A UNIT OF PROGRAMED LEARNING MATERIALS WAS PRESENTED ON THE PRINCIPLES AND PROCEDURES OF LAND JUDGING AND PLANT NUTRITION. IN HIS PREPARATION, THE AUTHOR FIRST IDENTIFIED PRINCIPLES AND FACTS NECESSARY FOR EFFECTIVE LAND CLASSIFICATION AND PLANT NUTRITION BY EXAMINING RELEVANT SCIENTIFIC REPORTS. USING THIS INFORMATION, HE THEN FORMED A TEAM OF 16 VOCATIONAL AGRICULTURE TEACHERS TO DEVELOP AND TENTATIVELY EVALUATE THE PROGRAMED MATERIALS. THESE TEACHERS WERE ENGAGED IN EXPERIMENTAL USE OF THE MATERIALS AT THE TIME OF REPORTING, AND EVIDENCE OF INSTRUCTIONAL RESULTS WAS NOT THEN AVAILABLE. THIS VOLUME REPRESENTS PART 13 OF A 13-PART FINAL REPORT ON THE VOCATIONAL-TECHNICAL EDUCATION RESEARCH AND DEVELOPMENT PROJECT OF WASHINGTON STATE UNIVERSITY. RELATED VOLUMES ARE ED 010 652 THROUGH ED 010 664. (JH)
LAND JUDGING AND PLANT NUTRITION
A PROGRAMMED INSTRUCTION UNIT

December 1966

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research
LAND JUDGING AND PLANT NUTRITION
A PROGRAMMED INSTRUCTION UNIT

Project No. ERD-257-65
Contract No. OE-5-85-109
Report No. 13

by
Gilbert A. Long

December 1966

The research reported herein was performed pursuant to a contract with the Office of Education, U.S. Department of Health, Education, and Welfare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>Background and Rationale</td>
<td>1</td>
</tr>
<tr>
<td>Purpose and Objectives</td>
<td>1</td>
</tr>
<tr>
<td>Related Research</td>
<td>2</td>
</tr>
<tr>
<td>METHOD</td>
<td>3</td>
</tr>
<tr>
<td>RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>3</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>4</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>4</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>5</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td></td>
</tr>
<tr>
<td>Plant Nutrition</td>
<td>A-1</td>
</tr>
<tr>
<td>Land Judging</td>
<td>A-21</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The assistance and encouragement of the State Board for Vocational Education staff and particularly Ernest G. Kramer, Assistant State Superintendent for Vocational Education, and Bert Brown, State Director of Vocational Agriculture, are gratefully acknowledged. Thanks are also due the Washington State Vocational Education Research Coordinating Unit for funding duplication of programmed materials for experimental use.
INTRODUCTION

Background and Rationale

Effective use of land requires knowledge of its characteristics and the purposes for which it can best be utilized. Proper classification and use of land is essential for efficient production and for conservation. Likewise, knowledge of ways land can be suitably classified is a major factor in determining the profit or loss associated with operation of an agricultural unit.

Research continually provides new information about better means of land classification and utilization. Widespread awareness of that information can help the nation use and conserve its land and increase the incomes of farmers. Agricultural teachers have an obligation to help youth and adults acquire and utilize that information.

Purpose and Objectives

For the above reasons this phase of Project ERD-257-65 work has a two-fold objective. The first is to develop an experimental unit of programmed instruction materials designed to help youth and adults acquire and use knowledge of land-judging principles and procedures. A related objective is to stimulate experimental use of the materials by involving teachers in their development and in experimental use.

These programmed materials are conceived as components of more complete instructional systems that will include reading materials, films, graphics, models, and land-judging practice.

These materials are designed to familiarize students with facts about:

- Why land is classified.
- How land is classified.
- Land classes.
- Factors of classification.
- Effect of pH on plant growth.
- Chemical elements necessary for plant growth:
 - Sources of air, water, and soil.
 - Major and minor elements.
- Primary plant foods.
- Secondary plant foods.
- Functions of nitrogen, phosphorus, and potash for growth, maturity, disease resistance.
- Soil amendment to correct acid soil conditions.
Functions of "carrier" materials.
Affect of soil types on fertilizer utilization.
Chemical soil tests.
Soil testing.

The plant processes:
- Photosynthesis.
- Transpiration.
- Respiration.

Physical texture and structure.
Chemical fertility.
Barnyard manure.
Green manure crops.
Commercial fertilizer labeling.
Crop rotation.
The nitrogen cycle.
The solubility of nitrogen.
The carbon-nitrogen ratio.

Related Research

The methodology of teaching through programmed instruction is based upon the principles of stimulus-response psychology. Skinner (5) has researched and written extensively in this area. Smith and Moore (6) have compiled numerous papers which describe much of the leading research in programmed learning.

One valuable feature of programmed instruction is its definition of objectives in behavioral terms. Mager (3) has delineated the advantages of this technique. Schramm (4), Glazer (2), and others have found that programmed learning materials serve to individualize instruction. They point out that programmed instruction (a) can enlarge opportunity for self-pacing, (b) increase the frequency of meaningful student responses, and (c) facilitate student feedback.

Although programmed instruction may stand alone, it also can be an integral part of instructional systems. DeCecco (1) has compiled research which helps define the unique contribution programmed instruction can make to instructional systems.

A study by Menzel and Katz (8) indicates the extent to which in medicine professional leaders influence adoption of innovations.

Studies by Lewin and Sherif indicate the importance of involving participants in discussion of innovations to be adopted (9).

Christianson's (7) report to the National Seminar on Agricultural Education regarding adoption of educational innovations by
Ohio teachers, found that "the more innovative the experienced teacher was, the greater the degree of opinion leadership which she was likely to hold."

The sixteen agricultural teachers involved in development of these materials and presently assisting with their experimental use represent educational leaders. It is assumed that their participation will speed adoption.

METHOD

The content of this was derived from analysis of facts presented in publications listed in items 10 to 12 in the REFERENCES section of this report.

Pre-test and post-test instruments were designed.

The materials were pilot tested in eight schools and revised. They are presently being used experimentally and further evaluated in sixteen schools. Experimental teachers were oriented to the use of programmed materials and made experimental plans at a 1966 summer workshop conducted as part of the annual Washington Vocational Agriculture Teachers' Conference.

Each experimental teacher sends evaluation results to the Project Coordinator along with pre-test and post-test results. This data will be analyzed and used to further revise the programmed materials.

RESULTS

The experimental programmed instruction materials are reproduced in Appendix A.

DISCUSSION

Development and use of programmed learning devices are still in experimental stages. The author is aware that immediate response to verbal symbols constitutes only one dimension of learning. He views the programmed materials reported here as experimental and as only one component of more adequate instructional systems.
However, as previously noted, involvement of Vocational Agriculture teachers in this Project has stimulated substantial amounts of analytical work and interest in experimentation. Both the author and the teachers involved in the Project were required to reassess cognitive and behavioral objectives. They also made a fresh appraisal of just what knowledges are most essential for effective land-judging practices.

Of equal importance, this effort has aroused interest in development of programmed materials in other areas and in development of more comprehensive systems of instruction.

CONCLUSIONS

Evidence of the instructional values of these programmed materials is not yet available. However, evidence derived from observation of the thought and energy expended by cooperating teachers indicates that involvement in this type of developmental and experimental enterprise evokes substantial amounts of teacher interest in analytical assessment of objectives and procedures. That evidence implies that continuation and expansion of similar effort is likely to speed development of modernized curricula and more effective instructional materials.

Consequently, we recommend that such effort be expanded and that such work be conceived and pursued as a possible starting point for development of comprehensive instructional systems.

SUMMARY

Principles and facts requisite for effective land classification and plant nutrition practices were identified by examination of recent scientific reports. Utilizing that information, the author involved sixteen Vocational Agriculture teachers in development and experimental use of this unit of programmed learning materials. The teachers are presently (1966-67) engaged in experimental use of the materials. Evidence of instructional results is not yet available. There is substantial evidence that teacher involvement has activated analytical assessment of objectives and interest in innovative instruction.
REFERENCES

Programmed Learning

Innovation Diffusion

Soil Testing

Appendix A
PLANT NUTRITION

This is a "Plant Nutrition" programmed instruction unit designed to provide an introduction to "Soil Fertility" or "Plant Nutrition,". This program includes the following knowledges:

1. Chemical elements necessary for plant growth, grouped by:
 a. Sources of air, water and soil.
 b. Major and minor elements.
 c. Primary plant foods.
 d. Secondary plant foods.
2. Functions of nitrogen, phosphorus, and potash for growth and maturity of plants and resistance to disease.
3. The soil amendment to correct acid soil conditions.
4. The function of the "carrier" material in commercial fertilizers.
5. The soil type and its affect on fertilizer utilization by crops.
6. The importance of chemical soil tests to establish fertilizer needs.
7. The importance of field testing the rates of fertilizer's recommended by the chemical soil test results.
8. The plant processes; photosynthesis, transpiration and respiration.
9. The physical texture and structure and chemical fertility of soils as these two factors limit or promote plant growth.
10. Barnyard manure as a source of nutrients to the soil.
11. Green manure crops.
12. Commercial fertilizer labeling.
13. The purposes of crop rotation.
14. The nitrogen cycle.
15. The solubility of nitrogen.
16. The carbon-nitrogen ratio.
PLANT NUTRITION

Underline the Correct Answer

1. Water and air furnish three elements for plant growth. They are
 a. Manganese
 b. Phosphoric acid
 c. carbon
 d. oxygen
 e. copper
 f. zinc
 g. hydrogen

2. is taken from the air by certain groups of bacteria. It is available to plants through these bacteria.
 a. Oxygen
 b. Nitrogen
 c. Carbon
 d. Calcium
 e. Phosphorus

3. Which three are known as primary plant foods?
 a. carbon
 b. zinc
 c. nitrogen
 d. phosphoric acid
 e. iron
 f. potash

4. The "rarer elements" include , , , molybdenum, copper, manganese:
 a. zinc
 b. magnesium
 c. boron
 d. iron
 e. nitrogen

5. functions to increase growth and slow up maturity.
 a. Phosphorus
 b. Calcium
 c. Nitrogen
 d. Oxygen

6. hastens maturity of crops.
 a. Nitrogen
 b. Sulphur
 c. Potash
 d. Phosphoric acid

PRE-TEST

Name ____________________________
7. __________ appears to aid plants in resisting certain diseases.
 a. Phosphorus
 b. Gypsum
 c. Nitrogen
 d. Potash
 e. Phosphoric acid

8. The term _______ is used to indicate the material in which the plant nutrient is found (commercial fertilizers).
 a. dryer
 b. carrier
 c. host
 d. conveyer

9. Lime does not furnish nitrogen, phosphoric acid or potash and is therefore classified as a
 a. carrier
 b. "helper"
 c. fertilizer
 d. amendment

10. Soil acidity is measured as
 a. tilth
 b. friability
 c. sourness
 d. sweetness
 e. pH

11. _______ is the process resulting in production of carbohydrates.
 a. Transpiration
 b. Photosynthesis
 c. Respiration
 d. Transportation

12. _______ is the process of absorption of water by root hairs, movement up through the stems, to the leaves. The remainder of the water is lost by evaporation through the stomata.
 a. Perspiration
 b. Photosynthesis
 c. Respiration
 d. Transportation

13. _______ is a destructive process by which food is destroyed, with a consequent release of energy, intake of oxygen, and outgo of carbon dioxide and water.
 a. Respiration
 b. Exhalation
 c. Transpiration
 d. Photosynthesis
21. Some knowledge of plant processes are important to the growth and nutrition of crops.

Photosynthesis is the process by which green plants combine carbon dioxide and water in the presence of sunlight, to form carbohydrates. This results in formation of carbohydrates.

22. Plants need a certain amount of water in carrying on their physiological processes. However, only a small percentage of the water that is absorbed by the root hairs and passes upward to the leaves is used in these processes. The reminder evaporates through the stomata as water vapor. This process is called transpiration.

23. Respiration unlike photosynthesis, which is limited to certain cells in the leaves, takes place in every living cell. Respiration is a destructive process by which food is destroyed with a consequent release of energy intake of oxygen and outgo of carbon dioxide and water. This results in release of carbon dioxide and water.

24. Transpiration is the process of absorption of water by the root hairs, and movement up through the stems, to the leaves. Respiration is the process involving release of energy, intake of oxygen and outgo of carbon dioxide and water.

25. Two soil characteristics equally important as limitations to plant growth are the physical texture and structure of the soil and the chemical fertility of the soil. These and are important soil characteristics to plant growth.
INFORMATION PANEL

This is a programmed instruction unit for "Plant Nutrition." You will find it relatively easy to answer the questions in each "frame." This method of instruction will aid you to master the objectives listed if you apply yourself to the material.

You are provided with a program and a combination answer sheet and mask to cover the answers.

1. Place the mask (answer sheet) over the answer in a way that exposes one question (frame) at a time.
2. Write your answer on the answer sheet.
3. Move the answer sheet down to expose the next frame and answer to the previous frame.
4. Should your answer be wrong, write the correct answer above or along side--do not erase your incorrect answer.
If you have not read the information panel, do so now, then proceed to frame 1.

Name

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29. (1)
(2)
30. --
<table>
<thead>
<tr>
<th>Name</th>
<th>31.</th>
<th>40. --</th>
<th>REVIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>--</td>
<td>45. --</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>--</td>
<td>46.</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>--</td>
<td>47.</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td></td>
<td>48. --</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>--</td>
<td>49.</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td></td>
<td>50. --</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td></td>
<td>51. --</td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>--</td>
<td>52.</td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

42. crop residue, green manures, commercial fertilizer, ammonium and nitrate salts by precipitation

crop removal, drainage, erosion, gaseous losses, unavailable forms
1. Fourteen elements have been recognized as being necessary for plant growth. Three from air and water are carbon, hydrogen, and oxygen. These elements account for over 90 percent of the total weight of the plant.

The three elements furnished by air and water are carbon, hydrogen, and oxygen.

<table>
<thead>
<tr>
<th>carbon</th>
<th>hydrogen</th>
<th>oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. The atmosphere provides carbon, hydrogen, and oxygen to plants.

<table>
<thead>
<tr>
<th>carbon</th>
<th>hydrogen</th>
<th>oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Nitrogen is taken from the air by certain groups of bacteria. The nitrogen assimilated by these organisms undergoes a change before it is used by higher plants. Certain groups of bacteria remove nitrogen from the air.

<table>
<thead>
<tr>
<th>nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

4. The bacteria taking nitrogen from the air may be associated with most, if not all, leguminous plants are nitrogen-fixing plants. Non-legumes do not fix nitrogen.

<table>
<thead>
<tr>
<th>nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

5. The nitrogen which is taken from the air by bacteria is combined in the soil to make soluble compounds before it can ordinarily be used by higher plants. Therefore, it is ordinarily stated that 7 elements come from the soil, and 3 from air and water.

The three from air and water (other than nitrogen) are carbon, hydrogen, and oxygen.

<table>
<thead>
<tr>
<th>carbon</th>
<th>hydrogen</th>
<th>oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elements</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, phosphoric acid, potash</td>
<td>Twelve elements are provided by the soil. Nitrogen, phosphoric acid, and potash are known as "primary plant foods" and are needed by plants in relatively large amounts and have long been recognized as those most likely to be deficient in soils. Copy them in the answer space.</td>
<td></td>
</tr>
<tr>
<td>Calcium, sulfur, magnesium</td>
<td>Calcium, sulfur, and magnesium are secondary plant foods. These secondary plant foods are usually needed in relatively large amounts. Copy in the answer space.</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, phosphoric acid, potash, calcium, sulfur, magnesium</td>
<td>are "primary plant foods."</td>
<td></td>
</tr>
<tr>
<td>Iron, manganese, copper, zinc, boron, molybdenum</td>
<td>Iron, manganese, copper, zinc, boron, and molybdenum are usually called the "rarer elements" or "minor plant foods." They are needed in minute amounts but are essential. Copy them in the answer space.</td>
<td></td>
</tr>
<tr>
<td>Iron, manganese, copper, zinc, boron, molybdenum</td>
<td>10. Continuing research is studying some eleven other mineral elements. However, ________, ________, and ________, are the "rarer elements" proven to be essential to plant growth.</td>
<td></td>
</tr>
<tr>
<td>growth</td>
<td>maturity</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Nitrogen functions to increase growth and defer maturity. It produces a good leaf and stem development and gives to the plant that luxurious dark-green color which is so desirable in growing crops. Nitrogen increases _______ and defers _______.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| nitrogen | 12. No matter how much phosphoric acid and potash there may be in the soil, the crops can use only quantities in proportion to the growth of the plants, and the growth of the plants will be in proportion to the _______ in the soil. |

| phosphoric acid | 13. Phosphoric acid hastens maturity of crops and aids in transferring substances from the stalk, leaves, and other growing parts to the seed, making the grains plump and full. Increases the proportion of grain to straw and also stimulates root development in young plants. |

| phosphoric acid | 14. _______ hastens the maturity of crops. Potash appears to aid the plants resisting certain diseases. An insufficiency of potash results in the early ripening or dying of the stems and leaves of plants while the seeds or fruit are still immature. |

<table>
<thead>
<tr>
<th>potash</th>
<th>carbon</th>
<th>hydrogen</th>
<th>oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. _______ appears to aid plants in resisting certain diseases. and are elements furnished by air and water. They make up 90 per cent of the plant weight.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Potash</td>
<td>Phosphoric Acid</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------------</td>
<td></td>
</tr>
</tbody>
</table>

16. The term "carrier" is used to indicate the material in which the plant nutrient is found.

For instance, sodium nitrate, superphosphate, and potassium sulfate are carriers of the "primary plant foods," and.

17. The term carrier is used to indicate the material in which the plant nutrient is found.

Chemical soil tests have been developed to determine which fertilizer elements are less than adequate in a particular soil.

18. Soil type has a marked effect on the results of fertilizer applied to soils having the same chemical test results. Clay soils are usually richer in plant nutrients than sandy soils. Sandy soils leach badly compared to clay soils, therefore, losing nutrients more quickly than clay soils. Certain chemical forms of a fertilizer elements are more quickly available and are more soluble than other forms. A sandy loam is rich in plant nutrients than a silty clay loam.

19. Chemical soils tests are important to a fertilization program.

A field trial based upon the chemical tests results can definitely establish the rate of fertilizer application by applying the amounts of fertilizer indicated by the chemical test to growing crops and by measuring the differences in crop yield. Soils do not leach as badly as do soils, and, therefore, do not loose nutrients as quickly.

20. Lime is called a soil "amendment" rather than a fertilizer, as it does not carry nitrogen, phosphoric acid or potash.

The acidity of the soil determines the kinds of crops that can be grown on a soil.

Lime is a soil amendment.
| photosynthesis | 21. Some knowledge of plant processes are important to the growth and nutrition of crops. Photosynthesis is the process by which green plants combine carbon dioxide and water in the presence of sunlight, to form carbohydrates.

| Respiration | 22. Plants need a certain amount of water in carrying on their physiological processes. However, only a small percentage of the water that is absorbed by the root hairs and passes upward to the leaves is used in these processes. The remainder evaporates through the stomata as water vapor. This process is called transpiration.

| Transpiration | 23. Respiration unlike photosynthesis, which is limited to certain cells in the leaves, takes place in every living cell. Respiration is a destructive process by which food is destroyed with a consequent release of energy intake of oxygen and outgo of carbon dioxide and water.

| Respiration | 24. is the process of absorption of water by the root hairs, and movement up through the stems, to the leaves. is the process involving release of energy, intake of oxygen and outgo of carbon dioxide and water.

| Physical texture | 25. Two soil characteristics equally important as limitations to plant growth are the physical texture and structure of the soil and the chemical fertility of the soil. and are important soil characteristics to plant growth.
26. Barnyard manure is valuable for its nutrient elements and for its organic matter content so beneficial to the physical structure of the soil. Manure is not a well-balanced fertilizer. It is low in phosphoric acid and relatively high in nitrogen and potash. Addition of phosphorous to manure adds much to its value.

<table>
<thead>
<tr>
<th>organic matter</th>
<th>phosphoric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manure is low in</td>
<td></td>
</tr>
</tbody>
</table>

27. Barnyard manure is valuable for its nutrient elements and for its organic matter content.

28. A green manure crop is one used for turning into the soil, whether planted for that purpose or not. For supplying organic matter to the soil, the crop that will produce the most growth in the time available should be chosen.

<table>
<thead>
<tr>
<th>green manure crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop that will produce the most growth in the time available should be chosen.</td>
</tr>
</tbody>
</table>

29. Fertilizers are made up of two major groups (1) Manures or organic amendments, and (2) Commercial fertilizers. Group I includes barnyard manures, green manures, crop residues and wastes that are plowed under for enrichment of the soil. Group II includes fertilizers produced commercially and sold singularly or in combination. A compost of leaves is [(1), or (2)]. Calcium nitrate is group [1]

(1) (2)

30. The mixed fertilizers are commonly referred to by a series of numbers such as 0 - 10 - 10, 5 - 10 - 20, etc. The first number stands for the percentage of nitrogen; the second number, available phosphoric acid; and the third number, the water soluble potash. 10 - 20 - 30 stands for 10 lbs. of nitrogen, 20 lbs. of phosphate, and 30 lbs. of potash in a 100 lb. sack.
31. 10 - 40 - 15 stands for __ lbs. potash, __ lbs. phosphoric acid, and __ lbs. nitrogen.
 Assume a 100# container.

32. 20 - 10 - 5 stands for 20 lbs. ____, 10 lbs. ____, and 5 lbs. ____.
 Assume a 100# container.

33. A crop rotation is any plan that is followed whereby one crop follows another. Usually one thinks of a well-planned program when referring to a crop rotation.

34. Some advantages of crop rotation are:
 1. Maintains fertility of the soil. The same crop grown successively uses more of one nutrient than of the others.
 2. Disease, weeds and insects are more easily controlled.
 3. Labor is distributed to better advantage.
 4. Legumes aid in maintaining soil fertility through nitrogen fixation.
 5. Erosion control is promoted through preservation of organic matter by proper rotation.
 6. Diversification spreads the financial risk. The farmer with a variety of crops has hedged against losses.

35. Can you think of any suggestions why any of the above might be true?
 List them.
<table>
<thead>
<tr>
<th>Crop Rotation</th>
<th>36. A fundamental approach to includes cash crop, cultivated crop, legume or hay crop (poorer quality soils would require more than one year in this last category).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble</td>
<td>37. Nitrogen in the soil is soluble and easily lost to drainage. Nitrogen has a rapid effect on plant growth. Such a potent nutrient element should not only be conserved but also regulated. Some of the intake and outgo of nitrogen can be controlled by man; some is beyond man’s control.</td>
</tr>
<tr>
<td></td>
<td>38. Nitrogen is and easily lost to drainage.</td>
</tr>
<tr>
<td>12 - 20 - 15</td>
<td>39. The nitrogen income of arable soils is derived from such materials as crop residues, green manures, farm manures, commercial fertilizers, and ammonium and nitrate salts brought down by precipitation. In addition, there is fixation of atmospheric nitrogen. 12 - 20 - 15 stands for lbs of phosphorus lbs of nitrogen lbs of potassium Assume 100# container</td>
</tr>
<tr>
<td></td>
<td>40. The outgo of nitrogen is due to crop removal, to drainage, to erosion, to loss in a gaseous condition, both elemental and ammonia, and to unavailable forms of nitrogen.</td>
</tr>
</tbody>
</table>
41. _____ has a rapid effect on plant growth.

nitrogen

crop residue, green manures, commercial fertilizer, ammonium & nitrate salts by precipitation---crop removal, drainage, erosion, gaseous losses, unavailable forms

42. One form of nitrogen income is _________.

One form of nitrogen outgo is _________.

43. Much of the nitrogen added to the soil undergoes many transformations before it is removed. \(\text{NH}_4 \) (ammonium) changes to \(\text{NO}_3 \) (nitrate). This nitrate form is either appropriated by microorganisms and higher plants, or is removed in drainage or volatilization. And so the cycle goes on and on.

44. Study the nitrogen cycle.
Table: Carbon-Nitrogen Ratios and Nitrogen Management

<table>
<thead>
<tr>
<th>Income</th>
<th>Outgo</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td>A close relationship exists between the organic matter and nitrogen contents of soils. This ratio of carbon to nitrogen in the organic matter of the furrow slice ranges from 8:1 to 15:1. This ratio controls the available nitrogen, total organic matter, and rate of organic decay. The relationship is called the carbon-nitrogen ratio. Green manure crops have a low ratio of carbon to nitrogen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Competition for available nitrogen results when residues having a high C:N ratio are added to the soil (straw at 80:1 carbon to nitrogen ratio for example). When a high carbon residue is added to a soil having a narrow C:N ratio, the demand for nitrate nitrogen becomes so great by the microorganisms rapidly decomposing the organic matter that little nitrate nitrogen is available for higher plants. This slows growth of plants.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A practical example would be the plowing under of wheat straw and planting a crop. Unless the nitrogen content is high the new crop will lack optimum nitrogen for growth. Commercial fertilizer in correct amounts will hasten decomposition of organic matter and release the nitrate nitrogen for the new crop. Moisture often limits the amount of fertilizer useable as a maximum amount. Farmers currently (A. add commercial nitrogen or B. burn stubble) to keep the C:N ratio low for a new growing crop.</td>
</tr>
<tr>
<td>30:1</td>
<td></td>
<td>30 parts carbon to 1 part nitrogen is a ratio of carbon to nitrogen.</td>
</tr>
</tbody>
</table>
51. Western Washington soils react to phosphorous fertilizer by "fixing" about 70 per cent of it into forms not available to plants. Eastern Washington soils do not lose this much nutrient value.

More important to the farmer is whether additions of fertilizers result in a profitable increase in production.

field trials

52. The amounts of fertilizer providing the best economic return can best be determined by chemical tests followed by field trials.

53. Farming is applied science. This program illustrates this. A farmer needs to make use of chemical test, resource people, and the scientific method in his farming enterprise.

REVIEW

The Primary plant foods are iron, sulfur, copper, and molybdenum.

Choose the secondary plant foods by placing the letter "S" in front of them and the "rarer elements" by putting an "R" in front of them.

- iron
- sulfur
- copper
- molybdenum
- calcium
- magnesium
- calcium
- manganese
- boron
- zinc
- zinc
- zinc
- zinc
- zinc
PLANT NUTRITION

Underline the Correct Answer

1. Water and air furnish three elements for plant growth. They are
 a. Manganese
 b. Phosphoric acid
 c. carbon
 d. oxygen
 e. copper
 f. zinc
 g. hydrogen

2. is taken from the air by certain groups of bacteria. It is available to plants through these bacteria.
 a. Oxygen
 b. Nitrogen
 c. Carbon
 d. Calcium
 e. Phosphorus

3. Which three are known as primary plant foods?
 a. carbon
 b. zinc
 c. nitrogen
 d. phosphoric acid
 e. iron
 f. potash

4. The "rarer elements" include molybdenum, copper, manganese.
 a. zinc
 b. magnesium
 c. boron
 d. iron
 e. nitrogen

5. functions to increase growth and slow up maturity.
 a. Phosphorus
 b. Calcium
 c. Nitrogen
 d. Oxygen

6. hastens maturity of crops.
 a. Nitrogen
 b. Sulphur
 c. Potash
 d. Phosphoric acid

A-19
7. ___________ appears to aid plants in resisting certain diseases.
 a. Phosphorus
 b. Gypsum
 c. Nitrogen
 d. Potash
 e. Phosphoric acid

8. The term ___________ is used to indicate the material in which the plant nutrient is found (commercial fertilizers).
 a. dryer
 b. carrier
 c. host
 d. conveyer

9. Lime does not furnish nitrogen, phosphoric acid or potash and it therefore classified as a
 a. carrier
 b. "helper"
 c. fertilizer
 d. amendment

10. Soil acidity is measured as
 a. tilth
 b. friability
 c. sourness
 d. sweetness
 e. pH

11. ___________ is the process resulting in production of carbohydrates.
 a. Transpiration
 b. Photosynthesis
 c. Respiration
 d. Transportation

12. ___________ is the process of absorption of water by root hairs, movement up through the stems, to the leaves. The remainder of the water is lost by evaporation through the stomata.
 a. Perspiration
 b. Photosynthesis
 c. Respiration
 d. Transportation

13. ___________ is a destructive process by which food is destroyed, with a consequent release of energy, intake of oxygen, and outgo of carbon dioxide and water.
 a. Respiration
 b. Exhalation
 c. Transpiration
 d. Photosynthesis

Name ____________________
14. Barnyard manure is valuable for its nutrient elements and for its
 a. phosphoric acid
 b. calcium
 c. organic matter
 d. nitrogen

15. 12-15-7 stands for a commercial fertilizer mixture of 12%__________, 15%__________, and 7%__________.
 a. sulfur
 b. phosphoric acid
 c. potash
 d. nitrogen
 e. calcium
 f. sulfur

16. One approach to ________ includes a cash crop, a cultivated crop, and a legume or hay crop.
 a. nitrification
 b. crop rotation
 c. nutrition
 d. a carbon cycle

17. ________ in the soil is soluble and easily lost to drainage.
 a. Phosphoric acid
 b. Sulfur
 c. Potash
 d. Nitrogen

18. Crop residues, commercial fertilizers, and ammonium and nitrate salts by precipitation are forms of
 a. phosphorus
 b. potash
 c. nitrogen
 d. calcium

19. ________ is most readily available and in larger amounts for microorganisms and plant growth.
 a. N, nitrogen
 b. NH₄, ammonium
 c. NO₂, nitrite
 d. NO₃, nitrate

20. The relationship between nitrogen and carbon is called the
 a. nitrogen-carbon ratio
 b. carbon-nitrogen ratio
 c. potash cycle
 d. carbon-nitrogen equivalent
LAND JUDGING

This program is "Land Judging." It is to follow "Plant Nutrition." "Land Judging" is designed to introduce the subject of soil management. This program includes the following knowledges:

1. Why land is classified.
2. How land is classified.
3. What the classifications are.
4. What pH is and its affect on plant growth.
5. What the seven factors of classification are.
LAND Name ________________

PRE-TEST

Underline the correct answer(s)

1. Land classes suitable for cultivation are ______, ______, ______ and ______.
 a. I
 b. II
 c. III
 d. IV
 e. VI
 f. VII
 g. VIII

2. Land classes not suitable for cultivation are ______, ______, and ______.
 a. I
 b. II
 c. III
 d. IV
 e. VI
 f. VII
 g. VIII

3. Land slope is defined as the number of feet fall per ______.
 a. 10 feet
 b. 100 feet
 c. 25 feet
 d. 1,000 feet

4. Soil depth is the effective depth that roots and ______ can penetrate the soil.
 a. moisture
 b. a drill
 c. a shallow rooted plant
 d. a post hole digger

5. Soil permeability refers to the rate of movement of ______ and ______ through the soil.
 a. roots
 b. moisture
 c. air
 d. fertilizer

6. Soils that feel "sticky" when moist are ______ textured soils.
 a. loam
 b. silt
 c. medium
 d. fine
 e. coarse
7. "Silty" or "Loamy" textured soils are ________.
 a. fine
 b. medium
 c. coarse
 d. heavy

8. ________ is the major influence for rate of water run-off.
 a. Slope
 b. Soil drainage
 c. Permeability
 d. Flexibility

9. Soil ________ refers to how rapidly the land drains after snow melt or heavy rains.
 a. length of life
 b. drainage
 c. permeability
 d. slope

10. Moderate erosion is a loss of top soil between ________ per cent.
 a. 10-20
 b. 15-30
 c. 25-75
 d. 30-60

11. The acidity, or alkalinity (sweetness) of a soil are measured in terms of ________.
 a. pH
 b. bH
 c. sourness
 d. cation exchange

12. Land that can be used regularly for crops in a good rotation but needs intensive treatment and is subject to serve limitations in use for crop land class ________.
 a. I
 b. III
 c. IV
 d. VI

13. Land that is very deep is greater than ________ deep.
 a. 30"
 b. 40"
 c. 50"
 d. 60"
14. The individual parts of soil are called soil __________________.
 a. conglomerates
 b. clumps
 c. particles
 d. pieces

15. A common example of a soil profile having limiting permeability is one having a heavy layer of __________ in the subsoil.
 a. sand
 b. minerals
 c. clay
 d. nutrient

INFORMATION PANEL

This is a programmed instruction unit for "Land Judging." You will find it relatively easy to answer the questions in each "frame." This method of instruction will aid you to master the objectives listed if you apply yourself to the material.

You are provided with a program and a combination answer sheet and mask to cover the answers.

1. Place the mask (answer sheet) over the answer in a way that exposes one question (frame) at a time.
2. Write your answer on the answer sheet.
3. Move the answer sheet down to expose the next frame and answer to the previous frame.
4. Should your answer be wrong, write the correct answer above or along side—do not erase your incorrect answer.

Name ____________________

A-25
Land

If you have not read the information panel, do so now, then proceed to frame 1.

Name ____________________________

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td></td>
<td>to</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td></td>
<td>to</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td></td>
<td>to</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td></td>
<td>to</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A-26
Name	62.	63.	64.	65.	66.	67.	68.	69.	70.	71.	72.	73.	74.	75. a.	76.	77.	78.	79.	80.	81.	82.	83.	84. m	

A-28
<p>| Name | 86. | 87. | 88. | 89. | 90. | 91. | 92. | 93. | 94. | 95. | 96. | 97. | 98. | 99. | 100. | 101. | 102. | 103. | 104. | 105. | 106. | 107. | 108. | 109. | 110. | 111. | 112. | 113. | 114. | 115. | A-29 |
|--------------|</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Before you start the program, you should read the instruction sheet. If you have not already done so, read the instruction sheet now. If you read it, proceed to frame 7.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>capability</td>
<td>2. For the most hazard free land usage we classify our soil into "ability to produce" groups, or land capability classes. These eight capability classes are divided according to their capability.</td>
</tr>
<tr>
<td>classify</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Just as a doctor checks pulse and temperature of a patient before classifying the sickness, so do we learn to check the seven symptoms of our land before attempting to classify it.</td>
</tr>
<tr>
<td>seven</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. We look for factors or symptoms before classifying the land and recommending certain crop usage for it.</td>
</tr>
<tr>
<td>seven</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. The reason for classifying or classification of land is to make the best use of the land. We wish to gain the biggest return from our investment without permanent loss of the soil or its fertility.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-31</td>
</tr>
<tr>
<td>factors or symptoms</td>
<td>6. Efficient classification of the land will require a detailed knowledge of the seven s.</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>depth</td>
<td>7. Soil depth is the first factor we will consider in detail.</td>
</tr>
<tr>
<td></td>
<td>Soil depth is determined by the depth of penetration of roots and moisture.</td>
</tr>
<tr>
<td>moisture or root</td>
<td>8. Soil depth may be measured by either or penetration.</td>
</tr>
<tr>
<td>soil depth</td>
<td>9. We classify soils as very shallow, shallow, moderately deep, deep or very deep.</td>
</tr>
<tr>
<td></td>
<td>These are divisions or categories of</td>
</tr>
<tr>
<td></td>
<td>10. Soil depths are separated by inches as follows:</td>
</tr>
<tr>
<td></td>
<td>0-10" - very shallow</td>
</tr>
<tr>
<td></td>
<td>10-19" - shallow</td>
</tr>
<tr>
<td></td>
<td>20-35" - moderately deep</td>
</tr>
<tr>
<td></td>
<td>36-59" - deep</td>
</tr>
<tr>
<td></td>
<td>60" or more - very deep</td>
</tr>
<tr>
<td></td>
<td>Copy the soil depths.</td>
</tr>
</tbody>
</table>
11. Deep soils are from 36-60 inches deep.
Alfalfa roots found at 53 inches depth is an indication of a ________ soil.

<table>
<thead>
<tr>
<th>deep</th>
<th>11. Deep soils are from 36-60 inches deep. Alfalfa roots found at 53 inches depth is an indication of a ________ soil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>moisture</td>
<td>12. Very deep soils can be identified by evidence of ________ or________ roots at 60 inches or deeper.</td>
</tr>
<tr>
<td>or roots</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13. Very shallow soils are less than 10 inches deep. Shallow soils are from ________ to 19 inches deep.</td>
</tr>
<tr>
<td>36</td>
<td>14. Moderately deep soils are from 20 to 36 inches deep. Deep soils are from ________ to 60 inches deep.</td>
</tr>
<tr>
<td>60</td>
<td>15. Very deep soils are ________ inches or deeper.</td>
</tr>
</tbody>
</table>

A-33
<table>
<thead>
<tr>
<th>Question</th>
<th>Soil Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>Very shallow soils are less than _____ inches deep.</td>
</tr>
<tr>
<td>17.</td>
<td>Moderately deep soils are _____ to _____ inches deep.</td>
</tr>
<tr>
<td>18.</td>
<td>Shallow soils are from _____ to _____ inches deep.</td>
</tr>
<tr>
<td>19.</td>
<td>Deep soils are from _____ to _____ inches deep.</td>
</tr>
<tr>
<td>20.</td>
<td>Very deep soils are _____ inches deep or more.</td>
</tr>
</tbody>
</table>

If you answer the following questions correctly, move on to question 21. Otherwise, turn back to question 11 for a review.

<table>
<thead>
<tr>
<th>Soil Layer</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow</td>
<td>0-10</td>
</tr>
<tr>
<td>20-36</td>
<td></td>
</tr>
<tr>
<td>36-60</td>
<td></td>
</tr>
<tr>
<td>Very deep</td>
<td>60 or over</td>
</tr>
</tbody>
</table>

A-34
SOIL PROFILES

Diagrams of vertical profiles showing depths of soils

A

- top soil
- sub soil
- 14" solid bedrock

B

- top soil
- sub soil
- 34" impermeable clay pan

C

- top soil
- sub soil
- 39" bedrock

D

- top soil
- sub soil
- 68" rock

A-35
<table>
<thead>
<tr>
<th>Soil Profile</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shallow</td>
<td>Refer to information panel, page A-35 to answer frames 21 - 24.</td>
</tr>
<tr>
<td></td>
<td>21. The depth of soil profile "A" would be classified as ______.</td>
</tr>
<tr>
<td>moderately deep</td>
<td>22. The depth of soil profile "B" would be classified as ______.</td>
</tr>
<tr>
<td>deep</td>
<td>23. The classification would be ______ for soil profile "C".</td>
</tr>
<tr>
<td>very deep</td>
<td>24. Soil profile "D" would be classified as ______.</td>
</tr>
<tr>
<td>moderately deep</td>
<td>25. Failure to find evidence of moisture or roots deeper than 22 inches would indicate ______ soil depth.</td>
</tr>
</tbody>
</table>
Soil surface texture is classified according to the proportion of sand, silt, and clay that make up the soil mass.

The size of individual particles of soil influences the ability of the soil to absorb and store water and air.

After looking at and feeling the soil, we can then classify the surface texture as:

- **Fine** - "clayey" soils that feel sticky or slick to the touch.
- **Medium** - "silty" soils that feel smooth or "floury" to the touch.
- **Coarse** - "very sandy" soils that feel gritty or abrasive to the touch.
<table>
<thead>
<tr>
<th>Surface Texture</th>
<th>26. Soil refers to the composition of the important top six inches of soil -- the root zone.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Texture</td>
<td>27. Texture of clothing is sometimes referred to as "coarse." We speak of soils as fine, medium, or coarse textured. We are referring to a six-inch layer. How would you decide whether a soil were fine, medium, or coarse?</td>
</tr>
<tr>
<td>Soil Surface Texture</td>
<td>28. Perhaps a series of different sized sieves would work to determine soil texture.</td>
</tr>
<tr>
<td>Fine, Medium, or Coarse</td>
<td>29. Sieves are used in the laboratory, but are awkward for field use. Field men learn to determine soil surface texture by moistening it and rubbing it between the thumb and forefinger. In this way they can determine if the soil surface texture is sand, silt, or clay.</td>
</tr>
<tr>
<td>Sand, Silt, Clay</td>
<td>30. Soils are composed of sand, silt, and clay, the individual parts being called particles.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>31.</td>
<td>Particle size determines ability of the soil to hold air and water.</td>
</tr>
<tr>
<td>particle</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Particle size influences the ability of the soil to absorb and store [] and [].</td>
</tr>
<tr>
<td>air water</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Sandy soils feel abrasive and "gritty" to the touch. Sandy soils have a [] texture.</td>
</tr>
<tr>
<td>coarse</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>Coarse soils are predominately sand with some silt and clay. Desert soils are usually [] in texture due to large proportions of sand.</td>
</tr>
<tr>
<td>coarse</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>Soils having enough clay to feel "slick" and "sticky" have a [] texture.</td>
</tr>
<tr>
<td>fine</td>
<td></td>
</tr>
<tr>
<td>Textural Class</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Fine textured soils</td>
<td>Feel sticky or slick to the touch.</td>
</tr>
<tr>
<td>Coarse textured soil</td>
<td>Feel gritty to the touch.</td>
</tr>
<tr>
<td>Medium textured soils</td>
<td>With a large quantity of silt that feel smooth and floury are classified as having a medium texture.</td>
</tr>
<tr>
<td>Medium textured soils</td>
<td>Feel smooth or floury to the touch.</td>
</tr>
<tr>
<td>Smooth or floury soils</td>
<td>Medium textured soils feel smooth or floury to the touch.</td>
</tr>
<tr>
<td>Soils</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
</tbody>
</table>
| a-fine | 41. a. textured soils feel sticky.
| | b. textured soils feel gritty.
| | c. textured soils feel smooth and
| b-coarse | floury.
| c-medium |

42. List the classifications of soil surface texture and indicate how they feel.

43. The purpose of this classification is to accurately field test a soil as to its

44. The individual parts of these soils are called soil

45. Soil is composed of varying proportions of sand, silt, clay
<table>
<thead>
<tr>
<th></th>
<th>REVIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A. Very shallow soils are 0 to _____ inches deep.</td>
</tr>
<tr>
<td>10-20</td>
<td>B. Shallow soils are _____ to _____ inches deep.</td>
</tr>
<tr>
<td>Moderately deep</td>
<td>C. _________ soils are 20 to 36 inches deep.</td>
</tr>
<tr>
<td>deep 35 to 60</td>
<td>D. _________ soils are _____ to _______ inches deep.</td>
</tr>
<tr>
<td>60</td>
<td>E. Very deep soils are greater than _______ inches deep.</td>
</tr>
</tbody>
</table>

A-42
Soil depth is the effective depth that roots and moisture can penetrate.

Fine soils characterized by a sticky feeling when moist are chemically fertile but are often a problem physically. They are either too hard for adequate moisture penetration or too moist and sticky to disc and cultivate for seedbed preparation. Soil surface texture is an important consideration in land classification for hazard free land usage.

Soil is composed of varying proportions of sand, silt, and clay. Depending upon the proportions of sand, silt, and clay, we speak of soils in the three textural categories fine, medium, and coarse.

The next section of this program will consider the effect of fine, medium, and coarse textured soils on the movement of air and water through the entire profile (depth) of the soil.
Soil permeability refers to the rate of movement of air and water through the subsoil. Soils may be placed into relative permeability classes through studies of structure, texture, cracking, density and other features. Structure refers to the arrangement of soil particles into granules, clods, columns, or crumbs. We classify permeability as:

Limiting - soils which have dense, heavy clay or clay pan subsoils. Soils under this classification feel sticky and plastic, have the appearance of putty, press out thin between the fingers without crumbling when wet.

Adequate - granular clay loam or silt loam subsoils. Soils with strata cracks usually running perpendicular to the surface. This type of soil is ideal for most agricultural purposes since the water, air, and plant roots can penetrate easily. Yet the soil column is firm and stable.

Excessive - sandy, coarse subsoils through which water and air move freely.
Soil depth, you will recall, was important as it affects the amount of moisture available to crops. Soil permeability refers to the rate of movement of air and water through the subsoil.

How well excess moisture drains through the soil profile is a function of permeability.

Soils may be placed into relative classes through studies of structure, texture, cracking, density, and other features.

Structure of the soil profile is determined by the "clumping" of individual particles. This affects the movement of air and moisture through the entire soil profile.

For our system of classification, we will divide soil permeability into limiting, adequate, or excessive.

Soils that have dense clays in their subsoil would limit movement of water through the profile. We would classify their permeability as limiting.

A common example of a soil profile having limiting permeability is one having a heavy layer of clay in the subsoil.
adequate	51. A medium texture soil throughout the profile would result in _______ permeability.
smooth or	52. A soil profile having adequate permeability would feel _______ to the touch throughout the profile.
floury	
excessive	53. A deep sandy soil would have excessive drainage of water through the profile.
	The permeability of this soil would be _______.
sand	54. A soil having excessive permeability would consist largely of _______.
surface	55. Permeability pertains to the effective depth of a soil and not to the surface six inches as does soil _______ _______.
texture	

A-46
| permeability | 56. A dense subsoil of a putty-like consistency would be classified as having limiting permeability that would limit water movement through the soil. Obviously a narrow horizontal band of soil of a particular texture can result in a limiting permeability.

| excessive permeability | 57. A soil that is excessively drained because of a sandy, coarse subsoil has excessive permeability.

| limiting permeability | 58. Very slow movement of air and moisture through the soil indicates limiting permeability.

| adequate permeability | 59. A satisfactory movement of air and moisture through the soil is called adequate permeability.

| a-limiting b-adequate c-excessive | 60. The three classifications of permeability are limiting, adequate, and excessive. |
SOIL PROFILES

Diagrams of vertical profiles showing permeability.

A

medium texture
-- 15"
dense clay
-- 60"

B

heavy sand
-- 60"

C

equal proportions of silt, clay, sand
-- 60"

D

medium texture
dense clay
-- 12"
bedrock

E

sand
-- 14"
bedrock

A-48
Refer to information panel, page A-48 to answer frames 61 - 65.

<table>
<thead>
<tr>
<th>Limiting</th>
<th>Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>61. Profile "A" demonstrates</td>
<td>permeability.</td>
</tr>
<tr>
<td>Excessive</td>
<td>Permeability</td>
</tr>
<tr>
<td>62. Profile "B" is an example of</td>
<td>permeability.</td>
</tr>
<tr>
<td>Adequate</td>
<td>Permeability</td>
</tr>
<tr>
<td>63. Profile "C" is an example of</td>
<td>permeability.</td>
</tr>
<tr>
<td>Limiting</td>
<td>Permeability</td>
</tr>
<tr>
<td>64. "D" profile demonstrates</td>
<td>permeability.</td>
</tr>
<tr>
<td>Excessive</td>
<td>Permeability</td>
</tr>
<tr>
<td>65. "E" profile demonstrates</td>
<td>permeability.</td>
</tr>
<tr>
<td>Soil Color</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Light</td>
<td>Soil color is a rather subtle clue to the history of a particular soil. Soil color is divided into three divisions: light, medium dark, and dark. Write the three color divisions in the answer box.</td>
</tr>
<tr>
<td>Medium dark</td>
<td>67. Dark soil is nearly black and is usually (high or low) in inherent fertility.</td>
</tr>
<tr>
<td>Dark</td>
<td>68. Soil with a high inherent fertility level is usually classified as having a _______ color.</td>
</tr>
<tr>
<td>Medium</td>
<td>69. Medium dark soil has a moderate level of inherent fertility. Dark gray to light brown soils indicate a _______ color.</td>
</tr>
<tr>
<td>Medium</td>
<td>70. Medium dark soil has a (high, medium, low) level of inherent fertility.</td>
</tr>
<tr>
<td>light</td>
<td>71. A low or very low inherent fertility is indicated by a _______ color.</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>low</td>
<td>72. Light gray to pale brown surface soils usually have a _______ inherent fertility level.</td>
</tr>
<tr>
<td>soil</td>
<td>73. Soil color is not always a reliable clue to inherent fertility. Soil color may or may not indicate inherent _______.</td>
</tr>
<tr>
<td>fertility</td>
<td></td>
</tr>
<tr>
<td>dark</td>
<td>74. Soil color is divided into three divisions. They are _______, _______, and _______.</td>
</tr>
<tr>
<td>medium dark</td>
<td></td>
</tr>
<tr>
<td>light</td>
<td></td>
</tr>
<tr>
<td>a-medium</td>
<td>75. List the probable inherent fertility level indicated by each of the following soil colors:</td>
</tr>
<tr>
<td>b-low</td>
<td>a. medium dark - _______</td>
</tr>
<tr>
<td>c-high</td>
<td>b. light - _______</td>
</tr>
<tr>
<td></td>
<td>c. dark - _______</td>
</tr>
</tbody>
</table>

A-51,
Slope. Slope is very important because it influences the rate at which water runs over the soil. This runoff is one of the causes of erosion. Slope also influences the way in which the land can be farmed. Slope is expressed by the number of feet of fall in each 100 linear feet. Slope ranges vary widely in different areas. For instance, land with 8 to 12 feet fall per 100 linear feet might be considered steep or very steep in some climates and soil conditions. It might be considered only moderately sloping under other conditions of less intensive climatic conditions. It is necessary, therefore, that for purposes of judging contests, slope ranges applicable to the contest area be used. The following will give an idea of the manner in which slope ranges are expressed:

(2% means 2 feet fall per 100 linear feet of distance)

- Nearly level
- Gently sloping
- Moderately sloping
- Strongly sloping
- Steep
- Very steep

![Diagram of soil surface with 10% slope](image)
<table>
<thead>
<tr>
<th>Slope</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearly level</td>
<td></td>
</tr>
<tr>
<td>Gently sloping</td>
<td></td>
</tr>
<tr>
<td>Moderately sloping</td>
<td></td>
</tr>
<tr>
<td>Strongly sloping</td>
<td></td>
</tr>
<tr>
<td>Steep</td>
<td></td>
</tr>
<tr>
<td>Very steep</td>
<td></td>
</tr>
</tbody>
</table>

76. Slope is important as it directly influences water run off and erosion.

is expressed as the number of feet of fall per 100 linear feet of "run."

77. Slope ranges are expressed as nearly level, gently sloping, moderately sloping, strongly sloping, steep, and very steep.

Write the slope ranges in the answer box.

78. Two per cent fall means _______ feet fall per 100 linear feet.

2

79. Erosion is partially caused by water runoff, which is due to per cent of _______.

The slope of the land is the major influence on erosion.

80. Slope is divided into six categories.

They are nearly _______ , gently sloping, moderately sloping, strongly sloping, steep, and very _______.

A-53
The Six Categories of Slope

<table>
<thead>
<tr>
<th>Nearly Level</th>
<th>Gently Sloping</th>
<th>Moderately Sloping</th>
<th>Strongly Sloping</th>
<th>Steep</th>
<th>Very Steep</th>
</tr>
</thead>
</table>

81. The six categories of slope are: ______ level, ______ sloping, ______ sloping, ______ sloping, ______ and ______ steep.

82. List the six categories of slope.

83. If you answered from #82 without error, well done! Go to page A-56. Otherwise, continue with frame #83.

Very little erosion might be expected due to a ______ slope or a ______ land.

84. Greater degrees of erosion might be expected on slopes ranging from ______ ______ to ______ ______ to ______ ______ to ______ ______.

85. The six categories of slope are:

<table>
<thead>
<tr>
<th>Nearly Level</th>
<th>Gently Sloping</th>
<th>Moderately Sloping</th>
<th>Strongly Sloping</th>
<th>Steep</th>
<th>Very Steep</th>
</tr>
</thead>
</table>

A-54
Soil drainage. How rapidly or slowly the land drains after snow melt or heavy rains. Land subject to overflow by streams is less attractive to the farmer than higher-lying well drained land. Flat slopes that drain slowly are less desirable than those that drain moderately well. Similarly, gravelly or sandy soils that are excessively drained and droughty are less desirable than those with moderate drainage. These classifications may be used:

Limiting - water is removed so slowly that the soil remains wet for a large part of the time.

Adequate - this is normal drainage, no water problems.

Excessive - water is removed in an excessive amount and rate, causing drought conditions.
<p>| soil drainage | 86. Soil drainage is a function (result) of soil permeability and slope. How rapidly or slowly the land drains after snow melt or heavy rain is called _______ _______. |
| limiting | 87. The result of vertical movement of moisture through, and lateral movement across, the land is classified as limiting, adequate, or excessive. |
| adequate | 88. You will notice that permeability and soil drainage are described by the same terms: _______, or _______. |
| excessive | 89. With limiting soil drainage, water is removed so slowly that the soil remains wet for a large part of the time. Swampy lands would have _______ drainage. |
| adequate | 90. Adequate drainage is normal drainage with no water problems. A soil with adequate permeability and no slope problem will probably have _______ soil drainage. |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91. A heavy clay subsoil and a "flat" slope might indicate soil drainage.</td>
<td>limiting</td>
</tr>
<tr>
<td>92. A medium textured soil profile (topsoil and subsoil) with an even, moderate slope will probably have soil drainage.</td>
<td>adequate</td>
</tr>
<tr>
<td>93. A soil profile that is coarse textured will probably have soil drainage.</td>
<td>excessive</td>
</tr>
<tr>
<td>94. A fine surface texture with a medium texture subsoil will probably have soil drainage.</td>
<td>adequate</td>
</tr>
<tr>
<td>Soil drainage is a function of water movement through the soil (permeability) and across the soil surface (slope).</td>
<td></td>
</tr>
<tr>
<td>95. Soil drainage is classified as and</td>
<td></td>
</tr>
<tr>
<td>limiting adequate excessive</td>
<td></td>
</tr>
</tbody>
</table>

A-57
Erosion. The loss of soil by the effects of water and wind is called erosion. Excessive accumulation of soil particles and sand due to the force of wind is also evidence of erosion.

The percentage of erosion can be measured by comparing the depth of topsoil at the field test site with topsoil in a nearby protected area where no erosion has occurred.

- **None to slight erosion** - nearly all the original topsoil remains, or less than 25% of topsoil lost by erosion; no gullies which cannot be crossed by farm machinery.

- **Moderate erosion** - the top several inches may be lost, 25% to 75% of topsoil lost by erosion, without frequent uncrossable gullies.

- **Severe erosion** - the topsoil being farmed is less than a plow depth and the result is a mixture of topsoil and subsoil, or more than 75% of topsoil lost by erosion with occasional uncrossable gullies.
| 96. The loss of soil by the effects of water and wind is called |
|erosion|
| 97. Erosion by _______ and _______ is evidenced by an accumulation of soil particles and sand, examples being the sand dunes of the desert and river deltas. These "accumulations" are materials which have been transported by wind or water from one place to another. | wind and water|
| 98. The extent of _______ is measured from the amount of original topsoil as opposed to the amount of topsoil present now. | erosion|
| 99. Erosion terms, such as none to slight, moderate, and severe erosion are based on the percentage of erosion. | none to slight, moderate, severe|
| 100. Less than 25% loss of topsoil is called _______. | none to slight|
|

A-59
<table>
<thead>
<tr>
<th>none to slight</th>
<th>moderate</th>
<th>severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25%:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>moderate - 25-75%:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>severe-greater than 75%:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

101. From 25% to 75% of topsoil loss is defined as moderate erosion.

102. When the topsoil being farmed is less than plow depth or when more than 75% is lost by erosion, we call this severe erosion.

103. For purposes of classification and correct technical language, then, we speak of erosion as (0-25%) to (25%-75%), or (greater than 75%).

104. The percentage of loss of topsoil determines which category of erosion a soil "fits." Now list the three divisions and their percentages.

105. To calculate percentage of erosion, one must know the depth of topsoil as opposed to the amount of topsoil.

A-60
SOIL PROFILES

Diagrams of vertical profiles showing % of Erosion

A1

Soil Surface

16" original topsoil

8" present topsoil

16" original topsoil

8/16 = 1/2 or 50% topsoil remaining

A2

Soil Surface

8" original topsoil

8" present topsoil

8/16 = 1/2 or 50% topsoil remaining

B1

Soil Surface

6" original topsoil

6" present topsoil

6/12 = 1/2 or 50% topsoil remaining

B2

Soil Surface

6" original topsoil

6" present topsoil

6/12 = 1/2 or 50% topsoil remaining

C1

Soil Surface

16" original topsoil

2" present topsoil

? = ? % of topsoil remaining

C2

A-61
<table>
<thead>
<tr>
<th>Level</th>
<th>Soil Profiles</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>moderate</td>
<td>Soil profile "A" (A₁ and A₂)</td>
<td>would be classified as erosion.</td>
</tr>
<tr>
<td>none to slight</td>
<td>Soil profiles "B" (B₁ and B₂)</td>
<td>would be classified as erosion.</td>
</tr>
<tr>
<td>severe</td>
<td>Soil profiles "C" (C₁ and C₂)</td>
<td>would be classified as erosion.</td>
</tr>
<tr>
<td>50%</td>
<td>Given 20" original topsoil and 10" of topsoil now evident, what per cent loss of erosion would this be?</td>
<td></td>
</tr>
<tr>
<td>66% moderate</td>
<td>Given 9" of original topsoil and "now present, the per cent of loss and the category of erosion are</td>
<td></td>
</tr>
</tbody>
</table>
111. Land used best for cultivated crops are land classes I, II, III. Land classes II and III are best used in rotation to maintain a relatively high organic matter content. Land class IV is grouped with cultivable land classes also.

Land class I can be cultivated every year with relatively small risk.

112. Land class IV is best used for hay or pasture with an occasional cultivated crop possible. Land class VI is best used for range. Corn crop every year is economically sound on land class VI soil.

Land classes I, II, III, IV can be cultivated. Land classes VI, VII, VIII are not cultivated because of extreme hazards.

113. Land class VII soil is best used for range and woodland and land class VIII for recreation and wildlife. Land suitable for grazing cattle is classified as land class VIII.

114. Land most suited for parks is classified as land class VIII.

115. The best land capability class a soil with moderate permeability can be assigned is land class I.
<table>
<thead>
<tr>
<th></th>
<th>116. The maximum land capability class that can be assigned to a soil with a light-colored surface soil is</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>117. The texture of a soil affects its water holding capacity. As the soil particle size decreases the water holding capacity increases.</td>
</tr>
<tr>
<td></td>
<td>118. A coarse textured soil will probably require (a) less fertilizer, (b) more fertilizer, (c) tile drains.</td>
</tr>
<tr>
<td></td>
<td>119. Structure of a soil refers to how individual soil particles are grouped together to form (a) organic matter, (b) aggregates, (c) clay.</td>
</tr>
<tr>
<td></td>
<td>120. The maximum land capacity class of: a shallow soil is (a) IV, III, IV, a moderately deep soil (b) a deep soil</td>
</tr>
</tbody>
</table>

A-64
<table>
<thead>
<tr>
<th></th>
<th>121. The maximum capability class of severely eroded soil is land class ________.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>122. The maximum land class of a moderately eroded soil is land class ________.</td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>123. The maximum land capability class of a soil with limited surface drainage is land class ________.</td>
</tr>
<tr>
<td>V or VI (V - where this class is used)</td>
<td>Field practice is necessary as well as study of detailed land class description to master correct assignment of a soil to a land class.</td>
</tr>
<tr>
<td></td>
<td>124. Single grain structure is associated with spits high in (a) silt, (b) clay, or (c) sand.</td>
</tr>
<tr>
<td></td>
<td>125. The ease with which water moves through the soil is referred to as permeability.</td>
</tr>
</tbody>
</table>

A-65
Climate is important because it influences the kinds of crops that can be grown on a soil. The most important factor of climate to crop response is temperature.

127. Extremely low temperatures, or too short a period of favorable temperature for crop maturity, or occurrence of frost pockets, where frost occurs during the growing season, are definite limitations of climate.

128. These low temperatures and frost pockets are found in the northern United States or at high elevations or in valleys and pockets with poor natural air drainage.

129. Climate is limiting where there is poor air drainage or a short growing season of less than 120 days.

130. Adequate climate is represented by a growing season greater than 120 days, and no climatic problems.
Stoniness refers to the relative proportion of stones in or on the soil. They have an important bearing on soil use because of their interference with the use of agricultural machinery.

We classify non-stony as no stones or too few to interfere with tillage.

The word is

We classify land as stony if there are sufficient stones to make all use of machinery impracticable except for very light machinery or hand tools for pasture improvement.

PH is an expression used to measure the acidity or alkalinity of a soil. This is determined by the use of chemical indicators applied to the soil with resulting colors compared to a color chart of known determinations. PH is important because all plants grow within a certain reaction range. Some plants will grow best in slightly acid soils, but will not grow in alkaline soil. Different plants grow best in a slightly alkaline soil. If we know the PH of a soil we know what type of plant will grow best in that PH range. We classify PH on a scale of 0-14 as follows: Acid - below 6.6; Neutral - 6.6-7.3; Alkaline - above 7.4.

PH is a measure of a soil's acidity or neutrality.
<table>
<thead>
<tr>
<th></th>
<th>136. Soils below a pH of 6.6 are</th>
</tr>
</thead>
<tbody>
<tr>
<td>acid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>137. Soils with a pH above _____ are alkaline.</td>
</tr>
<tr>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>neutral</td>
<td>138. Soils with a pH between 6.6 and 7.3 are _____</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LAND JUDGING SCORE CARD

INVENTORY OF LAND FACTORS

Part I

Indicate your answer by an X in the proper square.

EFFECTIVE DEPTH
- Very Deep
- Deep
- Moderately Deep
- Shallow
- Very Shallow

SURFACE TEXTURE
- Fine
- Medium
- Coarse

PERMEABILITY
- Limiting
- Adequate
- Excessive

SLOPE
- Nearly Level
- Gently Sloping
- Moderately Sloping
- Steep
- Very Steep

SURFACE DRAINAGE
- Limiting
- Adequate
- Excessive

EROSION
- None to Slight
- Moderate Erosion
- Severe Erosion

CLIMATE
- Limiting
- Adequate

STONINESS
- Non-stony
- Stony

RECOMMENDATIONS

Part II

Recommendations for best land use.

(Select One)

- Cultivated
- Hay or Pasture
- Range
- Woodland
- Wildlife, Watershed, & Recreation

CLASSIFICATION

Indicate by an X the major limiting factors or problems to be considered in selecting the proper land classification.

- Depth
- Surface Texture
- Permeability
- Color
- Slope
- Surface Drainage
- Erosion
- Climate
- Stoniness

LAND CAPABILITY CLASS

(Circle One)

I II III-IV V VI VII VIII
LAND POST-TEST

Underline the correct answer(s).

1. Land classes suitable for cultivation are _______ _______ and _______.
 a. I
 b. II
 c. III
 d. IV
 e. VI
 f. VII
 g. VIII

2. Land classes not suitable for cultivation are _______ _______ and _______.
 a. I
 b. II
 c. III
 d. IV
 e. VI
 f. VII
 g. VIII

3. Land slope is defined as the number of feet fall per _______.
 a. 10 feet
 b. 100 feet
 c. 25 feet
 d. 1,000 feet

4. Soil depth is the effective depth that roots and _______ can penetrate the soil.
 a. moisture
 b. a drill
 c. a shallow rooted plant
 d. a post hole digger

5. Soil permeability refers to the rate of movement of _______ and _______ through the soil.
 a. roots
 b. moisture
 c. air
 d. fertilizer

6. Soils that feel "sticky" when moist are _______ textured soils.
 a. loam
 b. silt
 c. medium
 d. fine
 e. coarse A-70
7. "Silty" or "Loamy" textured soils are
 a. fine
 b. medium
 c. coarse
 d. heavy

8. __________ is the major influence for rate of water run-off.
 a. Slope
 b. Soil drainage
 c. Permeability
 d. Flexibility

9. Soil __________ refers to how rapidly the land drains after snow melt or heavy rains.
 a. length of life
 b. drainage
 c. permeability
 d. slope

10. Moderate erosion is a loss of topsoil between __________ per cent.
 a. 10-20
 b. 15-30
 c. 25-75
 d. 30-60

11. The acidity, or alkalinity (sweetness) of a soil are measured in terms of __________.
 a. pH
 b. bH
 c. sourness
 d. cation exchange

12. Land that can be used regularly for crops in a good rotation but needs intensive treatment and is subject to serve limitations in use for crop land is land class __________.
 a. I
 b. III
 c. IV
 d. VI

13. Land that is very deep is greater than __________ deep.
 a. 30"
 b. 40"
 c. 50"
 d. 60"
14. The individual parts of soil are called soil ___________.
 a. conglomerates
 b. clumps
 c. particles
 d. pieces

15. A common example of a soil profile having limiting permeability is one having a heavy layer of ________ in the subsoil.
 a. sand
 b. minerals
 c. clay
 d. nutrients
Principles and facts requisite for effective land classification and plant nutrition practices were identified by examination of recent scientific reports. Utilizing that information, the author involved sixteen Vocational Agriculture teachers in development and experimental use of this unit of programmed learning materials. The teachers are presently (1966-67) engaged in experimental use of the materials. Evidence of instructional results is not yet available. There is substantial evidence that teacher involvement has activated analytical assessment of objectives and interest in innovative instruction.
INSTRUCTIONS FOR COMPLETING ERIC DOCUMENT RESUME

The resume is to be used for storing summary data and information about each document acquired, processed, and stored within the ERIC system. In addition to serving as a permanent record of each document in the collection, the resume is also the primary means of dissemination. The upper left corner of the form (Fields 1-14) is designed to conform to descriptive cataloging standards set forth by the Committee on Scientific and Technical Information (COSTI). Read the following instructions and complete the resume as directed.

I. GENERAL INSTRUCTIONS:

1. Read each entry point. If any point is not applicable, place "N.A." in the appropriate field. Except for those which you are instructed to leave blank, all fields must be completed with the required information or "N.A."

2. Enter date of completion of the resume in upper right corner.

3. Entry must fit into space provided; if necessary use standard abbreviations as cited by the American Psychological Association Publication Manual. (Publication Manual may be standardized abbreviation as cited by the American Psychological Association, 1200 17th Street, NW., Washington, D. C. 20036.)

B. SPECIFIC INSTRUCTIONS:

Field 1. Accession No.: Leave blank. A permanent ED number will be assigned to each report and attendant documentation record as they are processed in the ERIC system.

Field 2. ERIC Satellite Code: Enter 3-digit code number assigned by ERIC to clearinghouse operation. If no code has been assigned, leave blank.

Field 3. Clearinghouse Control No.: If you are acting as a clearinghouse, enter the identifying number you have assigned to the document.

Field 4. Source: Enter corporate author, corporate source, or institutional affiliation of the author who originated the document. Include complete name and complete address of source, where possible. Light Atomic Energy Commission Corporate Author Entry, TID-5059 (6th Rev.) will be the authority for corporate source citations. Light Atomic Energy Commission Corporate Author Entry may be obtained from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, Virginia.

Field 5. Title: Enter full document title. If document comprises only a portion of the total publication or release, refer to field #12. Include subtitles if they add significantly to information in the title proper.

Field 6. Volume numbers or part numbers, where applicable, as an added entry following the title.

Field 7. Date: Enter date of release of document by month and year. (Example: 12/65.)

Field 8. Pagination: Enter total number of pages of document, including illustrations, appendixes, etc. (Example: 115 p.)

Field 9. References: Enter number of references cited in the bibliography of the document. (Example: 406 ref.)

Field 10. Report/Serial No.: Enter any unique number assigned to the document by the publisher or corporate source. (Example: DE-55053; L-839.) Do not enter project numbers; these are added entries field #5.

Also enter journal citations by name of journal, volume number, and pagination. (Example: NAEB Journal, v. 11, pp. 52-71.) Do not include date; date is entered in field #7.

Field 11. Contact No.: If document has been supported by the U.S. Office of Education, enter the OE contract number.

Field 12. Publication Title: If document abstracted comprises only a portion of the total publication or release, enter complete title of publication. (Examples: Four Case Studies of Programmed Instruction; The Automation of School Information Systems.) For journal titles, spell out any abbreviations. (Example: National Association of Educational Broadcasters Journal.)

Field 13. Editor(s): Enter editor(s) last name first. (Example: Doe, Mary.) If two editors are given, enter both. In the case of three or more editors, list only the principal editor followed by "and others." (Example: Doe, John and others.)

Field 14. Publisher: Enter name and location (city and state of publisher.

Field 15. Abstract: Enter abstract of document, with a maximum of 250 words.

Field 16. RETRIEVAL TERMS: Enter conceptually structurable terms which, taken as a group, adequately describe the content of the document. If terms do not fit into space provided on form, use space allotted on verso for additional terms.

Codes: Leave blank. Codes will be assigned for internal retrieval purposes.

Field 17. Identifiers: Enter all terms which would not fit into structured vocabulary. Examples are trade names, equipment model names and numbers, organizations, project names (Project Headstart, Project English), code names, code numbers.

For RETRIEVAL TERMS (Continued)