velocity) along a straight line. Any motion
that takes place other than along a straight line at constant speed is called
"accelerated motion," We will continue to restrict ourst ves to motion along
a straight line, but will now consider motion in which the speed is not constant.
You may never have noticed that a rock dropped from the roof of a house does
not fall with constant speed. It falls at first very slowly, then picks up speed
and moves faster and ever faster until it hits the ground. Because of friction
against the air, a rock dropped from a very tall building or an airplane would
eventually reach a constant velocity, Using 2 small ball, and an oil where the
friction is much greater than with air, the constant speed is réached after

dropping only a centimeter or two. This was the idea behind the last two
experiments.

Dropping a rock through the air then is a good example of accelerated
motion. The motion here is much too fast for us, however, to make measure-~
ments on the motion as we did for the ball falling through oil. But it is also ;
true that a ball roliing down a ramp in air behaves much like a free-falling rock, |

except that everything is slowed down to a point where you can make cnnvenient
measurements.

In Experiment 23, you will study the motion of a ball rolling down a ramp
as an example of accelerated motion, Do you know wh: : the accelerator on an
automobile does? The accelerator is the gas pedal, and by pushing down or
letting up on the accelerator, vou can make the car go faster or slower. In i
other words, the accelerator allows you to change the speed of the car. 'Accel~
erate' is a verb meaning to ''change the speed of'" soraething. We use the word
the same way here. Sometimes "accelerate' is used to mean only "increase

the speed of'', but we shall use it to refer to any kind of change in speed, not
only an increase.
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) Accelerated motion then is rnotion whose velocity changes. Suppose you
observed a moving body and wished to determine whether its motion was
accelerated. How might you do it? Well, since accelerated motion is merely
motion whose velocity changes, here is one sensible thi g tc da: You could
choose any two points in the path of the body and measure its velocity at both
poirts. If the velocity is not the same at both points, you may certainly con-
clude that the motion is accelerated.

Notice that a body moving with constant velocity has no acceleration. It
might move forever with never any change in its velocity; no matter how fast
or hew slowly it's moving, then, it has no acceleration. This observation is
the germ of a physical idea. For if we say ''the body has no acceleration, " we
are tempted to reword the statement as ''the body has an acceleration of zero. "
But zero is a number, and right away the physical scientist would say, ''I can
imagine a body that has zero acceleration, and zero is a number. I can also
obsexve a body that does not have zero accleration, I wonder whether acceler-
ation. is one of those qualities that can be expressed numerically, I haven't yet
defined exactly what the word 'acceleration' shall mean, though I have an
intuitive feeling that it ought somehow to have something to do with change in
velocity. Car I define it in such a way that acceleration becomes a measur~
able guantity ?"

)

We can kick this idea around a little further. Imagine two cars standing
side by side, motors running, ready to begin a drag race. At the same instant
the drivers step on the gas. One car takes 10 seconds to reach a speed of 60
miles an hour starting from rest, and the other car requires 15 seconds to reach
that cpeed. Both cars accelerated, for both changed their speeds from zero
to 60 mi/hr, Tre first car changed its speed from zero to 60 mi/hr
more quickly than the second. We feel that the verb, "accelerate', ought to
contain in its meaning something that would allow us to say that the first car
accelerated more than the other. If we bother to define the word acceleration
precisely, then, we would like it to be defined in such a way that the first
car will have a greater acceleratim than the second.

But both cars had the same 'change in velocity', for both started with
zero velocity and speeded up to 60 mi/hr. Once again you see that something
more is involved here than simply '"change in velocity, ' What we are really
concerned about is not how much the velocity changes, but how repidly it
changes.

You should now do Experiment 23. After ‘you are finished we will have
a lot of

Points to Discuss '1_1_1_ Class

Do the plotted points fall on anything that looks reasonably close to a
straight line? Since the point, (position = 0, time = 0), lies on the graph, your
curve passes through the origin. Would it be fair to conclude that position (or
distance) is proportional to time ?

~ g e T
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If distance traveled were proportional to time, you now know that the
equation of the curve woul i be "p = vt'", where v is the constant velocity of the
body. Since the curve is not a straight line, tben, your experiment shows that
the body does not travel with constant velocity, The motion is therefore, by
definition, accelerated.

Draw the curve, position vs time, smoothly as best you can through the
points. It is probably that the points will not fall all on a smooth curve., Try
to draw a curve through the points in one single sweep, placing it as usual in

such a way that roughly as many off-points lie on cne side of the curve as on
the other.

Now fill in the third column of the data sheet for Experiment 23 with
'"smoothed values of the time." You recognize that the points on your graph
are ''off" because of experimental errors incurred by the difficulty in making
precise measurements on such a rapidly moving body. If you make enough
observations, however, you have a feeling (here is that intuition again!) that
you probably made as many mistakes giving readings too high as too low. This
is another aspect of the point discussed on page 21 about feeling that an average
is probably better than one reading alone., You therefore draw your curve so
that some points lie above and some below it, believ:ing that the 't:ue' curve
lies comfortably ""down the middle', We are now saying that we believe the surve
itself gives "better' values for the "times ef passage' than the ones actually '
observed, We are saying, that is, that when the ‘'down the middle' curve passes
below an observed point, that the observed point is prebably "too high' because
of experimental error; and that an error-free measurement weuld have placed the
point close to the curve, We are saying that the curve, which is based on many
readings of the same function, is more reliable than eny ene point,

If, then, you wanted to know the time of passage to, say, 160 cm, it
would be better to read the smooth graph than to take the actual measured point,
Do this, reading the '"smoothed' values for times of passage for every position
listed in cdymn one of the data sheet. These smoothed values are generally
regarded by scientists as more reliable than the ones actually observed by
measurement. Notice that it is a method of finding an "average time of passage
to 160-cm' that takes into account not only your measured values at 160-cm,
but also your measurements at other positions as well,

Does the curve have a constant slope? Can you tell whether the curve --
as you move to the right, or a- time goes on -- becomes increasingly or
decreasingly steep? You have learned that, when you plot position vs. time,
the slope of the curve is the velocity. From the slope of the curve only, does
the velocity appear to be constant? From the slope of the curve only, does
the velocity appear to be increasing all the time the ball is rolling?

Now (this is review) you know that you can find the position of the body
at any time by reading the graph for that time. Moreover, any given t has
associated with it one and only one point on the graph, hence one and only one
P. In other words, givent, you can always find one ard only one p. From the
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definition ot function, we say that p is a function of t. But notice that the slope
also changes with t. Just as each t leads to exactly one p on the curve, so alco
does each t lead to exactly one slope of the curve. In other words, the slope
is also a function of t; because if you are given any t, the slope of the curve at
that t is fixed by the curve whether you like it or not,

But remember that (page 130) the slope of the curve p vs t is the velocity
of the moving body. Your graph, we now see, showg that not only the position
of the body out also the slope -- and therefore the velocity of the body -- is a
function of the time. You should understand that ttis conclusion is quite in
accord with your observation: you noticed that the ball speeded up more and
more as it rolled downhill; that at each different ir.stant during the roll, its
velocity was different, depending upon what instan! you are talking about. Sco
your observation alone tells you that the ball's velucity is a function of the
time. The preceding discussion was only to call your attention to the fact that
this information is revealed by the graph, too, if y'ou know how to read the graph,

We therefore have good reason to believe th:t the velocity oi the rolling
ball is a function of the time. Can we find out what function it is? What do we
already know about the velocity? We know that at time zero the velocity was
zero, for we started counting time when the ball was at rest and we made sure
that the ball was allowed to pick up speed by itself, We also know that the
velocity is an increasing function of the time, for the slope of the curve become s ,
steadily greater (thatis, the curve becomes steadily steeper) as we go to greater
times, Thus we know beforehand that thecurve will pass through the origin and
will slope glways upward to the right. Does this suggest anything to you?

Now let us try to find the velocity for some certain time, If you look at
your table of data, vou will remember that you have in column one a list of
positions of the ball and in column three a list of the times at v .ich the ball
was in those positions. For instance, the first line of the tab'e tells you that
the ball was at a positica of 0 cm at a time of 0 seconds. The second line tells
you that when the ball was at a position of 40 cm, the time was 2.4 seconds
(Near there, anyway; the exact time you got depends upon how high the end of
the ramp was propped up, how hard is the wood of which the ramp was made,
and several other things. ). This means that the 1zll traveled a distance of
40 cm in 2, 4 seconds. We know that its velocity was not constant over this
interval., But suppose we did have a body moving at constant velocity that
covered this same distance of 40 cm in the same time of 2,4 seconds. What
would that constant velocity have to be? You should be able to calculate that
a body traveling 40 cm in 2, 4 seconds at constant velocity would have to travel
with a velocity of about 16.7 cmn/sec. We call this constant velocity by the
name of ''average velocity.' ''Average velocity'' merely means the constant
velocity that would '"do the same job in the same time' as some other body not
moving at constant velocity.

In terms of our o notation, the ''difference in position in moving from
a position of zero to a position of 40 cm is A p = 40 cm. Correspondingly,
QA t= 2.4 sec. When we calculated the average velocity above, then, we
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actually used the definition of velocity given on page 129 :

_4p _ 40cm _
" At - 2.4 sec 16. 7 cm/sec

So we are not really introducing anything new here; we are merely extending
our earlier definition of velocity as Ap/At to the case when the velocity is
not constant,

Now the velocity at the beginning of the interval was zero, because the

- body was at reat. The average velocity over the interval was 16. 7 cm/sec.

| Do you see therefore that the velocity at the end of the interval (that is, at the
instant that the ball was passing the 40~cm mark) must have been greater than
16.7 cmm/sec? This must be the case, because if the velocity started out less
than 16. 7 cm/sec in order to get the average up to 16. 7, Thus the body started
out slower than 16,7 cm/sec, it must have ended up greater than 16. 7 cm/sec
in order to get the average up to 16, 7. Thus the body started out slewer than

i 16. 7 cm/sec and ended up faster than 16,7, Do you see that the body m.ust some=|
time in between have had a velocity of exactly 16,7 cm/sec? This is the prin-
ciple of continuity, which says that if the body's velocity changed from some- ,
thing less than 16, 7 to something greater than 16, 7, it cannot have ""skipped over!':
any ve&c‘%m}gebgygv &Rt know exactly where and when it had tuis velocity, but
we do know that at sometime between 0 seconds and 2.4 seconds, and some-
where between 0 cm and 40 cm, it did have this velocity. With very little
justification other than that the time and place must be somewhere between, let
us take the time and place of the average velocity as midway in the interval.
That is, let us say that the body had a velocity of 16. 7 cm/sec when it was
halfway betweeen 0 and 40 cm and halfway between 0 and 2.4 seconds. To
repeat: though we don't know that it is exactly correct, we do know that the
body had a velocity of 16. 7 cm/sec somewhere close to a position of 20 cm and
a time of 1. 2 sec.
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To sum up: During the interval over which the ball rolls from the 0 to
the 40-cm mark, its pos’tion changes by Ap = 40 cm; time increases by At =
2.4 sec. The average velocity during this interval is Ap/AOt = 16.7 cm/sec.
The approximate place and time at which the body had exactly this velocity
are 20 cm and 1, 2 sec, Refer now to the right-hand portion of Table I in
Experiment 23. The data in the preceding two sentences are to be entered on
the first line of this table. /A p = 40 cm is already entered: At will be some-
where near 2.4 sec, depending on what you measur ed for the time of passage
to the 40-cm mark. ''v'' means ''average velocity.' (Physical scientists
quite commonly denote the average value of a variable by placing a bar over the
symbol for the variable. You - read v as ''vee bar'.) Calculate your average
velacity for the first interval and enter it in this column, The next two
columns contain the midway points, both in distance and time. In distance, of
course, the midway point is 20 cm; in time, the midway point you will have
to calculate yourself. It will be close to the l. 2 sec used in the example above.

You should now be able to fill in the rest of the right-hand portion of
Table I. First, notice that the AAp's are ail the same; namely, 40 cm becaunse
the positions listed in column one are 4C cm apart. Next, remember that the
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first At is the time interval fromthe zero mark to the 40-cm mark. You find
it by subtracting the ''time at 0 cm'" from the ''time at 40 cm." The next
interval - 40 cm to 80 cm - begins at the time-of-passage for 40 cm and ends
at the time-of-passage for 80 cm. The At is the difference between these
times, which should be entered on the second line under At. v, of course, is
simply Ap/At. The midway position for the second interval is halfway
between 40 cm and 80 cm; calculate this position and enter it on the second ,
line under "Midway position.' The midway time for the interval is halfway '
between the times at the beginning and end of the interval, both of which you -
get from column three. Calculate the raidtime and enter it in the second last ’
column. Now complete the table yourself.

The third last cclumn of Table I now gives you the velocity the ball had
at the time given by the second last cclumn, These two columns therefore are
a tabular representation of the functional relationship we were seeking -~ that
giving the velocity as a function of time. In the space on the lower half of the
second work sheet, make a graph of velocity vs. time, velocity vertically and
time horizontally. Dc you notice anything especially to be remarked about this
graph?

Your graph shows that in the case of a ball rolling downhill, velocity is
proportional to time, for the graph is a straight line passing through the origin.

Use a ruler to draw in the curve, again trying to place the straight line so that
it steers up the middle of the plotted points.

You know now that the equation of this straight line must be '"'v = at', where;}
v represents the variable velocity, t the time, and a is a constant. You also
know that, if ''v = at', then '"a = v/t". Can you still show this? The fact that
your graph was a straight line then shows that the ratio v/t is a cnnstant. For
each line of Table I, calculate the ratio v/t, using the interval-average velocity,
v, for the numerator and the midway time, t, for the denominator. Record
these ratios in the last column of Table I. Is this ratio reasonably close to
constant? What are the units of this ratio?

The ratios ycua calculated for v/t are nearly constant (within experimental
error), and will probably come out to be somewhere around 15 to 20 cm/secz.
(You read this as '"20 centimeters per second per second" or '"20 centimeters
per second squared’.) If your ratic came to, say, 17.0 cm/sec?, then the :
functional relationship between velocity and time that you were looking for is ;

v = 17. G' ‘to

If the units of ''17.0" are em/sec? and those of t are seconds, what will be
the units of v? Is this reasonable?
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We have noted many times before that in a proportionality equation
like y = kx, the proportionality constant, k, often has some special physical
significance. What is the meaning of the constant, a, in the equation, v = at?
In order to get a feel for its meaning, notice first that the velocity keeps
changing (in our case, increasing) with time. The graph slopes always upward
to the right. Can you judge the relative appearance of two graphs of the form
v = at, one of which represents a body whose velocity changes only very slowly
and the other of which represents a body whose velocity changes very rapidly?
Which of these two straight-line graphs will have the greater slope? Do you

see that the line with the greater slope goes with the body whose velocity changes :J
more rapidly? "

Now, you have seen (at the very end of Section 4 in this unit) that the
constant k in the equation y = kx is simply the slope of the graph of that line,
Similarly, the constant, a, in your eguation, v = at, is simply the slope of
your graph. Furthermore, you know that the greater the value of a, the more

aaply the curve climbs upward to the right. But from the latter part of the
preceding paragraph, you saw that the more steepiy the curve climbs, the more
rapidly its velocity changes. Recall now that (page 132, just before doing
Experiment 23} that we were looking for a way to define the term "acceleration"
numerically. We agreed that ""acceleration'' should refer to how fast the
velocity changes. Maybe we now have an acceptable definition of the word. If
the velocity of a body is proportional to the time, then velocity and time are
related by an eguation, v = at, where a is a constant, namely the slope of the

curve whose equation is v = at. If this curve is horizontal, then v = 0 every-
acel o oo o Araanles 142 Alon dhow 3 ot~ o 2o mmeea. LTS o A% s a9
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velocity never changes. Thatis, if a = 0, the velocity stays constant or there
is no acceleration., If the curve is steep, the velocity changes slowly and a
is small. It looks as though we could take this quantity a to be the quantity
that we wanted to call '"acceleration. "' In fact, when the velocity is propor-
tional to the time, we will define the quantity a to be the acceleration.

Since earlier (page 126, equation (6)) we defined the slope: of a straight
line as Ay/x, you can see that our definition amounts to this:

acceleration = Av/At

when that ratio. is constant. You will recognize that ''Av/At" is simply a

symbolic way of saying ''change in velocity divided by the time interval over
which the change takesplace.' Keep in mind then that there must he a change
in velocity for the acceleration to be othe r than zero., An interplanetary rocket

traveling at 50, 000 miles per hour has zero acceleration if its velocity
remains at 50, 000 mph.

In the case of the ball rolling downhill, you have shown that the a.cnzzxa.le:r.:aut:i«:ac;,;{ff
is constant, because the velocity is proportional to the time. You have shown, ;
in other words, that, for a moving body,

The velocity is proportional to the time,
and

The acceleration is constant.
are two exactly equivalent statements.
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7. Tangent to a Curve

You will remember that we defined velocity (page 129) as/\p/At under
conditions of constant velocity. We defined "average velacity for an interval!'
also as/sp/At for that interval. Notice then that we have no "unconditional"
definition for velocity. We say tlat Ap/aAtis the velocity if it is constant, or
it is the avera ge velocity if not. Is it possible to define what is meant by
velocity (not average velocity) even when the velocity is itself changing?

Notice that it is possible to define what is meant by position even when
a body's position is changing -- that is, even when the bedy i@ moving., We
can easily conceive of the idea of "instantareous position' -- that is, the
position of the body at one certain instant. We feel that it ought also to be ]
possible to iell how fast a body is moving at some certain instant -- instantaneous
velocity -- even when the body is moving, As a maiter of fact, this is exactly 5
what the speedometer of an automobile dnas,  Who: m&ani by insiantaneous

I
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velocity? Leck back at the graph you made in the upper part of the second

- it 3 i e vaie LR Luvasa
W ork sheet for Experiment 23. You plotted position vs time in this graph, and
obtained a curve that is not a straight line. If the graph of position vs time is
a straight line, then you learned, following Experiments 21 and 22, that the
constant slope of that line is the velocity. Does it seem reasonable to you
that if the slope ismt constant, then we could still define the changing veiocity
as being the changing slope? This certainly is reasonable, because the more
steeply the curve rises, the more rapidly its velocity changes.

Let's lock at a picture that may heip you see the poini. The curved line
in the diagram below may be thoughtof as a portion of your graph of pvstin
Experiment 23. Suppose that we want the slope of this curve at the point A,
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Referring to the definition of slop~ on page 126, we see that we need to find

oplot. We choose some other point on the curve, say B, and lay off the two

A's, Op = BK and ot = AK as we did so many tirnes before. The fraction

op/it is then the slope; ——- but the slope of what? Actually Ap//t is the slope

of the line AB, which is clearly steeper than the slope of the curve at A, and

: not nearly so steep as the curve at B. As far as the curve is concerned, this
fraction pop/At does not give us the slope at either A or B, but rather at some
point between A and B. Try estimating the point where the curve has the same
slope as the line AB.

Y

Suppose we had chosen some point C instead of B as the second point,
where Cis closer to A than B is. Then we could calculate a new zpfot which
would equal CL/AL. But this would give us the slope of the line AC, which
again is the slope of the curve at neither A nor C, but at sorme place between
them. Try estimating the point where the curve has the same siope as AC. We
could choose as the second point a still clcaer point, say D, to A than either
B or G and the calculated Ap/ Ot would zgain be, not the slope at A, but at

somie point beiwecu A and D. About where, would you say?

Do you see that each time you ghoose a new second point, closer to A
than the last one, for measuring the two A's, you get a new slope? This new
slope is not the slope at A, but the slope it some point on the curve closer to
A than the last one. If you keep choosing points closer and closer to A, then

) ' the point of the curve where the slope is the same as the straight line gets
closer and closer to A.

The ontents of the last two paragraphs are intuitive. Have you noticed
that we have been talking about the ''slope of a curve at some point' without
ever having said exactly what we mean by that expression? We do, however,
have an intuitive feeling about what we would like to have the e..pression mean.
Suppose someone gave you a yardstick, led you to a curved sliding~board, and
pointed to ore spot on the side of the sliding board. Could you tilt the stick
so that the stick had the same slope as ihe sliding-board at that point? Would
everyone agree on exactly how much the stick should tilt in order to have the
same slope as the curve? Or, to put it another way: if someone disagreed
with your idea of the right tilt, how would he go about proving you wrong? You
can't prove someone wrong until you agree on a definition of what is right,

The curious thing is that most people would agree on what is meant by
the slope of a curve, at least to the extent of judging when a curve at some
given point is equally steep with an adjustabie straight stick. What we must
try to discover is the unconscious basis that people use for their judgement
without having a definition. We can get at the matter like this: Suppose we
have a given curve like the one in the sketches below, and a given point on
the curve, likeP. In one of the four sketches, the straight line and the curved
one have the same slope. Which one?

w
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In the first sketch, the straight line cuts the curved one in two points.
As we discussed before, you feel that at some point betwe=n the two inter-
sections, the curve and the line have the same slope, but not at the point 1p
itself. The curve looks as though it has the same slope as the line at about the
point Q;. Now let us keep the line pinned at P, but free to rotate like the
propellor of an airplane. Rotate the line in the direction of the little arrow so
that the line, still pinned to the curve at P takes the position of the second
sketch, Again the straight line cuts the curve in two points. Again we feel
that the line does not have the same slope as the curve at B but more like that
at Q,. By rotating the line, we have moved the point where line and curve have
the same slope from Qj to Q,. Notice that Q) lies on the curve below P and Q,
above. In other words, rotating the line around P from its position in the first
sketch to that in the second caused the movakle point Q to go from somewhere
below Pto somewhere above.

The principle of continuity suggests to us that at some time during
el

the rotation, the movable 8 must have passed through ©  That 12, enmewhara
between the positiong of the line in these {wo sretches, the line had the same
slope as the curve at B We rotated it too far. How far should we have rotated
it?

You probably see the idea by this time. As long as the line cuts the
curve in two points, P and another one, the line will not have the same slope as
the curve at F, but rather will have the same slope as some poini between the
two intersections. The only way we czu arrange the line so its slope will be
the same as at Pis if we have the line touch the curve in only one point, as in
the third sketch. A line that touches a ecurve in oniy one point is called a
tangent to the curve at that point.

But wait a minute, you say. The fourth sketch shows a line that also
touches the curve in only one point. Is the line in the fourth sketch also a
tangent? If so, you can see that you can draw lots of similar lines that pass
through P and cut the curve in only one point. The answer is o, A tangent
not only cuts the curve in only one point, but also lies on one side of the curve
orly. Notice that in the first, second, and fourth sketches the line crosses
over the curve at P, from one side to the other. In the third sketch, the line
touches the curve at P without croesing. This is a tangeht: a straight line
that touches a curve at one point without crossing it. A line that crosses a
curve is called a secant. (The word "tangent" comes from the Latin word
tangens, which meang '""touching.'" The word ''secant" comes from the Latin
secans, which means ''cutting, ')

Notice that one way to think of a tangent is the following, patterned after
the sketch below: First, draw some secant tc the curve through P, say PQ,.
Now keep the line pinned to the curve at Pand allow Q; to move along the curve
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toward P, through the points Q,, Qj, etc. As you do this, the secant rotnics
around P. Finally, when Q comes right on top of P, the secant has become a
tangent. Thus you can think of a tangent as the limiting position of a secant
as one of its two intersections approaches the other.

Now finally we can define what we mean by the slope of a curve at a point:
it is simply the slope of the tangent at that point. Again, you should notice that
the last several pages do not prove that the slope of a curve at a given point is
the same as the slope of the tangent at that point. This is a definition of what
is meant by ''slope of a curve at a point'" -- a notion that we had not previously
defined yet felt that we intuitively grasped. 'The long discussion preceding is
to show you that this definition agrees with your intuitive feeling of what ''slope
of a curve'' ought to mean.,

Of course, if you are given a curve already drawn, you could use a ruler
to draw a tangent to the curve at an-assigned point just by using the judgement
of your eye. This might be done in much the same way as we iried to adjust
the tilt of the vardstick the sliding-board = f2w pages back. This
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wou obtained for Experiment 23. Do Experiment 24 now.

Points to Discuss in Class

What is the physical meaning of the Ap/ &t that you calcalated from your
measurements? Remember that the Ap and the pt that you measured werz
obtained from the straight-line tangents that you drew, Therefore Ap/AtLi=s
the slope of the tangent. But we agreed that "slope of tangent at a point'' nneass
‘'siope of the curve at that point." So the ap/at 's that you found in Exparirment
24 are actually the slopes of the curve at the points where you drew the ton~ents.

But recall now that the slope of a p vs t curve (page 130) is the veloci’y
of the body at the point where the slope is measured. Therefore the Aplat that
you nmeasured and computed from the tangent you drew at P = 140 cm is aciu2lly
the velocity, v, of the ball at the instant it passed the 140-cm mark, Compar
the velocity obtained from the slope of the tangent with v, the average velocity _
over a small interval surrounding the 140-cm mark. The two values -- approxi=- !
riate v and ''exact v -- should be nearly the same but not identical. Which |
one, v or v, gives the instantaneous velocity at the point?

When you measured Ap/ pt, you obtained the slope of the tangent, which
is a straight line. Does it matier what interval you use for the n's when you
measure the siope of a straight line? Then why were you told to choose the
points A and B "at least 15 cm apart"? What avoidable error might arise if
A and B were only, say, 1 cm apart?

In your cpinion, is there any judgement involved in estimating the
correct position of the ruler to make it tangent to the curve at the point P?
Most people will agree quite closely on where the ruler shauld be positioned,
but even one person will not always choose exactly the same position. The
question comes up: Is there a way to find the slope of a tangent to a curve that
does not require a judgement that may not always be reliable? There is, i€
you can find an analytical representation for the curve.
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Do you have anaalytical representation for this curve? No. You know
that p is not a linear function of t, but that's all you know at the moment. Thus
you know that the ratio p/t is not constant. What would you suggest trying
instead of p/t in the hope of finding some constant ratio. involving p and t?
Think of it this way: If p/t were constant, the graph of p vs t would ke a
straight line and would have a constant slope upward to the right. Look at
your graph of p vs t. It sl¢,.2s upward with ever-increasing slope., This means
that p increases '"faster than t''. Maybe p is proportional not to t but to some-
thing that increases faster than t -- maybe t2. Try it. Compute t2 for each
line of the table, recording the values in the appropriate column. Then compute

p/ t®. This ratio should be nearly constant. Calculate the average value of
p/t2, and call this constant, k.

That p/ t% is a constant means, as you know, that

p = Kkt4,
We have already seen that this ball rolling downhill moves with constant_

acceleration. Is there any relationship between the constant acceleration

and the above constant, k? There is, but don't jump too quickly to a con-
clusion!

8. Derivative g£ a2 Function

Yau can ulways find the slope of a straight line: itis simply ay/4x. You
can therefore find the slope of any secant to a curve that might be given to vou.
If you allow the secant to swing around one of its intersections as in the figure
on page 140, you get a whole series of values of Ay/Ax, each of which is the
slope of a secant that lies closer and closer to the tangent. If we could find
the number that sy/sx gets closer and closer to, then we would know the
slope of the tangent. W= will see that this can actually be done.

Imagire that the Ay's and px's were actually drawn in the sketch above.
Perhaps it would be well for you to draw a curve on a piece of scratch paper
and choose a point P on the curve. Then choose a series of Q's, each progres-
sively closer to P than the last. Finally draw inthe Ay's and Ax's for each
Q. For Qj, say, you can then measure py and 5x, and compute their
ratio. Call this ratio (#y/4x), for the point Q). You could do the same thing
for Q,, obtaining the ratio (&y/s x),. In this way you could get a series of
(ay/ax)'s, one for each Q.

But notice that as the Q you choose gets closer and cioser to P, the
measured values of Ay and & x get smaller and smaller, md more and more
difficult to measure. In the limit when Q has come to coincide with P in
fact, both ny and ox will be zero, and then we couldn't calculate the ratio
Ay/ox anyway., The ratio would then be 0/0, which not only cannot be calcu-
lated but also is undefined. But remember that 0/0 can be defined if we want
to. In this case we would want to define 0/0 in such a way as to fit snugly into
the series (ay/bx)}, (ay/ox); (ay/s x)3, etc., for only in that way could we
satisfy the principle of continuity.
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Now before going on, it is important that you understand the following:
We want to find what value Ay/bx gets closer and closer to, as Q is made to
come closer and closer to P, until in the limit Q coincides with P, But as Q
comes closer and closer to F, &x becomes zero. So another way to say the
same thing is to say that we want to find the value of oy/ox when ax becomes
zero. It may surprise you that we can actually find this limiting value., We
can do it when we have an analytical expression for y as a function of x,

Suppose that, for example, y is a linear function of x:
y = a+ bx. (14)
Let us find the value of 4v/Ax as Ax is ailowed to become so small as to be

zero. Remember that equation {14} \
this case, of course, a straight line). Suppose we choose two pointg, A and B,

B

appiies to everv noint on the curve fin

Dy

and draw the perpeadicular lines, A C and BC, in the usual way that you are _
now so familiar with, The distance AC is what we have been call ax and BG
is what we have been calling ay. Suppose we say that the point A is the point
whosge x-and-y comhination is Xo* Yo. Then it must be true, since A is on
the curve whose equation is (14), that

Yo = a+ bx.. (15)

Do you see that the x-value for the point B is (x5 + ax), and the y-value for
the same point is (yo + 2y)? But since the point B is also on the curve whose
equation is (14), it must also be true that the x-and-y combination for B
satisfies equation (14), That is,

Yotl&y = a+ b(x, + &x), (16)

The last two equations give us alternate names for two quantities: une of them
is y,, and the other is (yo + DY), Therefore if we subtract the left-hand side
of {15) from the left-hand side of (16), we will get the same result as when we
subtract the right-hand side of (15) from the right-hand side of (16). Subtracting
the left side of (15) from the left side of (16) gives

Yo +Ay = Yoi
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and doing the same for the right-hand sides gives
a+tblxg +px)-(a+ bxo).
These two subtractions, we have just agreed, give the same result. Hence
yo+Ay-yo = a+ b(xg + &) - (a+bxo).

You can see right away that "yo'' and "~¥,'"' can be crossed out on the left, and
then we have

Ay = at+bxy+tiLx) - (a+ bx,).

Now you will remember that subtracting (a + bxo) is the same as subtractin
a and also bx, individually. That is,

oy = at blx, +a4ax)-a - bx,.
And again you can see that ''a'' and "-a'' on the right may be dropped out:
ay = b(x, + ax) - bx,,.

Neatt, recall the distributive principle: that b(x, + 4x) is the same thing
as bx, + bax. Therefore

AY = bxg + bix - bx.
Again you can drop the ''bxo'' and '""-bx,'", and find that
AY = bsx,

From thig last expression you can easily find that

£Y = b, (17)

L X

This is the same result we previously found (page 1ZBY; namely that
for any linear function 'y = a + bx", the slope, Ay/£x, is simply b. In fact
the reasoning we just now used is identical with the reasoning we used before.
We have simply changed to a different set of symbols. The reason fox doing it
all over again was just to put you on familiar ground before we used the same
procedure for a function that is a little more complicated than a linear

function.

Notice that the choice of how big Ox was, in the argument above, was
quite undecided. We never committed ourszlves to any particular value for
Ax, and hence equation {17) is true for any «ax whatever., We are especially
interested in the case when &x = 0, for which Ay/Aax also, of course, is b.
This independence of the value of ay/p- .pon 8x is not always the case.
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It is a result, in fact, of y's being a linear function of x, and in general the
value of oy/ x does depend on how big ax is. You have already seen that
AY/s x depends on how far apart the chosen points are when the curve is not
a straight line, and does not depend on how far apart they are when the curve
is a straight line. This conclusion, then, is not new, but it is worth recalling
in this new context.

Suppose that y is not a linear function of k. Let us consider the case
when y = kx2, Apgain we consider two points, A and B, and the corresponding

/|

J e

o's, bx = AC and by = BC. The x-and-y combination for the point A we will
again call x5, yo; and that for the point B we will again call x, + &x, yo + Ay.
Since both A and B lie on the curve whose equation is y = kx“, moreover, we
are immediately assured that

Yo = kxoz
and
Yo t 4y = k(x, + bx)2,

Again we subtract the first of these equations from the second and obtain

2

Yo tQY =y, = k(xo-i-l)x)z-kxo .

And again you notice that "yo'' and ''-y,'" may be dropped from the left-hand
side:

by = kix, +Ax)2-kx°2 (18)

We now must consider the quantity (xq + Ax)z, which, of course, means
(x5 + 8x) (x5 + 4x); that is, the product of two quantities, one of which is
(xo tox) and the other of which is also (x5 + Ax). In the expression (xj + ax)
(%o + 4 x), think of the first parentheses as being a single quantity (which it
is!), and the second as the sum of two quantities (which it is!). Then we can

apply the distributive principle, saying that
(x5 +OX) (x, + 4x) = (%o + AX)xg + (x5 + AX)AX.
Now we can apply the distributive principle again to both narts on the right:

(xo + bx)e = :i:o2 T Xobx + x Bx + ax)2,

P e At
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Notice that the two terms in the middle on the right are identical and we
can collect them, writing:
(%o + 4 %)% =x52 +2x5 &x + (bx)2

Therefore

k(xot &x)2 = kxo? + 2kxgnx + k(ax)2
applying the distributive principle still another time. We now have another
name for "k(x, +0x)2'", which we can put in equation (18). This equation
then reads

Ay = kxo? + Zkxyix t+ k(x)2 - kx 2.
Once again you see that '"kx,2'" and "-kxoz” can he dropped out, and we
have then
oy = 2kxgix + kinx)2.

Now multiply both sides of this equation by ,3' .« We have
) %
: - . 1 .
Ly = 2 X LKXJ\X T - K RKOX X Ax
VAN d /DX N X

Since multiplying by the reciprocal of a number (L/>x) is the same as
dividing by the number, we can write this as

JAT A LX AR
INX kaobx T okox Iyx .

On the right, you can see that both {Ax/nx)'s can be dropped out (Do you
see why?), and the equation then reads

LY = 2kx, + knz,
iR

Now remember that we never committed ourselves on how big 4 x was,
and so equation (19) a; plies for all ~vx, including zero. HBut if we let o x be
zero, the last texrm on the right, "*kax', is zero, since any number multi-.
plied by zero is zero. Thus the equation becomes

The value of /3y, x \

\

f = kao (20)

Vo]

f19)
L7

when Ax = 0

Notice that this time the value of Ay x does depend on how big &x is.
Equation (19) applies for all o x of whatever size; but equation (20) applies
only when Ax =0, Itis the limit of the quantity, /Ay/Ox, as /\x becomes
zero, that we are most interested in. We cannot call this limit "ny/ox!
any longer, because its value changes with Ax. In the case of a linear
function, it was not necessary to distinguish between "'ay/ax" and "Ay/ex
when ax =0'", for in that case py/Ax did not depend on the size of OX,
Now we will have to distinguish,
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Scientists all over the world use the abbreviation, ''dy/dx", to mean
D "'the limit of Ay/4ax as Ax becore s zero.' Notice that dv/dx does not really
mean 'ldy divided by dx. " It is not really a fraction -~ it only looks like one.
Especially you should notice that ""dy'" does not mean ''d times y''. The whole
thing, dy/dx, is merely a symbol for "the limit of Ay/s - asAx becomes zero. "
De not think of it as meaning anything else. The symbol s read ''the derivative
of y with respect to x", or more simply as "dee-y by dee-x, "

The quantity, dy/dx, is called the derivative of y with respect to x.
Every time you have a dependent variable y, which is a function of an indepen-
dent variable, x, the possibility exists of finding the derivative of y with
respect to x. Of course the derivative is not the same for every function. You
wouldn't expect it to be, for dy/dx represents the slope of the curve obtained
when y is plotted vs x. And different curves may have different slepes, as
you know,
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For instance, wheny -~ a + bx, we have found that dy/dx is simplv b.
That is, the slope of the curve, Yy = a + bx, is constant. This is something
you can see by looking at the curve, which for a linear function, y = a + bx, |
is a straight line. Butify = kxz, the curve is truly curved, and the slope changes
depending upon what point of the curve you are talking about. You would there- |
fore expect that the value of dy/dx would change, depending upon what x you
are talking about. Egquation (20) says that dy/dx is equal to 2kx, whose value
clearly depends on what x (that is, Xo) you are talking about. In fact, since
X, in our argument can be any x at all, we might as well drop the subscript from °
Xo and simply call it ''x". Equation (20) then reads:

N

Nt

B2 “"4?;”§ -

= 2kx,

&

Notice that this equation really says that dy/dx is proportional to x. Does :
this statement agree with your observation that the slope of the curve increases |
as you go to the right on the graph, y = kxZ?

We have found the derivative now for two kinds of functions. They are
repeated here for comparison:

when y = a + bx, dy/dx = b
(21)

when y = kx2, dy/dx 2kx,

9. Uniformly Accelerated Motion

""Uniformly accelerated motion" means simply motion under constant
acceleration. We have now covered all that we need for au complete understanding
of the relationship between position and time when a body moves under uniform
acceleration. The present section will merely gather a few loose ends together.
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Let us first recall that you found the ball rolling downhill to have 2
constant acceleration. This was an experimentel finding. You found, further-

more, that defining the word "acceleration'' in an acceptable (or agreeable)
way leads to the conciusion:

IF' a body travels at constant acceeration starting from rest

THEN its velocity is at all times proportional to the time
it has been traveling:

v = at

where a is the acceleration. You verified in your case of a ball starting from
rest and rolliny downhill that the velocity is in fact proportional to the time
and gives a straight line through the origin when plotted against time.

One might now ask: what would the velocity be if the body moved under
constant acceleration, but not from rest; i. e., had a non-zero velocity to
start with? This problem is very easy.

First we know that, if the acceleration is constant, then by definintion
8v/st (or dv/dt) is constant. This means that the graph of v vs t must be a
straight line. (Not necessarily a straight line through the origin: that would
mean it staried from rest.) This means that v is a linear function of t, and
therefore v and t must be related by the equation

v=P+ Ot

where P and Q are constants. Now, can we tell whrt the constants are? That

is, can you give the constants physical meaning? Of course you can! Here is
the way you think it out:

The equation holds for any case of uniformly accelerated motion,
regardless of what the body's initial (starting) velocity inight be. For a partic-
ular acceleration and a particular initial velocity, the constants P and Q have
f;;.?{icular values. This means that for a particular case, you can calculate
v from the equaiion for any given time, t, at all. If somecone gives you t, you
can .calculate v for him. You can do this because for a particular case, P and
Q are given numbers. Now suppose that t = 0. The equation then says that
v = P, since Q x tis zero witen't=0, But when t = 0, the velocity is the starting
velocity, whatever that happens to be. Suppose we call it v_., Then we know
right away that P= v, and there's one constant that now hag physical meaning.
We therefore can write our equatioa with Vo in place of B: v = vy + Q,

In the equation v = v, + Qt, you now know that dv/dt = Q. But dv/dt is
by definition the acceleration. Now you know the physical meaning of the other
constant: Q is simply the acceleration. Thus we can write

Vv = vy toat (22)

for the general case. Be sure youa understand the meaning of this expression.
o Here are some questions to help you understand,

U kgt
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acceleration, what will be its velocity 8 seconds later? If the body is not
accelerated, what does common sense tell you the velocity will be at any later
time? Does this agree with what the formula tells you?

If abody starts from rest and accelerates 10 cm/secz, what will be i’s
velocity 8 seconds later? What is the value of v, in this case? Doect this

agree with the equation, = at, which you derived earlier for the case of a
body initially at rest?

Do you see why equation (22) is called a ""general' formula? Itis good
even for the cases when v, and/or a are zero, Suppose a body is initially at
rest and is under zero aceeleration. What do common sense and the formula
tell you is the velocity at a later time?

Aze the units of all terms in equation (22) the same, as is required?

If you throw a rock downward from the top of a tall building with an
initial velocity of 20 feet per second and the effect of gravity is to accelerate it
32 feet/secz, how fast will it be falling after one second, two seconds, three
seconds, four seconds. Notice how the velocity increases uniformly (by the
Ssame amount) for each additional second of travel.

Let us now return to Experiment 24. Recall that you showed experimentally

that the position of a ball rolling downhill is related to the time by the expres-
sion

p= ktz.

You also have determined the value of k in your experiment. Now notice that,
by definition, the velocity for any moving body is dp/dt. When the velocity is
constant, the curve, pvst, is a straight line whose slope, Ap/it, is the
constant velocity. But when the curve of P Vs tis not a straight line, the
velocity is not constant, In this case, Ap/étis the slope, not of the curve,
but of some secant to the curve, sp/Ot then is not the velocity at either of
the points where the secant cuts the curve, but at some uncertain point in
between. If, however, we allow the two secant intersections to come closer
and closer together, 4Ap/4t represents more and more closely the instantane-~
ous velocity. In the limit, when the two intersections have blended into one,
Ap/At becomes dp/dt, and this, the slope of the tangent, does represent the
velocity.

In Experiment 24, you found dp/dt for your curve, p= ktz, by judging
tangents with a ruler. You recognize now that this measurement is inexact
in the sense that it is judgement-based because we have no method of drawing
a tangent that is unarguably "it." But remember from equation (21) that you
learned how to compute the derivative, dy/dx, for any function of the form
y = kx?. We therefore now can comnpute dp/dt for the function p = kt?, and need
no longer rely on the uncertain judgement involved in estimating a tangent.
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According to equation (21), dp/dt for the function, p = kt2 is simply
2kt. But since dp/dt is also by definition the veocity of

a4l80 b Lid S VAOCITY O1 the ‘[‘)(‘Jd’}f; we hava the
interesting conclusion that v = 2kt. This equation says, in agreement with what

we previously learned, that the velocity is proportional to the time, with the
proportionality constant, 2k. That is:

Y i

IF (as you established experimentally) the position of the body
is proportional to the square of the time with the proportionality
constant, k, THEN (as you demonstrated logically) the velocity

is proportional to the time itself with the proportionality con-
stant 2k,

If the velocity is proportional to the time, however, we have by definition
that the proportionality constant is what we call "acceleration, ' See page 137,
Thus 2k is the acceleration of the body rolling downhill, Compute the value
of the acceleration in Experiment 24 from the average k you have alrzady
determined, and enter this value in the box at the bottom of Table I,

Now finally you can compute the velocity at any time without drawing a
tangent. The velocity is always given by v = Vo t at, according to equation (22).
You can compute v for any given t when you know Vo and a. But in your experi-
ment, vo was zero and you now know the acceleration, a. Thus you can compute
v from the simple expression, v = at. Do so for each t listed in the second
N column of Table I, using your now-known acceleration. Enter these computed
/ v's in the last column of Table I. Compare them with the "secant velocities"
or ""average velocities, "' v, in column three; and with the '""'tangent velocities'
or 'instantaneous velocities, " v, in column #ix. The instantaneous velocity
as determined geometrically from tangents should agree quite well with those
calculated from the derivative, dp/dt = v = at,

If a body starts from rest and moves under constant acceleration, you
have seen that position and time are related by the equation, p = ktz, where k
is some constant. Do you see that we have now the same question we had before:
is it possible to attach some physical meaning to k? It is possible, for you
already know that the acceleration, a, is 2k. This means that k is simply half

the acceleration. Thus we can write for a body starting from rest and moving
under constant acceleration,

_1 .2
p = >at

where a is the acceleration. Now you can calculate the distance traveled by a
body under constant acceleration and starting from rest.

For instance, a body falling freely under gravitzr near the surface of the

earth moves with a constant acceleration of 32 ft/sec®. How far will a body
fall in 10 seconds?

Or, try a problem the other way around. How long will it take for a body
to fall from the top of the Washington monument, 555 feet to the ground? Taking
the origin at the top of the monument, the ground will have the position, p = 555 ft,




Then

555 = -;-x 32xt2 = 16t2,

Divide both sides of the equation by 16. Then
34.7 = t2,

Can you solve this equation for t?

Remember that ''34. 7" and ''t2'' are different names for the same thing,
I we take the sqzuare root of 34. 7 we get the same result as when we take the ’
square root of t“. But what is the square root of t2? Then '

t = V34.7 sec

which you can work out yourself. Guess at the answer first. Can you show
that the units of t are seconds?

Calculate how far a body falls under gravity in one second, two seconds,

three seconds, four seconds, and five seconds. Can you explain the peculiar
sequence of results?

Ifp= -;-atz, both p and -;-at2 must have the same units. Do they?

10. The Most General Case

You now have seen that a body starting from rest at the origin and moving
under uniform acceleration, a, will have a position, p, given by

p = sat? (23)

after traveling t seconds. But do you see that this is a rather narrowly
restricted case? It applies only if the body starts at rest and also starts at

the origin? Suppose that it starts from rest but instead of starting at the origin,
it starts at some other position, Po+ Suppose, for instance, that the body starts

-

S A Q

at the point A in the diagram, traveling to the right. Suppose that it starts from
this point, from rest, with an acceleration of a. Then the distance it travels

to the right from a will be given by equation (23), because there is no reason
why we cannot temporarily call A the origin. If in a time, t, the body travels
to the point, Q, then we know that

1
AQ = E‘atz.
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In this last equation, which holds for all t, suppose thatt = 0, Then the

whole last term, _Z.atz_. drops out; and we have thai, when t = 0, p= OA. But
the position at t =0 we have been calling p,. Hence the term OA above is really
the physically significant quantity, p,, the initial position of the body. Thus

we have: If a body starts at an initial position, p,, and at rest, and then

moves with constant acceleration, its position at any later time will be given

by

p = p_+ -;:atz. (24}

Notice that this equation is still restricted by one requirement: that the
body start at rest. We have generalized equation (23) to take care of the case
when the body starts from a position other than zero, The result is equation
(24). Now, can we generalize equation (24) so as to take care of the case when
the body starts with a velocity otle r than zero? We can.

Suppose that you had set up your ball-rolling-downhill experiront in a
boxcar. Instead of putting the distance-marks right on the ramp, however,
¥nu can see that you could put them on, say, a railing beside the train-track.

It might be a little more difficuit to make the readings this way, but you can

see that the idea would pe no different. Then, with the boxcar standing still,
you would find that p = =at?, just the same as in your experiment. Now suppose
that you hold the ball at the top of the ramp, but allow the boxcar to move with
uniform velocity along the track. Again you could make readings of the position
of the ball by using the marks on the trackside rail. Since the ball stays fixed
at the top of the ramp, the only motion it has is the boxcar's motion, which

is at constant velocity. The position of the ball wouid then be given by p = Potvt,
as you found before for motion at constant velocitv.

Now think of the two together. If you held the ball at the top of the ramp
and the boxcar moved with constant velocity, the position of the ball would be
Po * vt. If the boxcar stood still and you released the ball, the position of the
ball would be given by 1,¢2 farther than it would if it stayed at the top of the
ramp, If the ball stays at the top of the ramp, it would be traveling with the
same velocity as the boxcar, as measured by your trackside distance-marks.

Suppose now you were in the boxcar, holding the ball at the top of the
ramp, and your partner stood at the trackside zero-mark. The boxcar starts
a hundred yards down the track, heading toward the zero-mark, moving at
constant velocity, v,. When your partner sees the ball hit the trackside ZEero-
mark, he yells "GO'. You can do either of two things:

You can continue holding the ball, In this case, the position of
the ball will be given by p = po + Vol or

You can release the ball. In this case the ball will travel
éat2 farther than if the ball is not released.

ot s L e st
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€ posiiion of the ball is given by 1
- 1.2
P = Po+ Vot + satl, (25) }
There you have it! This is the most general case of uniforin acceleration.

The formula gives the position of the ball at any future time, t, when it starts
at position, p,, has an initial velocity, vo, and a constant acceleration, a.
Notice the following:

(1) If 2 = 0, there is no acceleration and the body then is traveling at
constant velocity. If a = 0, does equation (25) become identical with equation
/13), the one developed for motion at constant velocity?

(2) If the body starts from rest and moves under constant acceleration,
what is the value of Vo in equation (25)? Does this equation then pecome
identical with equation (24)?

(3) What does it mean if Vo and a are both zero? Does equation (25) give
a sensible result when vy and a are zero?

(4) Do all terms in equation (25) have the same units?

/;\ (5) If you subtract p o from both sides of equation (25), you get
p - PQ = Vot 4‘ %‘—-atzc

What is the meaning of the left-hand side of this equaticn?

Now try your hand at a problem: A boy throws a rock downward from
the top of a fall building., If the rock accelerates downward by gravity at
32 ft/sec? and he throws it with an initial velocity of 40 ft/sec, how far will
it have fallen in 10 seconds? How far would it have fallen if he had merely
dropped the rock without throwing it? Do you see how little effect an initial
downward throw has, if the body travels for a relatively long time? Try
making the same comparison if the rock travels for only one second.

Equation (25) is extremely important in dealing with the behavior of
missiles and rockets,

§
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Experiment 1
Measuring Lengths with a Ruler

In this very easy experiment, you wili measure the lengths of a
number of plastic rods, using a ruler graduated in centimeters and
tenths of a centimeter. Tenths of a centimeter are also called
"millimeters". The sticks will also be measured by several other
People in your class. After everyone is finished, you will be able

to compare your measurements with those of others who measured the
same sticks.

&

Before you start this experiment, your teacher will exnlain to
you how to make the measurements and how to record them. It is just
as important to record measurements properly as it is to make them
properly. Be sure you understand what to do before you start the
experiment. Alsc, read Sections 3 and 4 in your textbook before

you begin. You should understand about Making Measurements and
Significant Figures before you start.

In this experiment, as weli as in all others, be very careful
with all the apparatus you use. Do not damage the sticks or the
rulers. Do not make any marks on them. Be very careful not to
drop pieces of apparatus. Be careful that the edges of the rulers
2nd sticks are not bumped so that they become dented or mashed.

Procedure: Your teacher will supply you with six sticks of
different lengths. Measure each one this way:

Lay onc ¢nd of the stick so that it lies as ncarly as you can
‘dge on the zcro-centimcter rark of the ruler. On some rulers theré
-3 a zero-centimeter mark actually appearing on the ruler; on others,
.2 zero-mark is sinply the very end of the ruler, Examinc yours ard

2cide which type you have. Lay the stick so that it lies alene the
-nler. Look at the other ond of the stick and decide which tenth-
nf-a-centimcter mark on the ruler the other cnd lies closest to.
t2lect this.mark as representin~ the leng*h of the ruler. Read it,
and rccord the lenoth before you forget it. Make your rccord in

the tablce on the data shcet (next pagce). 8¢ sure you rccord also the
nunber of the stick. The last colunmn in the table is for entcering
the avera-c length of each stick for cveryone in the class whoe

measured it. Do not comparc your measurements with anyone else's 1
until everyone is finished.

"hen cveryone is fi:lched neasusina, your teacher will call for
the results obtained by cach different person who mecasured cach stick

and will write the different results on the board. If thc measured ;
lengths for any stick azc =a¢ all alike, find the averaze, remembering |
the busincss about significant figures. ;

Enter thc averages obtained
for the sticks you measured in the last column of the table.

?
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Table I. Measured Length of Some Sticks

iStick Measured Average of
! No. Length Several Measmts
i\
i
t
i
") i
| |
|
i i,
Enter your neasurements from Experiment 1 in the table above.
Record your observations as you make them, and don't forget to includc
the units. Wait until the whole class is finished before you compute
the averages in the last column of the table.
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Experiment 2
The Adding of Measured Lengths

In this experiment you will take some sticks whose lengths have
already been measured, Jay them down end to end, and then measure
their combined lengths., e will then see whether the measurement
you make of the combined length could somehow have been predicted
from knowing the individual lengths.,

Can you already make such a prediction? Suppose you have a straig
stick four feet long and another one three feet long. Lay them down
end-to-end so that they are exactly in line with one end of one stick
butted tightly against one erd of the other. How far will it be
from the free end of the first stick to the free: end of the second?
You would answer "seven feet", wouldn't you? Where did you get this
prediction of seven feet?

You probably would answer something like this: "If I have four
apples in one pile and three apples in another and then shove the two
piles together into one pile, I know that the total apples in the big
pile is the sum of “-ose in the two piles. The same is true
whether the objects in the pile are apples, or pigs, or teacups, or
cuckoo-clocks. Why shouldn't it be true of feet as well?"

But there is something very doubtful about this argument. It is
true that combining a pile of three objects with a pile of four
objects gives a pile of seven objects, no matter what kind of individuali
objects you talk about. In fact, it is true not only of three and four,
but of all osther natural numbers as well. If there are A objects in
one pile and B objects in the other pile, we say that the number of
objects in the combined pile is "A + B". Here, remember that A and B
are numbers. The symbol "+" and the word "sum" are defined in such
a way that the sum, A + B, is the number of objects in the combined
pile. You have learncdttoaaddnnumbersiinnauwaytthathmakesrthis
always true. But what right have you to think of the "4" in the
quantity "4 feet" as meaning a pile of four feet that can be lumped
together with a pile of three feet to make a pile of seven feet?
The fact thot the method of adding that you learned in arithmetic gives
the right answer when used on numbers by no means gives you the right
to say that it will also work with quantities that are not purely
numbers. C(n the other hand, we don't have the right to say that it
won't work, either! We just don't know. Let's try it!

Procedure: Obtain three sticks whose lengths have already been
measured tc¢ the nearest tenth of a centimeter. Lay them end-to-end in
a straight line. Push them gently against the edge of the ruler to make
sure they are in line. Be sure they are butted tightly against.each
other. Then measure the distance with your ruler from one free
end of the train to the other. Measure the total length the same way
you did in Experiment 1. Enter the result in the seventh column of the
table beiow. Remember to put down the units.

Before disturbing the sticks, write the number marked on your left
hand stick in the first column of the table under the heading "No.";
write the number marked on your middle stick in the third column; and
write the number of your right hand stick in the fifth column. Do
not write anything now in the second, fourth, and sixth columns, under
the heading "Length."”
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Now rearrange the sticks in a different order and measure the
overall length again. Record vour result in the sevenith column of the
table and also record the numbers of the left, middle, and right sticks
in columns 1, 3, and 5. Obtain three new sticks from your teacher and
repeat the work, entering the results again in the proper columns. Make
two measurements of the combined length with the sticks in two different
orders. Thenr repeat the whole thing (two measurements) with a new set
of three sticks.

After you have finished the measurement, ask your teacher to tell
you the known lengths of the sticks. These you can get by giving the ;
number of each stick (you recorded these numbers in the table) and having]
your teacher tell you the known length of the stick with that number :
marked on it. Enter these quantities in their proper places in the
second, fourth, and sixth columns. Don't forget the units.

Your table now has six lines of data, complete except for the last
column. You obtain the last column by adding the individual lengths
of the left, middle, and right sticks. Do this for each line.
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Table I. Measured Total Length of Combined Sticks

- —

| __Left Stick Middle:Stick Right Stick Total Length

No Length No . n (o) _ngg;hﬂﬁgeasured Computed

-l

First
set of
sticlks

— -

Second
set of : .
sticks

Third 3 _ e

set of

sticks . ! :

.

Record your observations from Experiment 2 in this table, as
you make them. When you are ready to measure your first line-up of
sticks, first record the sticks' numbers in ihe first, third, and
fifth columns under "no." Do not record anything yet in columns
2, 4, and 6. Then measure the total length and record it in the
seventh column under "Measured." Don't forget the units. Do not
bother to measure individual sticks.

Next, rearrange the sticks in a different order, recording the
sticks' numbers in the second line of the tuble. Then measure the
combined length and record it in column 7.

Repeat the whole thing, using two other sets of sticks.
Find out from your teacher the known lengths of the sticks you

used, .and record them (units!) in the proper places. Then compute the
total length for each set, entering the sum in the last column.
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Measu
In this experiment you will use what you have learned about signif-
icant figures and about measuring lengths to measure the areas of some
Plastic cards which your teacher will give you. You will have to
remember ¢ome rules about how to compute the areas of rectangles,
triangles, and circles. You will also have to use your ingenuity,

Your teacher will first give you three cards: one rectangle, one
circle, and one triangle. You are to make the necessary measurcments
on these cards that will permit you to computeetheir areas, Be very
careful with the cards. Do not bend or fold them nor allow the edges
to become damaged. Do the rectangle first, then the circle, then the
triangle, as described below.

How might you measure the area of a rectangular card? You do
not have an "area-measurer" that will measure areas as a rTuler measures
lengths. What then can you do? Well, you remember that area is
really a derived quantity, the unit of which is the area covered by
a square that measures 1 cm on each side. You could make for yourself
a little "unit area", which might be a tiny square card measuring
1 rm each way. Te measure the area of a given card you could "lay off"
the unit over the card to be measured, seeing how many times were neceded
to cover it without overlap. You would have troubles fitting the
measuring card (the little unit square) to the big card that you are
measuring if the card were irregular in shape or if the laying off did
not come out even, but there is no problem otherwise.

For instance, suppose the card you wanted to measure looked 1like

7/4

Z
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the one in this picture. You could first lay off the shaded area with
your unit measure, then block number two, then three, etc., with no
overlap ever and no space left over. If the rectangle were exactly

4 units long and 2 units wide, the job could be done as in the picture
with everything coming out even. Since you now have two rows of four
unit squares, you have 2 times 4 unit squares, or 8 units needed to
cover the rectangle. We say that the area of the rectangle is & square
cm. You will notice that the reason we could fit four unit squares

in the length of the rectangle is simply that the rectangle is 4 ~m
long. The reason we could fit exactly two unit squares in the width

is that the rectangle is exactly 2 cm wide. Thus when we multiplied

2 X 4 to get the number of unit squares, we were also multiplying
2 ¢cm by 4 cm to get 8 square centimeters.

o A A o

There arc several matters that would have to be examined more
carefully, however. First, does it make any difference in what order
you lay off the unit squares? Second, is it always true that the
number of square centimeters in a rectangle may be obtained by multi-
Plying the number of centimeters in the length by the number of centi-
meters in the width? PDoes it matter whether you multiply width times

i g T T
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length or length times width? What do you do if the number of times you lay
off the unit square along the length does not come out even? We learn, partly
by experiment and partly by logical thinking, that the area of a rectangle is
always given by multiplying the number of length units in the length of the
rectangle by the number of units in the width. The product of these two num-
bers will be the number of square units in the area, no matter what units are
ased to measure both length and width (as long as they are measured in the
same units). Proving that ""Area equals Length times Width" requires a very
careful examinatioa of principles of geornetry. We will simply accept these
results here and not attempt to prove it beyond using the 2 by 4 diagrams of
blocks above.

When the area is not rectangular, then what do you do? If the shape is
simple enough, geometry can answer this question, too. You probably already
have met formulas for the area of a circle and for the area of a triangle. We
will use these formulas toc without further proof. To help you in case you have
forgotten, here they are:

For a rectangle, area = length x width
For a triangle, area = half of base x altitude
For a circle, area = pi x radius x radius

where pi is 3. 1416, to five significant figures.

Procedure: Take the rectangular card and mcasure both its length and
its width to the nearest tenth of a centimeter. Make a neat sketch of yourx
rectangle to scale in the box labeled "Rectangle' on the data sheet. Draw
«£rows to show the dimensions, writing the length and width that you measured
in the gaps in the arrowg. Dgq it like this:

|

b - A

B —————11.8 a7~
After you have measured lenth and width and recorded them on the sketch,

use the formula to compute tue area of your rectangle and record the area
inside the sketch as in the above sample. Don't forget the rule about
sigrificant figures and remember to put in the units.

Next take the circular card. What information do you nzed to compute
the area? You need the radius, don't you? Now the radius of a circle is the
distance from the center of a circle to its boundary, isn't it? If the center
of your circle is not marked, how can you measure the radius? The radius is
balf the diameter, and the diameter is the greate st distance through the circle.
So, put the zero end of your ruler on the edge (: the circle and be.gure to keep
it there. Then point the other end of the ruler so that the edge of the ruler
passes through the point where you think the center is. MN.ove the ruler back
and forth a little, being sure to keet the zero mark of the ruler on the edge

of the circle. Now watch where the opposite edge of the circle falls on

it i e MR
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the ruler. As you move the ruler back and forth, keeping the zero-mark
on the edgg, the opposite edge of the circle will fall at different
Places on the ruler. The largest reading you can get is the diameter.
Half of this is the radius. Read the diameter to the nearest 0.1
centimeter.

Draw a circle in the box labeled "Circle" on the data sheet. |
inside the circle, write neatly, "Diameter = ", filling in the
blank with the diameter you measured. Then compute the area using
the formula, Area =7Vr2. If 4= 3.1416, how many of these five
significant figures should you use to compute the area? Write the

computed area inside the circle as you did for the rectangle.

Next take the triangular card. To compute its area, you need the
base and the altitude. Any side of the triangle may be called its base;
it doesn't matter which one. Select any side ycu please as base and
Piace the triangle fiat on the table in front of you with your chosen
base nearest you. Now what is the altitude of this triangle? Once a
side is selected as base, the altitude of the triangle is the perpendic-
ular distance from the opposite.corner of the:trianglestotrthe: base.
ilold your ruler so that the zero mark lies at this corner, the rest
of the ruler pointing toward you across the ~ase., Keeping the zero
mark on the cerner, waggle the ruler back and forth until you judge
the ruler to be perpendicular to the base. You can use a corner of
sour rectangular card to help you judge the rigiit angle. Now read
the distance from corner to base. This is the altitude; read it to
the nearest 0.1 centimeter.

In the box on the data sheet labeled "Triangle, first base'",
iiKe a neat scale drawing of your triangle, your chosen base at the
vottom. (It isn't so easy to make a scale drawing of an irregular
“riangle without drawing instruments. Your teacher will show you how
t0 do it using the lines drawn across the corners of your plastic
triangular card.) Using arrows to show dimensions as you did for
the rectangle, show the base and altitude for this triangle. Then using
the formula for the area of a triangle, compute the area of yours

and record it inside the sketch of the triangle. Remember about units
aad significant figures,.

Now choose another side for the base of the triangle and repeat the
measurements of base and altitude for this base. Make a scale drawing
in the box labeled "Triangle, second base", putting in dimensions as
before. Compute the area again, using the new base and altitude. Then
repeat the whole thing once more, using the third side of the triangle
as base.

If you still have time, your teacher may want you to measure the
areas of some more complicated shapes. You will have to use your ingen-
uity in deciding what to measure and h~w to compute the areas of these
cards, You may have this hint: all the shapes are made up of rectangles,
triangles, and circles or parts of circles. Try to discover for your- ,
self how to measure their areas. Make sketches and showy their dimensions

in the unlabeled boxes.
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Experiment 3
Data Sheet

\TS:“_’}/

Make neat scale drawings of your cards in the boxes below

Rectangle # g Circle #

Triangle

First Base Second Base Third Base

If you measure any other cards, make scale drawings of it
(or them) inuthe space below.
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ra Experiment 4
LJ Decimal Estimation

This experiment is intended to give you practice and confidence in reading
a scale by decimal estimation. First obtain a few plastic rods and a centincter
scale from your teacher. Practice measuring these rods by decimal estina-
tion. Measure them exactly as you didin Experiment 1, but instead of calling
the length according to the nearest graduate mark on the ruler, do your best
to estimate how far between the graduaiions it lies. The diagram below may ;
be helpful. The horizontal line is the edge of the ruler; the two vertical marks :
are the 6th and 7th marks between the 18 cm and 19 cm marks; the arrow
represents the end of the thing you are measuring.

If as nearly as you can tell, the record the
end of the ro. lies where the arrow is here, length as:
18. 6 cm 18. 7 cm
7
Right on the six-tenths mark----+ ‘ --=-18, 60 cm ;
.s_.&r‘ ; ;
: "
Just barely past the mark------ ! | --~18.61 cm
A little more past the mark---- ) i (\ ---18.62 cm
Amount from 6 to arrow about y
half as much as arrow to 7- N L - | ---18.63 cm
A little less than halfway«----- Y l V| ---18.64 om
v, \
Right in the middle-~--ceuce-- - i ~ ---18.65 cm
N N R

A little beyond the middle~---- ---18.66 cm

~F
—
l/\‘

~ Amount from 6 to arrow aba t

¢ Y
§ \
twice as much as arrow to 7- { "/ ~--18.67 cm
Not quite as much as the one ¢ N
next below -cccceccanaua-. \L N -~-18,€8 cm

Just barely short of the 7T mark- k\ ~--~18.69 cm

vd
L—.
'y

oy, " 1
(,
ol

Right on the 7 mark----=ceca--- -~-~18.70 cm
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After you have practiced makirg a few me

(maybe ten or so), begin making the measurements you will record.

Measure five different rods, Record the rod
length in .he table on the data sheet. Each

to the nearest 0.0l cm, the last figure being estimated.

At least six, preferably more, people sh
will be passed around so that each student me

and each rod is measured by at least six different students. Do not ask f

anyone else "i'hat did you get?" in order to c
his. Wait until everyone has made all his me
comparing. Then the whole ¢lhss will compare

The teacher will now ask each student wh
out the length he recorded, and will write ea

same will be done for every rod that anyone in the class measured. When

all the measurements for any one rod are list

The average length should be recorded in the data table. Don't forget

about significant figures: the average shoul

nearest 0.01 cm, just like the individual measurements.

Record the average length for each stick

column of the data table. Yas your measurement the same as the average?
Probably not. gompare your result with the average by subtracting
Whichever is smaller from whichever is larger. This difference is called

a deviation: Record the deviations from the

of the data table. If yocur measurement agreed exactly with the average,

you would record your deviation at "0.00 cm,"
say 0.02 cm more than the average, you record
If your measurement was 0.03 cm less than the
tion as "-0.03 cm." Your deviation is minus

than the average; plus, if your measurement i

asurements this way

number and your measured
length should be recorded

ould measure each rod. Rods
asures five different ones,

ompare your measurement with}
asurements before any {
together.

0 measured rod #1 to call
ch value on the board. The

ed, they should be averaged.l

d be rounded off to the

you measured in the third

average in the last column

If your measurement was,
the deviation as "+0.02 cm.'}
average, record your devia-

if your measurement is less
S greater than the average.
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Exveriment 4 ﬂ

— Data Sheet ;
}ﬂ ?
Table I. Measured Lengths of Some Rods - ?

Number Measured Averagre of several You? ?

of Rod Length Measured Lengths Deviation 5

R T R S

Enter the number of each rod you measure in the first codumn and
its length as you measure it to the nearest 0.01 cm in the second
column. Measure five rods (more if you have time}.

After everyone is finished, enter the average of all measurements .
made on each of your rods in column three. Subtract column three from
column two to get the deviation. Record the deviation in the last
column, + if your measurement is greater than the average and - if your
measurement is less than the average.,

Keep these data because you will need them again for Experiment §.
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Experiment 5
Averages and Deviations

This experiment is a kind of guessing game in which you can find out
how good a guesser you or some of your classmates are. Your teacher
will have at hand a jar full of some kind of small uniform objects 1like
ball-bearings, marbles, or dried beans. There will also be eleven small
saucers arranged on a table. They should be arranged something like this;

> empty saucers

One of the students should be elected to do:the. guessing,

Someone should count out exactly 20 balls (or beans or marbles or
whatever) and place them in the top saucer. .The guesser takes the jar
of balls and pours into each saucer what looks to him like 20 balls,
looking at the top saucer for reference as often as he wishes. He must
portion out an estimated 20 balls to each dish in a time limit of two
minutes - ten dishes in all. After having filled all the dishes, he may
use any time remaining to add to any dish that seems to him to be short
of 20, or to remove from any dish any balls that seem to him too many.
He may not count the balls at any time. He may adjust any dish's portion
by adding or removing balls and comparing with the reference dish, but
he may not count the balls.

After the two-minute limit has passed, the balls in each dish should
be counted and listed in the first empty column of Table I on the data '
sheet. The balis are then returned to the jar (except those in the
reference dish), and the-whole game repeated with another student as
guesser. As many guessers should play the game as time permits. The
name of each guesser is entered in one of the boxes just below the top
double line of Table I, at the top of his column of guesses.
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Each column in Table I is now averaged to find the average number
that =2ach player suessed for 29. When you average ten or more numbers
that are close together, it isususually agreed that you are entitled to
one more significant figure in the average than there are in the nRumbc--
being averaged. It is perfectly legitimate, therefore, to enter the
average as "19.7," or "21.3" or whatever it comes to. That is, carry

to onec decimal place the averages listed in the boxes below the bottom
double line of the table.

After you have computed the average for a player, compute the devia-
tion from the average that. he made on each estimate. Then compute his

average deviation and write it:¢in the bottom box of his column. Do this
for each player.

1

You should now return to the results of Experiment 4. There, a
number o0f different people made measurements of the length of a certain §
rod. In Table I of Experiment 4, you listed your own measurement of
the length of, say, rod #l. You also listed the average of the length- M
measurements of this rod as obtained by several people, and the deviation
of your own measarement.from.this average. e will now treat these data
in much the same way as in the guessing game. Use Table II on the
second data sheet for this experiment. -

F

The teacher will call for, say, the results obtained by all students
who measured rod #1 and write these measurements on the board. If you
measured rod #1, copy all these measurements into the first column of
boxes in the table, writing the number of the rod at the head of the

~nlumn. Do the same in other columns of the table for the other rods
you measured.

In the box first below the lower double line in the table, write the:
average of the measurements in the column. Also compute the deviation
of each individual measurement from the average and then calculate

the average deviations, writing this value in the sccond box be low the
doublc line.
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= Experiment
J Data Sheet #1

Table I. Estimation of Numbers

Number of balls guessed by

Dish

(U= ([m N

104 #7:

Average

Average
Deviation

Write in the box at the top of each column the name of a guesser
and in the column below his name, the actual number of balls he guessed
for each dish. Calculate his average guess and enter that in his column
in the box on the line labelad "Average." 1In the box below that, enter
the average deviation of his guesses. Do the same for each guesser.
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Experiment 5
Data Sheet #2

The data on this page come from Experiment 4.

Table II. Measurements of Rod Lengths

Measured Lengths of Rod Number

No. of Rod ~>

[

List here i
the results E
obtained by :
all stu4:.-
dents
measuring
the rod

Average
Length

Average
Deviation

The form of this Table is much like that of Table I. 1In the
top box of each column, write the number of a rod that you measured
in Experiment 4. In the boxes beneath this number, write the lengths
of this rod as measured by all the other pecople who measured it. Write
the average of these in the box second from the bottom and the
average deviation in the bottom¢box.
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Experiment 6
Determining \r?.- by Measurement

In this experiment you will make some measureraents that will allow you
to find the value of a very important absolute constant. This constant is a nm-
ber (without units), yet you would never meet it if the only numbers you cvcr
met were the numbers used in counting, or the numbers you get by adding,
multiplying, dividing, or subtracting the numbers used in counting. It thercfoxe

has to be determined by measuring or by some other peculiear way. We will
measure it.

Procedure: Your teacher will supply you with several metal or plastic
squares of different sizes. Take one of these squares and measure very
carefully the length of its edge. Measure to the nearest 0.0l cm and record
the edge-length in Table I. Also measure the diagonal of the same square to
the nearest 0. 01 cm and record it in the table. When you measure the diagonal,
ke sure you measure from the very point of one corner to the very point of the
oppesite one. If the points have been damaged by mashing, you cannot use
that square. Make the same measurements for at least six squares of differen
sizes, entering the edge and diagonal that you measure for each square on a
different line of the table.

After you have made all your measurements, put the squares away and
work out the last column of the table. Do this by taking the measured valu-
of the diagonal of your first square and dividing it by the measureA value c’
the edge. The quotient (or ratio) should be entered on the first line in thz
last column. Then calculate the ratio for each line in the table. How o Bk
significant figures are you entitied to in the ratios? Is there anything pcoul’~
that you notice about the ratio, '"diagonal divided by edge, " for different -
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Experiment 6
Data Sheet

Table I. Measured Values of the
Edge~Lengths and Diagonals of Some Squares

. . —_ —_

Square Edge of - Diapgonal i g

cil\Io S uaga m | > Ratio = 22
k':-.—.:;:.‘:-.-'.:".:'r‘",:;.g?, . __S - cm - ____}_Ed&p -
,_....._.......__....-(_..._.. O U - — PSSR ————— |
et TIPS S S S —
e e e e e e . e NS S —n e
S S - —_— ——— —_

F— .__~+._-_

Average of Observed Ratios

Computed Value of ﬁ:

Enter your measurements from Expzriment 6 in the table above, first t
three columns. After you have finished measuring, work out the ratio
'dicgonal divided by edge'' for each line of the table and record the ratio in
the last column. Find the average of these ratics and record the average, too.

Finally, work out J2, correct to five significant figures, and place this
value in the box at the lower right.
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Experiment 7
Calculating Y2 by Continued Fractions

A fraction like the big complicated one on the next page is called a
"continued fraction.'' The thing that makes it a continued (instead of an ordinary)
fraction is that the denominator is a fraction whose denominator is itself a
fraction whose denominator is itself a fraction whose denominator is itself a
fraction, and so on and on. Of course, you can't spend forever going ''on and
on, '' but you can get as close as you please to the right result if you go far
enough. You will get ./2 correct to five decimal places by tuking seven 2's
in the big fraction as written on the worksheet.

The secret of harnessing this fraction is to start at the very end. Notice
the innermost circle drawn around 51" . Since Zé is 2. 5, you can easily work
out '/2.5 and show that it equals 0.40000. There fore the innermost circled
fraction is 0.40000. This is already marked for you by the horizontal line
pointing to the innermost circle.

The next innermost circle then really says —7_—;7',‘.‘41“57,‘50 Work out ‘/2,174
to five decimal places. Y should get 0.41667. What will you then write at
the second horizontal line for the value of the fraction in the aext innermost
circle? Write it.

Then the third innermost fraction is 73 C,,'L,g,(,g 7 which you can work
out s dividing 2,41667 into 1. This result you put on the third horizontal
line. Now you should be able to finish it by yourself. Write each successive
partial result on successive horizontal lines.

Each time you work out the value of one of these fractions as you go along,
you could step and add the result to 1 and the sum would then be approximately
J2. But the more fractions you include, the closer you get to exactly /2,
though you never get it exactly.

The correct value of 2 is 1.41421 tc five decimal places. Notice that
the very first fraction wonuid have given you 1. 40000, correct to one decimal
place but too small. The second fraction would have given you 1. 41667,
correct to two decimal places, but too large * - 256 units in the fifth decimal
place. The next fraction you will find is too small by a smaller error and
the next too large by a still smaller error. The results, in other wordgs
swing back and forth past the ''truth, " but get steadily closer. For six fractions,
the error is only one in the fifth decimal place.

You might find it interesting to make a graph showing how the successive
results zero-in toward the right value. The one on the worksheet is started for
you. You finish it. On this graph you plot the errors made by stopping the cal-
culation after only one fraction, two fractions, three fractions, etc. If the
calculated value is too high (i.e., greater than 1. 41421), plot the error upwar d;
if too low, plot it downward. The "‘error' is calculated by finding the difference
between your calculated value to five decimal piaces for JZ. and its actual
value of 1. 41421, dropping the decimal point.




Experiment 7
Data Sheet

~

Successive Values of the Continued Fraction

—

; - T \ ..
/ 7/ Ve ’/‘/——.~\-' T \ \\ / 0. 40000

i/ =
I ’, N'”‘.\ \-, \Y’/ﬁ (R
! Z Y , 0. 41667
— N\ X 1
’, - :
. /
e ™

- 1300

Too
High 1200

300 No. of
4+ Fractions
{
Error % / i \; t i i
1.100
Too
200
Low T

Too low to
1 300 [ g0 on page
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Experiment 8
Measurement of the Constant,]T

The purpose of this experiment is to determine by measurernent the
value of a very important constant called 77 . The constant may be defined
as the ratio, circumference divided by the diameter, of a circle. What
does this definition suggest that you do in order to measure the value of Tv 2

Let's do it.

Proce. 1re: Your teacher will furnish you with some metal or plastic
circular discs of various sizes. You are to measure the diameter and the
circumference of each circle. In Experiment 3, you learned one way to measure
the diameter of a circle, but this method is not good enough for the present
experiment. Your teacher will .demonstrate to you a better method -~ the
‘'caliper'' method -- for measuring the diameter of a circle, Take one circle
and measure its diameter to the nearest 0.0l cm. Enter the value in Table I
on the data sheet.

L)

To measure the circumference of the disc, get a2 narrow strip of thin
strong paper and an ordinary pin. Wrap the strip of paper carefully -- straight
and tight -- around the edge of the disc so that the paper makes a kind of raised
rim around the disc. Be sure that the paper overlaps itself a little so that
there is a region where the paper is double thick. Hold the disc with the
paper drawn very tight and prick the paper with a pin somewhere through the
double thickness. Both thicknesses must be pricked. Now unwrap the paper
strip and pencil a little circle around each of the two pin pricks. (The only
purpose of the penciled circleis to assure that you don't lose sight of the pin
pricks. )

Do you see that the distance between pinpricks after the paper strip is
stretched out equals the circumference of thedisc? Measure the distance
between rin pricks to the nearesi 0. 01 cm and record the measurement in
Table I. Cross out the two penciled circles on the paper strip to make sure
you don't confuse them with later measurements and then repeat the whole
process with other discs. Measure at least six discs this way, recording

diameters and circumferences in the table, each disc on a different line of
the table,

Next you are to repeat the measurements you made above but this time
make the measurements in units other than metric units (centimeters). First,
select any one of the discs you measured and recorded in Table I and prepare
to make the measurements again. There is little point in repeating the mea-
surements in centimeters, however, so simply copy on the first line of Table
II the data you recorded for this disc in Table I. Then repeat the measurements
of diameter and circumference on the same disc using a ruler graduated in
inches. Record these measurements in the second line of Table II. Make this
and the next measurement on only one (the same)disc.




T S N v = e - I e =%

“22-

Finally, make the measurements using a ruler of your own manufacture.
Take a small piece of paper with a straight edge and make two perpendicular
marks at the edge like the two marks at the edge of the page after the end of the
line you are now reading. It doesn't really matter how far apart they are, but
make them about the width of one of your fingers. This will be your unit of
measurement; since it is not an inch or a centimeter, you will have to make
up your own name for it -- say "widget. ' Write the name you give the unit in
the third line of Table II, first column under '""Measured in."" Now make 2
ruler graduated in widgets (or whatever name you choose). Do this by taking
a strip of cardboard about ore foot long and transfer to the edge of the strip,
time after time, marks that are exactly one widget apart, using the original
widget you marked off on the small piece of paper. Use this ruler for measuring
the diameter and circumference again of the same disc, recording these data
on the third line of Table II. Your teacher will show you how to estimate
fractions of a widget.

Now work out the ratio, circumference divided by diameter, for this disc
for the three units of measurement you used, recording the ratios in the last
columr of Table II.
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Experiment 8
_ Data Sheet
)’)
’ Table I
Measurement of the Constant, 77
No, of Diameter Circumference | Circumference
Disc _ cm cm | Diameter
| y
- Average
)

.
»o Lo a PN
giycumnis=

Enter in the table above your measurements of the diameters and

ferences for the six discs you measured. Divided each circumference by its
diameter and record the ratio in the last column. Calculate the average of your
fix ratios and enter the average in the bottom box.

Table II
Circumference/Diameter Ratio in Non-Metric Units

Measured in Circumference Diameter

Centimeters

Inches

Fill out this table in the same way as Table I. The first line will be the
same as some line of Table I. The second line should have the same measure~-
ments made in inches, and the third line in some other unit of your own inven-

tion.
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Experiment 9
Calculation of TV

From 4= 4{1/2 +1/3-1/15+1/35-1/63 + etc.]

The denominators of the fractions after 1/2 in the parentheses are each
''one less than the square of the even numbers in order.'' In the first column
below, fill in the even numbers up to 32. In the second column, write the
squares of these numbers. In the third column, write one less than the squares,
and in the fourth column write the fraction having that numbers as denominator
and 1 as numerator. Work out the decimal value of each of these fractions by
dividing the denominator into 1 to four decimal places, and write this decimal
number in the fifth column. In the next column tell whether this term is to be
added or subtracted. Look at the series at the top of the page and you will

see that the second fraction is to be addec, the third subtracted, and they
alternate +-+- ever after.,

In the next to last column, write the partial sums. Start with 0. 5000, add
the 0.3333 to it to get 0, 8333. Next you subtract the 0. 0667 appearing in
column 5 from 0. 8333 and write the difference, 0. 7666, in the partial sum
column under 0. 8333, Finally, multiply the partial sum by 4 to get an
approximation o7 .

Some of the numbers are already filled in to get you startad. When you

are finished, notice how the number s in the last column swing back and forth

around || , always getting closer.
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, Experiment 9 f
- Worksheet :

| Calculation of 1|
Even | Their One 1 Decimal + Partial 4 x
Nos. Squares| Less | One Less Value jor -| Sum Sum
Fimat.term = 1/2 > 0.5000 | 2.0000
= Wt T 2L - 20 .
2 4 3 1/3 0. 3333 + 0.8333 3.3332
4 16 15 1/15 0. 0667 - 0. 7666 3. 0664
6 36 35 1/35 +
|
)

A 32

1024

1023

1/1023

0.0010

5
n - AT S L S IR D B e TR e e BT e s e T i D T A S
A FuiText provided by Eric
3
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Experiment 10

Height and Distance along a Ramp

As you walk up a ramp, you know that the height you stand above ground
level at any moment ig a function of how far along the ramp you have walked. T
The purpose of the present experiment is to help solidify in your mind the idea
of numerical relationships existing between two quantities one of which is a
function of the other. By carrying out the experiment with two ramps of different
characteyr, we will try to distinguish between '""known function' and "unknown
function. "

Procedure: Your teacher will supply you with two plastic "ramps'' -=
really strips of plastic =~ one straight and one crooked. Unlike the kind of
ramp you usually see, however, the "walkeon" part of these ramps is to be
regarded ag the edge of the strip, not the flat side. (This makes the ramp
a little troublesome to walk on, but you are not going to walk on it anyway. )
By setting up the strip so that it is inclined to the table top, you have a model
of a real ramp on wkich you can make some measurements. You will also be

supplied with & breadboard, a dowel post, a clothespin clamp, a ruler, a pro-
tractor, and a dowel pin,

Your teacher will set up a sample apparatus to show you how to build
your own. Use the straight ramp first. Everyone in the class should have his
ramp inclined at a different angle, ranging from a gentle slope of perhaps 10°
to a steep slope of perhaps 750 or so. Measure the angle of your ramp with a

protractor (to the nearest degree is close enough) and enter the value in the box
just under the title of Table I of the data sheet.

Now take a pencil and make a mark at the upper edge of the ramp exactly ]
at the point where the upper edge crosses the face of the breadboard. Make a ]
about 8 or 10 other marks along the length of the ramp between the first mark
and the highest free point of the ramp. It doesn't matter exactly where you
choose to place these marks: try to space them out to cover the whole free
length of the ramp, but do not put them at carefully measured positions.
Mentally number these marks from number 1 at the bottom of the ramp (whe re
it crosses the face of the breadboard) consecutively upward along the ramp.
Write these numbers in the first column of Tabie I. You are now ready to
make your measurements. Check the ramp angle by protractor to make sure
it hasn't moved.

Measure the hei ght above the face of the breadboard of each mark on the
ramp. Mark number 1 was made right at the point where the ramp crosses the
breadboard, so its height is obviously zero. This is already recorded for you in
the second column of Table I. Measure the heights of each of the other points in
order. You can do this with a ruler, placing it sc that the zero mark of the ruler
is right at the ramp mark and nllowing the ruler to hang downward from there.
You must make sure that the ruler is perpendicular to the breadboard at the point
where they cross. The square corner of a file card (or anything similar) will
help assure that you get them perpendicular. The height is given by the point on
the ruler where it crosses the face of the breadboard. Read it to the nearest
0.01 cm and enter the readings immediately in column 2 of the Table. Do this
for each mark you made on the ramp.
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Now unclamp the ramp and measure the "dlstance atong the ramp' of each
mark. To do this, notice that the "bottom of the ramp'' was the point where

it crossed the breadboard, mark number 1. Its distance from the bottom of
course is zero, and this value is already entered for you in column three of
the table. The 'distance along the ramp'' of any other mark is its distance
from mark number 1. Measure each of these distances to 0. 01 ¢cm and record
them in the third column. You are now finished with the measur ements for the
straight ramp. Check the angle once again with the protractor to make sure
the ramp hasn't moved.

Repeat the entire procedure for the curved ramp. This time it is not
necessary to measure the angle of the ramp, but repeat all other measurements
exactly as for the straight ramp, Record the measurements in Table II. To
measure ''distances along the ramp' this time, you may find it convenient to
lay a narrow strip of paper along the ramp so that the paper bends with the
ramp, mark the paper where the ramp marks are, and then straighten the
paper strip and measure the marks on it.

Finally, calculate " (height above ground) divided by (distance along ramp)"
for each line of the two tables. You will notice that the first line of each table
requires tlat you divide zero by zero. Leave this division unperformed for
the time being.

completing this experimeni (that is, the second work sheet), you
classroom discussion.

o0

On the second work sheet, make a graph by plotting ''distances along the
ramp'' in the horizontal direction and '"height above ground'' on the vertical
axis. Marks for each cm of distance are already marked on the axss for you.
Do this first for the data of Table I, drawing a tiny circle around each plotted
point. Then, lightly in pencil, draw the best line you can through the plotted
points. On the same axes, do the same for the crocoked ramp, data of Table II.

In the first box at the botiom of work sheet #2, enter the value calcuiaied .
from H = kD where D = 15, 00 cm and k is the average ratio from Table I. In the
second box, record the value of H when D = 15,00 cm as determined from the
graph for the straight ramp, after itis redrawn.
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Experiment 10
Data Sheet #1
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Table 1

Height and Distance along a Straight Ramp

Angle between ramp and ''ground" = [‘_ o
Mark| Height above Distance along Ratio = Height
# ground, cm ramp, cm Distance
1 0. 00 0. 00
2
3
LAvergge Ratio
Table II
Height and Distance along a Crooked Ramp
i
Marl«‘. Height above Distance along Ratio = I:Ie:.ght
# ground, cm ramp, cm Distance
H C. ¢80 0, 00
2
3

Average Ratio
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e Experiment 10
) Work sheet #2

Figure 1

Height and Distance along a Ramp,

10,

Height B
in

cm
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J
10 1% 20
Distance along ramp, cm

Plot the data from both tables of the preceding data sheet on the graph
above. Label the two lines one "straight ramp'' and one ""crooked ramp, "

For the straight ramp:

Calculated value of H for D= 15,00 cm = - cm

Graphical value of H for D = 15.00 cm = cm

)
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Experiment 11
Hooke's Law

We have several times referred to the functional relationship that we would
expect to exist between the weight that is hung on a vertical spring and the
amount by which the length of the spring increases. In this experiment you
will examine the nature of this functional relationship. Be sure you understand
exactly what it is that we are going to examine. If you hang up a spring and then
hang a weight on its lower end, the length will increase. How much will it
increase? Well, that depends upon how much weight you attach. The more
weight you attach, the more the spring will extend. There is a functional
relationship between "extension of spring'' and ''weight attached,' The exten-
sion of the spring is a function of the weight that is added; that is, we will
think of the added weight as the independent variable and the increase in length
of the spring as the dependent variable, because the increase in length depends
on the weight added. (We mean by "increase in length', not the actual length of
the spring, but how much the actual length excceds the length when no weight
is attached.)

Procedure:” You will be supplied with a dowel=-post, dowel=pin, bread-
board, 20 ball bearings, a piece of scotch tape, a ruler, and a spring. Set
up the breadboard, post, pin, and ruler like the model your teacher has already
set up. Use small pieces of scotch tape to attach the ruler {zero end at the top)
toc the vertical post, but be sure the ruler is securely held in place. Hang one
end-hook of the spring over the dowel-pin, attach a two-inch length of scotch
tape to the lower hook so that the open sticky surface hangs downward. Be sure
the tape is securely attached. Record the number of your spring at the top
left of Table I, where it says "Spring No. "

Now sight horizontally across the top of the upper hook to the ruler, and
take a reading of the position of the upper hook as shown by the ruler. Make
all readings of the ruler to the nearest 0. 01 cm. Record this just below ''Spring
No." in Table I where it says ""Pos'n of upper hook.' Then sight horizontally
across the bottom of the lower hook to the ruler and read its position as shown
by the ruler. Record this reading on the first line of the table where the entries
'""O" balls and '"O, OO' grams have already been made. Now carefully attach
a ball bearing to the scotch tape, let the spring come to rest, and read again
the position of the bottomof the lower hook. Record this reading on the second
line of the table apposite ''1" ball. Now take about ten more readings by
attaching successively more balls to the tape and each time reading the position
of the bottom of the lower hook, the last reading with 20 balls, Each time,
record in the first column the total number of balls sticking to the tape, and in
the third column the position of the bottom of the lower houk,

In making readings on the ruler of the position of the hook, it is very
important that you sight horizontally across the hook to the ruler. Do you see
why ?
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After you have completed your readings on this spring, turn it in to your
teacher and obtain o second, stiffer spring., Repeat the whole experiment with
the second spring, recording the readings in Table II.

Now {ill in the second column of the table, the weights successively
hung on the spring. The baill bearings are all alike in weight, Your teacher
will tell you this weight, which you should record in the upper left box of each
table. You now can calculate the load hung on the spring by multiplying the
weight of one ball by the number of balls attached. Record these loads in the
third column of the table.

Next calculate the length of the spring for each load you applied. You have
the ruler-position of the top of the upper hook and of the bottom of the lower
kook, How would you calculate the length of the spring from these data? Notice
that the position of the upper hook never changes, so it need be read only once.
Record your calculated values of ""Length of Spring'' in the fourth column,

Next calculate the spring extension for each load. To do this, remeinber
what is meant by '""extension. ' The extension of the spring is the amount by -
which the length of the spring under load exceeds the length under no load. The
first entry in column four, is the unloaded length, Other entries in column four
are the loaded lengths. Do you see how to calculate the extension now for each di
different load? Do so. The extension for zero load of course is zero, and this
value is already ‘entered for you.

Next, calculate the ratio, '"Extensioa/l.cad", for each line of the table.

Mazke all these calculations for both tables.

Finally makc a graph of extension (vertically) against load (horizontally)
for both springs. This grz>h is on the second worksheet.
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Weight of
one ball

Spring No.

Position of upper hook

0 0. 00

.._=___grams cm Extension
|
No. .of Weight||Position of Length of Extensionft - Load
Balls g ilower hook, cm Spring, cm JF cm B g_r/ cm 4&




SRR SR L dha S TR TR A e R R A S S SO B

-33-

Experiment 11
Work Sheet #2

Spring Extension vs. Weight Load
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Experiment 12

Weight as a Function of Length |
for Uniform Sticks

In this experiment, we will investigate the nature of the function conznzc-
ting the weight of an aluminum rod of fixed diameter but varying length with
the weight of the rod. The two variables between which we are seeking a
functional relationship are the weight of the rod and its length.

Procedure: Set up the breadboard with dowel post, pin, and ruler
exactly as in Experiment 11. Use the same spring that you used before, and
record its spring constant in the space provided near the bottom of the data
sheet. You will be furnished with a short piece of thread and a set of aluminum ﬁ
rods all of the same diameter (0. 635 crn). Fashion a sling out of the thread so ;
that the rods may be hung one at a time from the end of the spring.

Make a reading ~f the bottom of the lower hook (nearest 0. 01 cm) with no
load hanging on the spring, and record this reading in the space provided near
the bottom of the data sheet. Then hang one of the aluminum rods on the spring,
allow it to come to rest, and read again the position of the hook. Make all
readings to the nearest 0. 01 cm. Record this reading in the third column of
Table I of the data sheet. Then measure the length of the rod, also to the
b nearest 0. 01 cm, and record this reading in the second column of the table.

Record the number of the rod in the first column, Repeat these measurements
for at least 8 rods of the same diameter.

You now have the position of the bottom of the spring when it is uncxtended :
(in the box at the bottom 1left of the data sheet) and the position when it is 4
extended (third column). How can you calculate the extensions? Do so, and ”
enter them in the fourth column of the table. Using the spring constant yo:
can now calculate the weights that must have caused these extensions. Calcu-
late these weights and enter them in the fifth column. Then calculate the
ratio of weight divided by length and write the calculated ratios in the last
column., I

When you have completed all measurements on the rods 0. 635 cm in
diameter, obtdin another set measuring 0. 318 cm in diameter and repeat the :
whole experiment with them, recording your data in Table II.

by ERIC e
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v Experiment 12
Data Sheet #1

Table I

Lengths and Weights of Some Aluminum Rods
(0. 635 cm diameter)

—— - et - -

Rod Length Bottom of Extension rWeight
No. cm Spring, cm cm grams

Table II

(0. 318 cm diameter)

Weight
Rod Length Bottom of] Extension Weight Length

| No., cm Spring, cm cm gramsg ggcm ]

Unextended Position

of Spring End cm

|
Spring Constant i cm/
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Experiment 12
Work Sheet #2

Weight vs. Length for Aluminum
Rods of Different Diameters

20 —

151

Weight

10

%

N

Length, cm
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Experiment 13

Weight as 2 Function of Diameter
for Cylinders of Fixed Length

The purpose of this experiment is to investigate the functional relation-
ship between the weight of an aluminum cylinder of fixed length and its dia-
meter. You will determine the weight uf each one of a set of cylinders all
having a length of 2. 54 cm but of different diameters, and then seek a func-
tional relationship between weight and diameter.

Procedure: Set up the apparatus exactly as in Experiment 12. Be sure
you use a spring whose constant is known, recording the value of the constant
in the appropriate place on the data sheet. Prepare a sling of thread that
will allow you to hang each cylinder individually. Read the position of the
bottom of the hook when no load hangs on the spring, and record the reading
on the data sheet,

You will be supplied with a set of aluminum cylinders, all 2. 54 cm long,
but of varying diameters . Measure the diameter of each cylinder (use the
caliper method) to 0.01 cm and also the point to which it extends the spring
when hung upon it. Record both data in the proper columns of Table I. Do
this for at least 8 cylinders, being sure that they are all different in diameter.

After you have completed your measurements, compute the ratio of
weight/diameter for each line of Table I, entering the ratios in the second=-
last column of the table. Leave the last two columns blank for the time being.

Now make a graph of weight versus diameter at the bottom of the data
sheet, plotting diameter horizontally and weight vertically.
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Table I

Weights and Diameters for Some Aluminum Cylinders

. el g P T T R T R T T T L T T N T
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R (2. 54 cm long) .
Cy]j Dia| Bottom of“J Extension] Weight, Weight a'ri
cm/| Spring, c cm grams Diam, ? |
S S , . -
il ;
+ i r
i
i
Unextended Position
of Spring End cm Spring Constant

Weight versus Diameter for Aluminum

Cylinders of Fixed Length

20 [~

15 L

10 T




-39~

Experiment 14

Weight as a Function of Diameter
for Aluminum Spheres

In this experiment you will try to find a functional relationship between
the weight of an aluminum sphere and its diameter. Be sure you see exactly
what the two variables are, between which we are seeking a functional relation

Procedure: The set up is exactly like that in Experiment 13 except
that you will probably find it more  nvenient to hang the spheres from the
spring by using scotch tape instead of a sling made from thread. Ent=>r on

the data sheet the spring constant for yourcalibrated spring and the initial
unloaded position of the bottom of the spring.

You will be provided with a set of 8 aluminum spheres of different
diameters. Take one of these spheres and weigh it by hanging it from the
bottom of your spring and reading the position of the bottom of the hook. Enter
this reading in the second column of Table I on the data sheet. Then use the
caliper method to determine the diameter of the ball, recording this measure-
ment to the nearest 0. 01 cm in column one of the table. Repeat the measure-
ment for ali 8 of the spheres provided. Calculate the weight of each ball by
computirg first the extension (column 3) and then the weight (column 4) in the
usual way. Next compute the ratio of weight/diameter and enter these values

in column 5. Plot weight vs. diameter on the graph at the bottomotf the data
sheet.

Now, before doing anything more with the data from this experiment, we
will have some classroom discussion.
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Experiment 14
Data Sheet

Table I

Weight vs., Diameter for Aluminum Spheres

Diam., Sp. Pos, | Extensiony Weight | Wt/Ext
| cm cm cm g g/em L o
Lo b~ e - e e e «r—- - .
< o e e e e .- B T PSRy SRS
— ] - —1
= ct o o e ——— [OUSUIS ) U Y, R SIS SHPUOPS | [ JE—
)

Unextended Position ]
of Spring End cm| Spring constant cm/g

20

15 -
Weight -
grams ~

10 —

o/
.

0.0 0.5 1,0 1.5
~Diameter, cm_
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Experiment 15

Density of Aluminum

You know from your own experience that larger things are generally
heavier than smaller things. Not always, of course. A small piece of lead
may be heavier than quite a large balloon, for instance. But if the two things
! under comparison are made of the same material, the ststement is generally
| true that the larger the object, the more it weighs. You would predict that
the weight of a piece of iron is an increasing function of its size,

But what do we mean by ''size''? Is a niece of iron wire 10 cm long and
a hair's thinkness in diameter bigger than a ball of iron 9 cm in diameter?
Is the lump of brass in a solid ball 3 inches in diameter smaller than that in
a thin hollow brass ball 4 inches in diameter? Is a2 matchbox measuring
2 cm by 5 cm by 3 cm bigger or smaller than a cube measuring 3 cm each way?
Is a size 8 shoe bigger than a size 7 hat? You notice that we use the word
''size'' rather imprecisely in our ordinary speech. But we cannot afford such
imprecision when we begin dealing with the numezrical aspects of quantity.

r) We must use words so that none of the questions ‘~ the preceding para-

- graph is arguable. We will do this by avoiding the wc.. 'size'" altogether and
use the word "'volume' in its place. If you consider e .h of the above questions
! as dealing with volumes, each of them has a very definite answer (though of
course you may not offhand know the answer),

The pwpose of this experiment is to investigate the nature of the function
involved when you say '"The weight of a lump of alurninu.n is an increasing func-
tion of the vplume of the lump. "

Procedure: The set up for this experiment is exactly like that for
Experiment 14, Again, you will probably find it more convenient to use scotch
tape than a sling of thread. - Record the spring constant and the initial reading
of the unextended spring in their proper places.

You will be furnished eight small blocks of aluminum of various shapes
and sizes. Each will be either a rectangular block or e circular cylinder. You
are to determine the weight and volume of each piece.

To find the volume of a rectangular block, measure the length, width,
and height, each to 0.0} cm. Record the number of the block in the first
column of Table I of the data sheet and in the second column record the shape
and dimensions like this:

Rectangular Block
1,76 x 3.41 x 1. 32 cm
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For the cylindrical blocks, you must measure the height of the cylinder and
the diameter. Measure the latter by the caliper method, length and diameter
both to 0. 01 cm, Record the numbers of the block in the first column and a
description of its shape and size in the second column like this:

Cylinder
Diameter = 2. 41 cm
Height = 3,66 cm

After you have measured and recorded the dimensions of you first block,
stick it to the scotch tape hanging from your spring, allow the spring to come
to rest, and measure the position of the bottom of the lower hook. Record this
measurement irn. the fourth column of the data table.

Repeat these measurements for eight different blocks, about half rectang-
ular and half cylindrical.

Now compute the volumes of your blocks. For a rectangular block, the
volume is the product of length times width times height. For a cylindrical
block, the volume is 1/4 x77 x diameter x diameter x height. In what units are
these volumes and how many significant figures are you entitled to? Record the
volumes in the third column,

Compute the weight of each block from the spring extension and spring
constant in the usual way, and enter the computed weights in the sixth column
of the table. Compute the ratio of weight/volume and record the ratios in the
last column, When you are finished make a graph of weight versus volume on
the seccond work sheet, T
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Experiment 15
Data Sheet #1

Takble I

Weights and Sizes of Some Aluminum Blocks

- l

Blk, Shape and Volume Sp. Pos, Extens, | Weight Ratio
No. Dimensions cm3 or cc cm cm grams g/cc
T |
|
}
| |
|
|
}
Average Density of Aluminum = l glcc

Unextended Position of Spring End:

Spring constant =
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Experiment 15
) Graph Sheet #2
Weight ve. Volume for Aluminum
‘: 20
‘ 151
) grams |
10
) 5 -
|
s L { z | j
. v !
0 2 4 6
Volume, cc
9

10
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Experiment 16
The Densities of Various Solids

In this experiment, you will obtain data from which you will be able to
compute the density of each of several materials othe r than aluminum. The
purpose of Experiment 15 was to establish that weight is 1._'oportional to volume,
and to do so it was necessary to measure a relatively large number of blocks to
establish that the ratio of weight/volume is constant. Having done this once
(for aluminum) there is little point in making so many measurements again just
to find one density. Hence, to save time and effort in the present experiment,
you will make measurements on only two blocks of each material.

Procedure: The setup is identical with that of Experiment 15. Make the
measurements in the same way and record them in the same way on the data
sheet, | |

With cne exception! Up to this point you have been using the spring con-
stant in cm/gm and dividing the extension (cm) by the constant (cm/ gm) to get
the weight (gm). (Can you still show that dividing cm by cm/gm gives gm?)

You know that dividing by a number is the same as multiplying by its reciprocal.
Most people find it easier to multiply than divide. Has it occurr=d to you that
you can make the work a little easier by using the spring constaw* in gm/cm, and
then multiply the extension by the new constant to get the weight/ The new
spring constant in gm/cm is, of course, the reciprocal of the old one in cm/gm.,
You will have to divide the old constant into 1 (How many significant figures

in this 1?), but after that one division, all the rest will be multiplying.

You will be furnished with two blocks each of wood, plastic, brass, steel,
and lead. Be very careful of the blocks (especially the lead ones) so that the
edges remain sharp and easily measured -- mashed edges cannot be measured
accurately. The name of each material is already entered in the first column;
be sure you put the data for each measurement on a line opposite the appropri-
ate name. Calculate the densities for each line and put .in the last column
the average of the two measurements you made for each material.

Make graphs of wei_*t vs. volume for all five materials. Put all five
curves on the same graph on the second work sheet. You have three points to
outline the curve for each material: the two measured points plus the origin,
Is this enough, or more than enough, to show where the straight line for that
material lies?

A AR = fo povi—a
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Experiment 16
Data Sheet #1
Table I,

Densities of Various Solids’

Shape and Volame | Sp. Pos| Exten. Weight | Density Average
Material| Dimensions cc__ | cm cm g glce _ {Densg/cc
- Wood
Wood |~
Plastic
Plastic )
Brass
Brass
Steele
Steele
Lead
Lead
)}
Unextended position of Spring End cm

Spring Constant 1 glem
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, Experiment 16
i Graph Sheet #2 ;

-

Weight vs. Volume for Various Solids
_ , (
B ]

20 _L

Weight
grams

10 +

e M
"\\’_‘(.*“

1 i ) 4 ! i S ] ] i i ]
5 10 15

Volume, cc

Plot the points and draw graphs, one for each of the materials whose

densities you measured. Label each curve with the name of the material it |
represents. ]

4
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Experiment 17

Identifi ation of Unknown Solids by Density

This experiment tries to show you how a knowledge of the properties of
materials makes it possible for you to identify an unknown material. The idea
is not new to you: you recognize glass from iron, water from salt, waxed
paper from aluminum foil, and hamburger from pickles by an automatic recog-
nition of the differences in their properties. If you were given some granulated
sugar and some granulated iron, you could tell the difference right away by the
color. Suppose you had sugar and salt; color doesn't help you decide, but
taste will. Suppose you had granulated sand and sugar, and you were afraid to
decide which was which by tasting. How could you safely decide? Suppose you
had sand and granulated marble, neither of which will dissolve in water? This
is leas easy, but it happens that marble will dissolve in vinegar but sand will
not. One could go on like this testing property after property until some prop-
erty was found where the two disagreed. This experiment will use den sity only.

You will be furnished with 7 blocks of material; one of each of the
materials used in Experiment 16 and one that is none of these. They are all
painted black, however, so that it may not be easy to teli them apart at sight,
Determine the density of each block by the same procedure u used in
Experiment 16. One determination for each is enough. Before you do this,
you should use a little educated guesswork to try to decide. Which ones feel

cold to the touch? Can you tell anything fromthe surface appearance? What ;
about the heft? Do NOT attempt to scratch any of them: nbot only is this cheatmg,
but it would also damage some of the blocks!

Make up you own data sheet on the next page. Include in it the number
of the block and the material you judge it to be after measuring its density.
Also be sure to record the no-lcad spring extensicn and the spring constant
in gm/cm, Your teacher will identify the materials for you after you have made
your: own decision.
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Ex; eriment 18

The Densities of Some Liquids

To calculate the density of a material, you need have simply the weight
and the volum of a sample of the material. When the sample is in the form of
a simple geometric solid, it is a simple matter to measure its dimensions, and
compute its volume, then weigh it, then compute the ratio, weight/volume.
With liquids, however, it is less simrnle to make the necessary measurements,
For one thing, you have to have the liquid in some kind of container when you
weigh it, and then you are bothered by the weight of the container. For another
thing, it is difficult to measure the dimensions of a piece of liquid, because
the sample won't hold still for you while you meacure it. In this experiment,
nevertheless, you will determine the densities of several liquids.

Procedure: Set up a calibrated spring and post again as a weighing
instrument. You will be furnished a plastic vial with cap. Tie a short piece
of thread in the form of a sling (similar to the handle of a bucket) securely to
the vial so that it may be hung thereby from the bottom of the spring. Be sure
the thread is tied low enough below the rim so the cap can be fitted to the vial,
but not so low that the vial may tip over whewn it hangs by the sling. Hang the
vial on the lower hook of the spring, cap it, let the spring come to rest, and
carefully measure the position of the bottom of the spring. to the nearest 0. 01
cm. Enter this reading on the data sheet as '"Unextended position of spring. "
Also enter the spring constant in g/cm in the proper place.

We will measure volumes of liquid by using an instrumert called a pipette.
A pipette is simply a hollow cylinder (that is, a straight tube) whose inside dia-
meter is accurately uniform. When the tube holds a liquid, then, the liquid
itself is in the form of cylinder, bounded on its curved outside by the inside
wall of the tube, at one end by the bottom of the tube, and at the upper end

by the free surface of the liquid.

(Do you picture this cylinder in your mind?) If you knew the inside diameter of
the tube and the length of the column of liquid, you could then calculate the
volume of the liquid. If this volume came to, say, 9.76 cc, you could then
put a mark on the tube saying ""whenever the pipette is filled to this level, the
volume of tsiquid it contains is 9. 76 cc.' Actually you can buy pipettes that are
already calibrated this way, gr.duated as a ruler is graduated, showing not
lengths, but volumes of liquid contained. A pipette is filled to any desired
level in the same way that a drinking straw is filled, and is kept from emptying
itself by pressing a finger against its upper end. Your teacher rnay prefer,
for sanitary reasons, to do the pipetting for you.
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Now pipette into the wial hanging on your spring an accurately measured
volume of water somewhere in the neighborhood of 15 cc. Many beginners are
tempted, in this kind of operation, to go to great trouble to adjust the contents
of the pipette to exactly 14. 00 cc. This is a foolish waste of time, Any volume
of water somewhere near 15 cc (say anywhere from 13 to 17 cc) is as good as
any other. The point is that you may use any volume of water you happen to
get in the pipette, but whatever volume you use must be measured accurately.
Read the volame of water to the nearest 0. 01 cc, and record it on the first
line of your data sheet, column one. [Your teacher may prefer to have you
bring yourvial to a central place to receive a sample of water. If so, carefully
detach the thread bail from the spring, leaving the thread on the vial, have
the water placed in it, and then hang it again from the spring.]

To prevent evaporation of the liquid once its volume has been measured,
keep the cap on the vial at all times except when you are actually adding or
removing liquid. Allow the spring to come to rest and read the position of the
bottom of the hook once more. Record this reading in column two of the data
sheet. Empty the vial and dry it, obtain another sample of water, and repeat
the experiment. Enter volume and spring position again in the table, the new
data on the second line.

Now repeat this experiment using alcohol instead of water. After you have
finished with your first sample of alcohol, however, do not throw it away as youw
did the water. Pour it into the bottle for wast alcohol as designated by your
teacher, Make two separate measurements of volume and spring position on two
different samples of alcohol, recording your observations in the first two j
columns, last two lines of Table 1. Repeat with benzene and carbon tetrachloride. -

For carbon tetrachloride, use about 10 cc samples. (Carbon tetrachloride slowly 1

attacks the plastic of the pipettes and the vials. Do not let them stand in con-
tact more than a few minutes at a time. Alcohol, benzene, and water are with-
out effect, )

For ail eight lines of the table, calculate columns 3 and 4 in the usual
way. Then compute the density (column 5) by dividing weight by volume. Record
the computed densities (three decimal places for each) in column 5. The two
measured densities for water should agree closely, and also the two for each
of the other liquids. Average the two values for water and enter the average
in the last column. Do the same for each of the other liquids.

NOTE:
There is no special danger involved in the use of these liquids,
but they are all poisonous (except water) if you drink them.
Getting them on the hands is not harmful, but you should avoid
doing so anyway. Alcohol and be.zene are inflammable; there
should be no flames in the room where this experiment is done.
It is harmless to smell the liquids, but avoid deliberate breathing
of the vapors, especially benzene and carbon tetrachloride.
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Experiment 18

' Data Sheet
i Table I
' Densities of Several Liquids
Volume Spring Extension| Weight Density Average
Substance cc Position cm g glcc Density
37 T Water
Water
g/ec
i
Alcohol
Alcohol
) glec
Benzene
Benzene
g/cc
Carbon
Carbone Tet.
Tetrachlor« ' )
ide
_glece |

{ No~load Spring Extension cm
Spring Constant g/cm
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Experiment 19

Densities of Alcochol-Water Mixtures

The density of water is greater than that of alcohol, and the two liquids
readily mix together, Iif you make a mixture of the two, the mixture will be
neither alcohol nor water, and probably would then have the density of neither.

If you take a very large amount of alcohol and add to it only a drop of water, how
would you expect the density of the mixture to compare to the density of pure
alcohol? If you add a drop of alcohol to a very large amount of water, how would
you expect the density of the mixture to compare to that of pure water? How are
your answers illustrative of the principle of continuity ?

If you start with a glass of water and add alcohol to it drop by drop, what
does the principle of continuity say about how the density of the mixture changes
from one drop to the next. If you keep on adding alcohol until you have a tank-
car full of mixture, you would end up with practically pure alcohol wouldn't you.?
You would therefore have made a series of mixiures ranging all the way from
pure water (density = 1.00 g/cc) to pure alcohol (density = 0, 70 gl/cc), What
would the principle of continuity say about the densities of these mixtures?

The purpose of this experiment is to investigate how the density of an
alcohol-water mixture changes with composition. We are looking for a
functional relationship between density (the dependent variable) and composition
(the independent variable). This raiser and important question: density is of
course a numerical quantity, but is composition? Put it this way: How much
of this sample of alcohol is alcohol? All of it, you say; 100 per cent of it;
not half of it, not three-fourths of it, not 99/100 of it, but 1 of it, In considering
mixtures of alcohol and water, we would say that pure alcohol had a '"frac* cn'"
of alcohol equal to 1. 'Purc water would have a fraction of alcohol equal to 0, If
I mixed 10 grams of alcohol with 10 grams of water, the fraction of alcohol “rould
be 0, 50, If I mixed 7 grams of alcohol with 3 grams of water, I would have
10 grams of mixture of which 7 grams or 7/10 is alcohol. The fraction of
alcohol is 0.70. If I mix W grams of water and A grams of alcokol, how many
grams total? What fraction is alcohol ?

We will use "fraction of alcohol' as a quantity representing the composi-
tion, and you should understand why this fraction is given by A/ (A + W).

Procedure: This will be a cooperative experiment. The class will be
divided into small teams so that there are nine teams. Each team will
determine the density of one mixture, so that the whole class will determine the
densities of nine different mixtures, Each team should set up a weighing appara-
tus as with the preceding experiments, using a calibtated spring. The team will
be furnished two vials, one of which should be slung from the string by a thread
bail as before. Read the position of the spring with the capped vial hanging in
place, and record the reading as ""No-load position of spring' in Table II. Also
record the spring constant in g/cc there,
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Leave the vial hanging on the spring, and take the other vial and cap to
your teacher and have a sample of water pipetted into it. Record the volume
of water, measured to 0. 01 cc, in the first column of the table. Then have z
sample of alcohol pipetted into the same vial (right in with the water already
there) and record this volume in the third column of the table. Cap the vial

right away, Each team will get a different combination of - water and alcohol
as follows:

Approximate Volume of

Team

# Alcohol Vﬁfe_r
1 18 cc g cc
2 16 4

3 14 6

4 12 8

5 10 10

6 .8 12

7 6 14

8 4 15

9 2 18

As before, the volumes measured should be approximately those in the table
but need not be exactly these Whatever they are, however, they must be
measured precisely to the nearest 0. 01 cc. Notice tin t volumes of more than
10 cc will require two fillings, and therefore two readings, of the pipette.
Add the two readings together for the total.

Now gwirl the capped vial around for a minute or two, gently but thoroughlv.
to mix the alcohol and water completely. DO NOT SHAKE the vial, for you must
avoid getting liquid under the cap. Then detach the threaded vial, with thread,
from the spring and take both vials to your teacher. Your teacher will use the
pipette now to remove about 17 or 18 cc of the mixture from the first vial and
transfer it to the threaded one. This of course will have to be done in two
fillings and readings of the pipette. Read each filling to 0. 01 cc and add the two
together to get the volume of mixture now in the threaded vial. Record this

volume in the eighth column of the table under "cc of Mixture.'" Cap the
threaded via],

i
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Discard the remaining liquid in the plain vial and hang the c2pped threaded vial
back on the spring. Allow the spring to comne to rest and read the position of the
bottom of the hook. Record this reading in the third line of Table II, Calcu-
late the extension of the spring from the two readings recorded in this table and
enter it on the fourth line, Then, using the spring constent already recorded in
the table, calculate the weight of the mixture., Enter this value in the last line of
Table II and also in the second last column of Table I. Notice that your own
worx will fill ohly the first line of Table I.

You now know the volume of mixture (column 8) and its weight (column 9).
Compute the density of your mixture and record its value in the last column,
first line. You are now finished with your part of the experiment. When every-
one has finished, your teacher will assemble the data of all teams. Copy the .
data from other teamis on succeeding lines of the table, making suve you don't
repeat your own,

=y
)

{

Finally, make a graph on which you piot density (verticaily) versus

''fraction of aicohol" {(horizontally). The two coiumns of the table headed by

arrows ( ¥ ) show which to plot. The data of Table II give you nine points for

the graph. You can get two more (zero and one fractions of alcohol) from the ™

results of Experiment 18, Be sure to include these two points on your graph, s
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Experiment 19
Data Sheet #1
Table I

Densities of Water-Alcohol Mixtures

y J

Fraction of cc of | Wt, Density

Amt. Water Amt, Alcohol g

-

cc g cc g Total | Alc i g %bg/ cc

Table II

Spring Constant g/cm
No load position of spring cm
Loaded position of spring cm
Extension of spring cm
Weight of sample g
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Experiment 19
Graph Sheet #2

Density vs. Composition for
Mixtures of Alcohol and Water

0.90+
0. 85+
0.80 |
~ i l i { i l
H T ]
0.0 . 0.2 0.4 0.6
Composition
An Example

Weight of 10 cc of water

Weight of 10 cc of alcohol

Total Weight

Composition

Density of this compositon
from graph

Volume corresponding to
total weight
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Experiment 29

Density vs. Concentration for Sugar Solutions

You probably have a feeling that the density of a solution of sugar would
increase as you dissolved more and more sugar in it. The purpose of this
experiment is to look for a functional dependence between the density of a
sugat solution and the concentration of the solution. We will think of the
concentration as the independent variable and density as the dependent. Also,
we will express the concentration of the sugar solutions in '""grams of sugar
per cc ot sclution''. Be sure you sce boih that this is 2 cenceniraiion . and
also what is meant by '"grams of sugar per cc of solution. "

rrocedure; This experiment also will be a team effort, Each person in
the class will make up one sugar solution and determine its concentration and
its density. Everyone will make a solution of a different concentration, so that
the whole class together will have a complete set of data from a solution of
verylowconcentration to one of very high concentration.

Set up a weighing apparatus with the spring arrangement you have used
so often now, with a vial hanging from the spring with a thread. Record the
spring constant on the first line of Table I. Take a reading of the bottom of
the spring as usual (with the capped vial attached), and record it on the first line
of the left-hand portion of Table I.

Detach the vial (with thread bail) and take it to your teacher to obtain a
sample of sugar. The sugar can be conveniently measured with a "spoon'' made
by cutting long notches near the end of a Popsicle stick in snch a way as to
produce a spade-end about 1/2" long., Such a measure willhold about 1/3
gram of granulated sugar when used as a spoon. The exact amount it holds
is unimportant because you are going to weight the sample accurately anyway.
The first person 1o get his sample will receive 30 measures, the next 29,
and so on down to 1. If the number of persons in the class is not exactly thirty,
it is quite all right if some numbers are duplicated or if some numbers are
missing. The samples should, however, span the range from 1 to about 30.

When you have received your sugar, cap the vial and take it immediately
to your weighing machine and weigh it by hanging the vial from the spring and
reading the position of the bottom of the spring. Record this reading in
Table I, left-hand side, as '""No load position.'" Then detach the vial and take
it back to your teacher to obtain a measured sample of about 10 cc of water,
added directly to the sugar in the vial. Again, the exact amount of water is
unimportant but must be read accurately to 0. 01 cc. The amount should be
between 9.5 and 10 cc. Record the volume received in Table I.

Now cap the vial again and gently swirl the water and sugar around until
the sugar is completely dissolved. Uncap the vial and look at the contents
from time to time to find out whether the sugar is completely dissolved. It must
be completely dissolved before proceeding with the experiment. The larger
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amounts of sugar dissolve only slowly (perhaps 10 minutes or more of constant
swirling); this is why the larger amounts were given out first. Do not shake the
vial, because some of the material will then become trapped between cap and
vial. Meantime, attach the second vial, capped, to the spring and read again
the spriny position. Record this reading at ''No load position'' in the right-

hand column of Table I.

When the sugar has completely dissolved, take both vials to your teacher,
and pipette out of the vial that contdns the solution, about 10 cc of solution.
Read the volume to the nearest 0. 01 cc and then drain the contents of the nipestic
into the other empty vial. Reccrd the volume of solution in the right-hand
column of Table I. Cap the vial containing the solution you just pipetted into it,
and leave the other cap and vial with von» tezchci, Take the vial with pipetted
solution back to your weighing machine, hang the vial on the spring, zead the
spring position, and record this position in the right-hand columr You are now
finished obtaining all the data you need. Clean and put away your apparatus and
get ready to do some calculating.

Calculating From your Data: The calculations in this experiment are more
involved than you are accustomed to, and perhaps you should be guided through
them. The following paragraphs will explain how you can calculate the concen-
tration and the density of the solution you made. Please notice that this is an
explanation. It would be possible to tell you what to do, you could dutifully go
ahead and do it, get it entirely right --- and have learned nothing. But that's
not the way we do things here. - Notice that each step follows logica’ly one
after another. You make the calculations in the way explained below, not
because somebody says this is the way to do it; you do it this way because logic
says this is the way to do it. Keep your mind open and try to understand why
each step is taken. It would be a good idea to read the whol= thing once before
you start calculating, just sc you can see the flow of the whole idea. Ready?

Remember that you want to calculatethe concentration and density of the
solution. Keep this in mind, because you have to know where you are going
before the directions for getting there make any sen se.

We'll start with the concentration of your solution. First, what do
you mean by concentration? If you don't know exactly what it me ans, don't
you think you should go back and look it up: how can you expect to understand
how to calculate concentration when you don't even know what it is?! Refer
back to the end of the introductory paragraph of this experiment. Now you
know that the concentration of your solution means the number of grams of
sugar per cc of solution.- How can you get this? You made up the solution
by taking some sugar and dissclving it in water. You then can get the concen-
tration of the solution by dividing the weight of the sugar you used by the
volume of solution produced. You can easily get the weight of sugar you used:
You have the no load spring position and the spring position with the sugar
added; from these you can get the spring extension; and then, knowing the
spring constant, you can get the weight of sugar. Do this, using the left-hand
part of Table I to record your data. Now you have the weight of sugar in your
solution, but ~--
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You also need the volume of the same portion of solution that contains

] that weight, You cannot get the concentration by dividing the weight of sugar
contained in one portion of solution by the volume of some other pmrtion. The
weight of sugar contained in all the solution you prepared -- not just part of it.
Moreover, the volume of the solution is not merely the volume of water used to
make it, because the sugar, even when it's dissolved, takes up some room,
too. One way to get the volume of the total solution would be to transfer it
totally to a pipette, but this would be difficult to do without leaving behind some
droplets -~ or at leasi some weiness -- in the vial, There is anotler -- indirect
~= way to find this tctal volume.

You can find the total weight of the solution, can't you? The total weight
is simply the sum of the weights of the sugar and of the water that you combined
to make the solution. You just calculated the weight of sugar in the paragraph
above. OK,. add the weight of water to it. But wait a moment; you didn't weigh
the water! But you did measure its volume; can you get the weight if you
know the volume? Of course; all you neec is fhe density of water, which is the
same tolay as it was when you did Experiment 18, Look up the density of water
from Fxperiment 18 and then calculate the weight of watér added. (You could
have weighed the water -- or obtained the total weight of water and sugar
together -- directly by weighihg them with your spring.) Enter the weight of
water in the last line of the left-hand portion of Table I. Then add the weight
| of water to the weight of sugar and enter the sum as ''weight of solution'' on the
j first line of the centered bottom portion of the table.

But to calculate the concentration of the solution, vou need its volume,
not its weight, How can you find the volume from the weight? For this calcu-
lation you need the density of the solution. Do you know the density of the
sclution? No, not ye!; but you have the necessary data from which you can
calculate the density. These data are in the right-hand portion of Table I.

To calculate the dansity of the solution, you need the weight and the volume cf
of some sample of the solution. To find the density, is it necessary to work
with the whole solution? No; because you remember that the density of a fixed
material is always the same regardless of the size of the sample. Hence we
can find the density of the total solution by working with any size portion of it
we please, This is what saves us, for then it is not necessary to be sure to
transfer the whole sample to the pipette without leaving any wetness behind.
We can go ahead and make up the solution out of carefully measured compo-
nents, and then find the density of a convenient portion of it without worrying
about complete transfer, and still be assured that we have the density of the
whole solution. Of course, it is best to use as large a portion of the solution
as you can conveniently get to make the measurements for the same reason
as was discussed on page 98 .

?% From the two spring positions recorded in the right-hand part of Table I,

»‘ you can calculate the weight of your sample of solution. Do this, and enter both
''extension' and ''weight of sample'' in the table. Knowing the volume, you can
calculate the density. Do so. This will be the last entry on the right-hand side
of the table.

Q
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Now you know the density of the solution. Since you have already found
the weight of solution (first line of the bottom portion of the table), the density
and weight together will allow you to calculate the volume. Do so, and enter
the result in the second last line of the table.

To get the concentration of the solution, vou nzced the weight of the sugar
contained in a known volume of solution. But vou know the total weight of
sugar used and you now aiso know the total volume of salut \
even though you never mcasured it directly. Calcuate the concentration and
enter it in the last line of the table.

Now you are finished!

That wasn't so hard, was it? It was long, of course, but it wasn't hard.,
Have you ever looked at a piece of chain and pictured clearly how it holds
together? Itisn't very hard to see how a chain works -- how each link encircles
its neighboring links in such a way as to produce a whole train of hold-together
links. Would you say that a long chain of 100 links is more complicated than
a short chain of five links? Of course not! The long chain is merely longer --
not more complicated.

The long chain of reasoning that you just went through is long, of cow se; -
but it is not complicatec. You can easily understand every link in the chain.
Don't be worried about the possibility that you might need help in putting the links
together. Everybody needs help at first, and you'are only beginning youp study
of physical science. Learn the little things first so that you undesstand them.
The big things will later follow easily.

The Graph: You have worked out one pair of values, density and concen-
tration, for one sugar solution. Copy your calcuated values of these two quan-
tities into Table II, the second line. Others in your class will have worked out
similar data for other solutions. Your teacher will arrange things so that
everybody's results will be available to everybody else. Copy everybody
else's results into Table II, and then you will have a whole set of densities and
concentrations. Notice that the first line is already entered for you; do you
understand its meaning? Pure water is really a sugar solution having zero
concentration, isn't it?

Now plot the data of Table II on the graph at the bottom of the page.
Notice that the origin does not appear on this graph. The reason for this is
simply that putting in the origin weould make most of the graph mereily blank
space.
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Experiment 20
Data Sheet #1

Table I
Calculiation of Concent

& Spring Constaat g/cm
Total Solution Sample of Solution
No load Position cm No load Position cm
Pos'n with sugar cna Position with Solution cm
Extension cm  Exteasion cm
Wt. of sugar g Wt. of Sample g
Volume of water ¢c Vol. of Sample cc
N Wt. of water g Density of Solution glcc
=) Wt. of Solution g
Volume of sclution cc
Concentration g/cc
B
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Experiment 20
Data & Graph Sheet #2

‘T'able I1

Concentrations and Densities for Sugar Solutions

Conc g/cc

0, 000

—

Dens g/cg Conc g/cc|{Dens g/ cc Concg/cc|{Dens g/cc

et Sttt e

e

——— e |

0, 997

Density

1.3

Graph

Concentration vs. Density for Sugar Solutions

1., 2+

1. 14

1.0

= .

}
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0.2 0.4 0.6 0.8

Concentration, g/cc
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Experiment 21
Motion under Constant Velocity (Part 1)

The plrpose of this experiment is to look into the interconnection among
the quantities of time, position, distance, and velocity for body moving along
one straight line. To do so, we need to get our hands on something that can
be trusted to move with constant velocity and slowly enough to make satisfactory
measurements. One way to do this is to use the fact that a body falling under
gravity through a fluid will eventually reach a constant velocity if it falls far
enough. A ball not too heavy or large falling through a heavy oil reaches this
velocity after falling only a centimeter or less. That is the way-constant
velocity will be assured in.this experiment.

Procedure: The entire class will perform this experiment together,
Seven persons are needed at one time to perform the experiment. Your

teacher will assign duties to a team-of-seven who will carry out the experiment;
another team to do it again; and so forth.

The preparations described in this paragraph and the next wiil be comeo.
pleted ahead of time. First, a strip cf paper about half an inch wide and
seven feet long should be obtained: a strip cut from an adding~machine roll
would do nicely; or an ordinary sheet of paper cut into strips securely scotch-
taped together will do as well. This should be made into a measuring tape as
follows. Lay the strip down running from left to right and about one fourth
of the way from the right-hand end, make a short mark like those cn a ruler.
Labei this mark zero. Then lay off to the left of this mark a series of other
ruler-marks ten cm apart. Label them in order from Zero Ep_@_e_l;eij_;‘_g, 10, 20,
3, etc. up to 150. Label them in plack pencil, the black signifying plus. Then
lay off a similar series to the right, labeled from zero Lo the right in order,
10 up to 50. These should be labeled in red pencil, the red signifying minus.
You now have a eentimeter measuring tape marked + and - from zero, the

zero not being in the middle. On this tape, plus is on the left and minus on
the right.

Second, a long glass tube about 2 ¢cm in diameter and 120 em long is
securely stoppered at one end, and securely held vertical (stoppered end down)
by tying it with thread to a dowel post set in a breadboard. Thi- is filled
within a few centimeters of the top with a heavy mineral oil like, say, Nujol.

This should be allowed to stand overnight in order to come to a uniform temper-
ature.

You are ready to start. Arrange the tape-measure vertically along the
outside of the tube so the -40 c¢cm mark (red) is about 5 centimeters below the
liquid level in the tube, scotch tape the upper end securely, stretch the
measuring tape vertically downward along the tube, and scotchtape it again
near the bottom. Never mind the excess measuriang tape at the bottom; it will
be too long and some ''unused'' tape will just lie there unused. Leave it there.

-
-1

=

E

i
i




-65-

Now we need a team of seven., Their jobs are:
2 Timers 2 Recorders 2 Readers Dropper

The dropper has a supply of plastic beads. He stands holding a bead
in his fingers over the top of the tube.

The timers st.nd where they can read a clock with a second hand and
keep their eye on the clock.

The recdrders stand near the timers (one recorder paired with each
timer) with pencil and paper. The papers have previously prepared tables of
five columns and about 8 lines. One recorder has the even multiples of 10
entered in the first column: -40, -20, 0, +20, and so on down to
the last mark on the tape. The other recorder has the odd multiples: -30,
-10, +10, +30, and so on. The recorders are designated odd and even. The
tables may be on scratch paper. The recorders hold pencil in hand and keep
their eyes on the paper, listening each to his own timer.

The readers stand one on each side of the oil-filled tube, in a position
where they can clearly see both the paper measuring tape and a ball falling
down through the liquid at the same time. One reader is tcamed with one
timer-recorder pair and the other with the other. The two readers should
have readily distinguishable voices so the timer and recorder can tell without
looking which reader is speaking. It might help, for instance if one reader is
a girl and the other a boy. It is the readers' job to watch the ball as it falls
through the oil. They must keep their eyes on the ball. One reader is
designated odd and the other even, and are so teamed with the corresponding
recorders.

Here is the performance; everybody ready? One of the timers watches
for the approach of the second hand to the 12 (that is, zero) on the clock. He
announces 10 seconds to go, then counts down 5 4, 3, 2, 1, GO, calling GO
when the second hand is at 12, At GO, the dropper drops a ball into the oil,
releasing it just under the surface. (Of course he gets his fingers oily, but
he has nothing eise to do anyway.) The readers watch the ball descend.

When the ball comes exactly onposite:the -40 mark on tle tape, the aven
reader calls out in a staccoto voice "Four'. The even timer, eyes always on
the clock reads the position of the second hand on the clock at the moment
he hears ""Four'. The hand will be moving, of course, and he must very
quickly make up his mind where the hand was at the moment he hears the
signal. He estimates the time to the nearest 0. 1 second. Without " taking his
eyes off the clock, he announces the reading quietly to his recorder who
records the reading in the second column of nis table, on the line where ''-40"
appears in the first column.,
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position. The two lists of averages are then blended into one sequence of aver-
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Meantime the odd reader, eyes always on the ball, watches for the
moment when the ball comes exactly opposite the -30 mark. At this moment
he calls "Three' in a staccato voice, and the odd timer, eyes always on the i
clock, reads the position of the second hand at the moment he hears the
signal. He makes this time reading, like all the rest, to the nearest 0.1 sec-
ond, and announces it immediately and quietly to his recorder, who records
the reading in the second column of his table on the line where the first colvmn
says ''=30'",

Meantime the even team, it is to be hoped, has recovered from its -40
task. The even reader continues to watch the ball., When it comes exactly to
-20, he calls '""Two' and the even timer reads the clock and announces the time
to his recorder, who records the time in the second column oppogite ''-20". E
By this time the odd team will have recovered from its =30 activity and makes
a reading for -10. Then the even team at zero, odd at +10, and so on until ;
the ball falls to the bottom. The only persons in the entire class permitted to
talk are the readers and timers. This is very important. 5

The whole team should make several practice runs so they can wourk
together as a team. They then make three runs for the record. The recorders
will then have three readings of the time for each multiple-of-ten position of the
ball. They should average each set of three readings to get a "best" time for each

aged times when the ball was at -40, -30, =20, and so on up to +80 or whatever
the boitom reading turns out to be. These data are entered in the first two
columns of Table I on the data sheet.

The team now retires to a well-deserved rest. Their places are taken
by another team with assignments exactly as before. First, the measuring
tape is detached and moved upward so the zero mark (instead of -40)is about
5 cm below the liquid level. Secur: it in place. The recorders make their data
columns with the first column reading 0, 20, 40, etc., to the bottom reading
of the tape for the even recorder; and 10, 30, 50, etc. for the odd. Repeat
the entire performance as before and enter the averaged and blended data in
the third and fourth columns of the data sheet. Second team is now finished.

Another set of runs should now be made with a new team. Detach the tape
and reattach it with the +40 (black) mark about 5 cm below the liquid level.
Recorders prepare the first column of the data sheet with +40 (even) or +50
(odd) as the first entry. The final averaged and blended data are entered in i
the last two columns of the data sheet.

Finally, make plots (time horizontally and position vertically) of all
three sets of data on the same graph on the second graph sheet., The positions
(in cm) are already marked on the vertical axis, but you will have to supply
your own time scale. Plot positive (black) distances above the zero and
negative (red) beiow. (This is opposite to the physical direction of fall. )

Leave the ''calculated velociiies'' blank for now.
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Experirnent 21
Data Sheet #1

Position vs.
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Table I

b

Time in Uniform Motion

ey e _— - -
First Run Second Run Third Run
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Experiment 22
Motion under Constant Velocity (Part II)

You will remember that Experiment 22 was carried out by dropping balls
of the same size and same material through the same column of oil. Your
intuition would tell you that the balls would all fall with the same velocity.

This in fact is true -- they do all fall with the same velocity.

We now wish to compare the functional relationship between position and
time for bodies falling with different velocities. You would probably guess
that if you dropped a bigger ball through the liquid, it would fall with a differ-
ent velocity. This also is true, and this is how we will obtain different moving
bodies, each with a different, but constant, velocity.

Procedure: TlLe setup and procedure, including team assignments, are
identical with those of Experiment 21, except that the droppers will use balls
of different sizes from those in the preceding experiment. Adjust the measuring
tape so that the zero-mark is about 5 centimeters below the liquid level and
leave it there for the entire experiment.

The first team repeats its performance in Experiment 21 with the tape
in the position noted in the preceding paragraph, except that the dropper uses
balls a little bit larger than those in Experiment 21. The team again makes ,
tbree runs for the record. The data are averaged and blended as before, ond ....
the readings recorded in Table II. The first column of Table II lists the trpe- y
positions beginning with 0.0 cm and increasing by tens to the bottom of ‘1.~
tube. Since the tape will not be moved during this expzriment, this columna will
serve for all the trials. The averaged times-of-passing for the 10-cm maz=ks
are to be recorded in the third column; leave the second column blank for =ow.

The second team repeats the performa nce of the first team, leaving the
tape unchanged, but :ising balls a bit larger still. The data are treated in the 4
same way and the times-of-passing are recorded in the fourth column of Table II..

If time permits, a third team should make still another series of runs
using a set of balls still larger. These data, if taken, should be recorded in
the fifth column,

Now fill in the secand column of Table II. These data are the times-of-
passing the 10-cm marks for the balls used in Experiment 21. Simply copy
the data fromthe fourth column of Table I (Experiment 21), since there is no
point in doing that experiment over again.

Then make plots (time horizontally and position vertically) of.the data in.
Table II, All distances are positive this time. Plot the points all on one giaph
on the second work sheet. The data copied from Experiment 21 are also to be
plotted on this graph, and of course will merely be a copy of what you ploited
before. Use a ruler to draw the three (or four, if the third team performed)
straight-line curves. As usual draw the lines so you leave about as many points

-

on one side of the line as on the othe™.
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Time in Uniform Motion

Table II
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. Time Time Time Time
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Motion under Constant Acceleration

The purpose of this Experiment is to investigate the motion of a body
it a simple case of accelerated motion. We will use a ball rolling down
anfinclined ramp as an example of accelerated motion.

There is a trouble with this experiment of which you should be forewar ned.
If the ball rolls too slowly, then friction takes charge and the motion quickly
bi:comes constant-velocity motion like the ball slowly falling through oil. If
the ball rolls rapidly, its motion is truly uniformly acclerated, but then the
action is so fast that it is difficult to measure. In truth, the slowest movement
that can safely be used to avoid the effect of friction is still too fast to get
excellent results. This experiment therefore is an example of something one
often meets in experimental physical science: you make measurements
which you recognize as being of low precision, yet treat the data in such a
wiy as to average out the errors as well as you can. This experiment, it
might be added, can be carried out with high precision, but the equipment
required to do it would be prohibitively complicated. Pe rhaps after you

hzve completed the experiment you will be able to suggest more compliceted
measures that might be taken to secure better precision.

Procedure: A 12-foot long 2 x 4 wooden plank will be provided, It has
a lf2-inch wide and 1/2~-inch deep groove cut along iis entire iength in one of the
narrow ('two inch') faces. The board should be as free of warpage as poscihle
ard the dadoed groove should have clean edges fairly free of splintered-out

sections, The edges of the groove will provide the track for a steel bearing-
ball to run along.

o o

L

Liay the board out on the floor, grooved edge up. Prop up one end of the
bocard to make an inclined ramp for the ball to roll down. A stack of books
akout 25 cm high under one end will make the ramp steep enough to give uni-

formly accelerated motion, yet not so steep as to make the speed of the ball
inmpossibly fast for measurement, !

You will also need an electric clock having a sweep second hand, or a
stopwatch. If you use an electric clock, look at the scale marks on the dial,
J1. many clocks, made to be viewed from a distance, the minute (or second)
mitrks are thick lines as wide as the space between them. Imagine how diffi-
cult it would be to read a ruler on which the centimeter "lines'' were half a
centimeter wide! If your clock is made like this, it may be necessary to
modify it by pasting a make-shift scale made of a narrow arc of paper over
at least a part of the clock scale, and making thin pencil marks at the centers
of the dial's own thick ones. If this is necesaary, your teacher will have
cone it ahead of time,
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A steel bearing ball about 2 cm in diameter will slso be provided. Make
a pencil .nark across the grooved face of the board about 2 cm from the upper
end. and label it "Q', then use a meter stick and a pencil to make further
marks across the grooved face of the board, every 40 cm from the mark at the

upper end. Label these marks 40, 80, etc. down to 360 cm. The "O" mark
is the origin, and we will again take downward as the positive directicn.

This is a team performance, and it is probably better to do the entire
experiment with one team given 10 minutes or so to rehearse than to use
several teams each of which will have to spend an equal time in practice,
The team consists of:

One starter, two timers, two markers, and one retriever.

The starter stations himself at the upper end of the board. He places
the ball .n the groove and holds it there lightly with his finger, with the
leading edge of the ball opposite the starting mark onthe board. When No. 1
timer calls '""Go'', his sole job is to release the bail, NO pushing; simply
lift the finger and let the ball start slowly by i¥self.

The two timers s.. nd where they can clearly see the clock. &They
mus ¢ be able to get within normal reading distance of the clock; say, about
one foot. No. 1l timer stands immediately in front of the clockface with No. 2
close by his side. They both keep their eyes on the clock. No. 1 timer
watcles the second-hand, and when it approaches a part of the dial-gcale
he can easily read, he wiazrns the starter: '"Get ready...GO", calling ''go"
at the instant the second-hand passes a convenient scale-makring. He stays
there with eyes always on the moving secondhand, waiting for No. 1 marker
to call "Mark.' When he hears the signal, "Mark', he makes a reading of the
second hand, judging the time to the nearest 0.1 second. He immediately
moves aside. No' 2 timer, who has never taken his eyes off the second hand,
then immediately moves in front of the clock face and waits for NO. 2 marker

to call "Mark'. At this signal, he too reads the position of the secnnd-hand
to the nearest 0.1 second.

It requires quick eyes and quick decision to judge the position of the
moving second hand this way. It is not otherwise difficult, but the timers
must be able to make up their minds quickly. After both readings have been
made, the two timers announce their readings to the class. Ha'“ the class will
act as recorders for No. 1 timer and the other half for No. 2. They note on
sctaich-paper the times announced by the timers,

The two markers station themselves along the side of the ramp, No. 1
marker at the 40-cm mark and No. 2 marker at the 240- cm mark. Markers
kéep their eyes mostly on thesearnarks. When they hear the word "Go",
they watch their marks carefully, wasting for the arrival of the ball, At
the instant when the ball hits the 40-cm mark, marker No. 1 calls MMark'",
the signal that timer No. 1 above was waiting for. He does not disturb the

ball in any way -- merely announces its arrival at the 40-cm mark. Meantime,

marker No. 2 awaits the arrival of the ball at the 240-cm mark, announcing
its arrival there by calling ''"Mark' also. This is the signal that timer No. 2
above was waiting for. The ball continues its way down the ramp where it
is caught by the retriever who carries it back to the starter.
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The experiment is repeated at least five times, so that five readings of
the times of passage to the 40-cm and 240-cm marks are obtained. The
members of the class doing the recording should now average the five time
readings they recorded and some member of each recording group should
go to the blackboard and enter the average time for passage at 40 cm and
at 240 cm in a table like Table I on the data sheet. The averages shotild be
taken to two decimal places, though the last figure will be very unreliable,

A peculiarity of repetitive experimental measurement will arise with the
timers. Itis called ""experimental Prejudice'" and is extremely difficult to
avoid, even by skilled veteran scientists, It is simply this. If a timer reads
the first time as ''1.7 seconds', he will find it very difficult to forget the
fact, On repeating the measurement on the second roll, the call of "mark"
may occur when the clock hand actually is at 1,8 or 1.8 seconds. But the
timer, remembering that he judged it as 1.7 the first time will find it
extremely difficult to resist calling it 1,7 again, simply because he read it
that way the first time and feels that the second time ought to give the same
reading as the first. Try to make each reading uninfluenced by preceding
ones. You will find it hard to do.

The reverse of the effect mentioned in the Preceding paragraph is just
as likely to occur and just as bad. A timer may read the first time as 1.7
seconds, The second reading may also be 1.7 seconds. But the timer,
remembering that his first reading was 1. 7, may resist calling the second
one 1,7 also because he thinks he is being influenced by the first when he
really is not. The best thing is to keep in mind that the clock has no memory,
and the timer who reads it should have no memory either.

After five readings of passage at 40 cm and 240 cm are taken, the markers
should move downhill to the 80-cm and 280-cm marks and the team repeats
the whole performance, taking 5 readings of each again. Then repeat with the
markers at 120-cm and 320-cm (five readings); then 160-cm and 360-cm
(five readings); then marker No. 2 and timer No. 2 retire, and marker No, 1
calls ""mark'! for passage of the 200~cm mark. The data are displayed on the
blackboard and the entire class then copies the complete table as the first
two columns of Table I on the first data sheet.

You should now make a graph in the upper space of the second work
sheet, plotting position (the dependent variable) vertically and time (the
independent variable) horizontally., Leave the other graph frame:ahddata
columns blank for now,
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Experiment 23
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Motion under Constant Acceleration
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- Experiment 23
Graph Sheet #2
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Position vs, Time for Constant Acceleration
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Experiment 24
Tangent to a Curve

This experiment will give you a little experience with the notion of
"tangent to a curve at a point. ' You will use the curve of p vs t obtained in
Experiment 23, You will obtain the tangents in two different ways, and at
the same time find a simple relationship between p and t that you may not
previously have suspected.

Recall that you obtained, in Experiment 23, the times, t, that it took
a ball to pass various pesitions, p, as it rolled downhill, You have these
data in Table I of that experiment. Refer back to this table and look at the
first and third columns, The first column gives the series of positions at
which you measured the times of pas sage, and the third column gives the
smoothed values of the times.

Procedure: Make another graph of P vs t on the first work sheet for this
experiment. Do this by plotting horizontally the times (third column of Table
Iin Experiment 23) and vertically the positions (first column) for the ball
rolling downhill, Your graph will of course merely be a duplicate of your
first graph in Experiment 23, bui somewhat larger., Draw in the curve
connecting the plotted points. Do this with the best care you can take. The
curve must be smooth (no wiggles) and cleanly drawn. Have your teacher
approve your drawing before you go ahead, Now erase the plotted points
and fill in again the gaps in the curve created by erasing.

Make a small penciled dot on the curve at a value of p equal to 140 cm,
We will refer to this point as P, You are going to dr-aw a tangent to the
curve at this point., Before doing so, however, you should play around a
little, Take your ruler and lay it across the curve like a secant, cutting
‘he curve at P and some other point farther to the right, We will call this
other point Q, but do not bother to mark it or label it. Notice the slope of the
secant ruler,

Now use your left hand to keep the ruler with its edge passing through

P, ard rotate the ruler siowly clockwise arcund P and notice how the other
point, Q, moves slowly to the left and downward along the curve. Notice
at the same time how the slope of the secant-ruler constantly changes as Q
moves toward the fixed point, P, Lay the secant-ruler across the curve so
Q lies to the left of P and repeat, this time rotating the ruler counterclock-
wise around P, Again notice how the slope changes as Q moves closer and
closer to P,

You now see that the second intersection, Q, mzy lies either to the
right or to the left of P, depending on how much the ruler is tiliad. You
can also see that the ruler may be moved so that Q comes as ciose to P as
you please. Can you arrange the secant-ruler .o that it passes through P
only, through no other point on the curve, yet aoes not cross over the curve ?
This, of course, is the position of the secant-ruler when Q has been moved
8o close to P that Q lies right on top of P. Think of the curve as the rasied
curved curbing around a street corner and the ruler as a long board; you are ! .
in the street and moving the long board horizontally up to the curb eo that it

¢ st touches,
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When you think you have the right idea, adjust the ruler so that it is
tangent to the curve at P and actually draw the tangent with a pencil using
the ruler as a straight-edge guide, Be sure the pencil line goes through
the point P, Waggle the ruler back and forth a little before you draw the
line to be sure you have it just right., Draw the tangent long enough so that

at least 15 cm of it lies inside the frame-lines of the graph. Your drawing
will look something like this: ' |

//// d

Choose any two definite points, say A and B, that lie: on the tangent line
and are at least 15 cm apart. Then draw the horizontal line AC and the ver-
tical line BC., Be sure AC and BC are tzuly parallel to the axes of the graph,
You will now have to measure AC and BC, But there is a catch involved in
measuring them; do you see what it is?

You must remember that AC represent at, It therefore represent some
number of seconds, and is not to be measured in length units like £m. Its
"length' must be measured in seconds, using the same scale that was uged to
plot the graph. You therefoirz have to measure the length of AC using the
t-scal~ at the bottom of the graph as a ruler. One way to do this is to take
a sheet of paper and lay its edge along the line AC, and mark the edge of
the paper with one tick exactly at A and another exactly at C, Then move the
paper so that the edge lies along the t-scale (bocttom frame line) of the graph,
with the left hand tick at the origin. Read the position of the right-hand tick
against the t-scale just as you would any other ruler., This reading is the
value of . t, in seconds, which should be recorded in the fourth column of
Table I of the present experiment, Measure BC in the same way, but use
the vertical p-scale (left frame line) as th s ruler this time., This is »p and
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The point P above was marked at p = 140 cm. You should now repeat
the whole performance for other points P of the curve. Do at least three
others; measure Ap and At for tangents at p = 60, 220, and 300 cm first,
and then others if you have time. If you do others, choose p's listed in the
first column of the table,

Columns four and five of this table now give you Ap and At for tangents
to your p vs t curve at several different points on the curve. Calculate
O p/Ht and record the ratios in the sixth colurin. Also, complete the first
three columes of the table. The first column, already filled in, gives a
series of positions of a ball rolling downhill. The second column gives the
times at which the ball passed these positions. You are to obtain these
times by r eading them from your graph -- values of t at p = 20, 60, 100,...,
840 cm. The third column is the average velocity, ¥, that you previously
calculated for a small interval surrounding p - 20, 60, etc. cmn. Copy these
values from Talle I of Experiment 23.

You should now have a classroom discussion before proceeding with the
rest of this experiment,
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Experiment 24
Data Sheet #2

Table 1

Velocities under Uniformly Accelerated Motion

From Expt., 23 From tangent slopes From derivative
e e B bt S
Pos'n, p|Time, t ! Vv AP VAN v 1:2 p/!:2 L4
cm_. sec |cm/sec] cm | sec  em/seq sec? | cmsed cm/sec
any
0 0 0 0 | thing 0 0
e B B
20
60 {
100
L
3
140
180
220 . L B
260 -ﬂ
300 | H
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k = average p/t2




