R E P O R 7 R E 8 U MW E S

€D 010 558 56

RESEARCH AND TEIHNOLOGY DIVISION REPORT FOR 19686.

- BY=- BAUM, C,

SYSTEM DEVE’ JPMEMNT CORP., SANTA MONICA, CALIF.

REPORT NUMBER NDEA-VIIA-1130-01 PUB DATE JAN 67
REPORT NUMBER B%-3-0738-01

REPORT NUMBER TM-530/010/,00

EDRS PRICE MF-$0.36 KC-$9.36 234P.

DESCRIPTORS~ %SYSTEMS APPROACH, %SYSTEMS ANALYSIS, *SYSTEMS
DEVELOPMENT, *COMPUTER ORIZNTED PROGRAMS, *PROGRAMING,
INFORMATION PROCESSING RZSEARCH PROJECTS, EDUCATIONAL
RESEARCH, SANTA MONIZA, CALIFQORNIA

THE WORX OF THE RESEARCH AND TECHNOLOGY DIVISION OF
SYSTEM DEVELOPMENT CORPORATION DURING 31966 1S REPORTED. THE
PROGRESS OF VARIOUS STUDIES AND ACTIVITIES DISCUSSED IN THE
REPORT WERE ADVANCED PROGRAMING, INFORMATION PROCESSING
RESEARCH, PROGKAMING SYSTEMS, DATA DASE SYSTEMS. LANGUAGE
PFR.OCESSING AND RETRIEVAL, BEHAVIORAL GAMING AND SIMULATION
RESEARCH EDUCATION AND TRAINING, MATHEMATICS AND OPERATIONS
RESEARCH, COMPUTER CENTER DEPARTMENT, AND SPECIAL SERVICE
OPERATIONS. IN ADDITION, THE REPORT CONTAINS DESCRIPTIONS OF
DIVISION-SPONSORED BOOKS, DEMONSTRATION PROGRAMS, MEETINGS
AND COLLOQUIUMS, AND PROFESSIONAL ACTIVITIES OF THE STAFF.
€TC)

e o ~ f
~ TM-530/010/900 :

E 4, 8, DEPARTMENT OF HEALTH, EDIJCATION AND WELFARE J
ol 3

Office of Education i
This documaent has been reproduced exsctly ag received from the '
person or organ.zauon originating It Points ot view or opinions
stated do not necessarily represent officlal C'ffice of Education
position or policy. ‘

e e S

-

| Research & Technology Division Report SYSTEM ;
l for 1966 i
| by the DEVELOPMENT
l Research & Technology Division Staff CORPORATION i
T D. L. Drukey, Division Manager oovapann avE o
B. 0. Barancik, Assistant Division Manager 2500 COLORADO AVE. .

K. W. Yarnold, Director of Research SANTA MONICA

J. I. Schwartz, Director of Technology
G. H. Dobbs, Mgr., Computer Center Dept. CALIFORNIA

C. Baum, Editor |
January 1967 90406

S TR T T, <R A A A e oA e 2 -SSRSO,
i
g
|
Q 4
!> g January 1967 i TM-530/010/00
0o
i
|
|
& ;
1
Eﬁ ;
a This document describes the work of SDC's Research ‘\
o & Technology Division for 1966. The progress of the i
j?x various studies and activities in the Division is :
described under the following major headings: Advanced ’
s Programming, Information Processing Research, Programming ;
Efi Systems, Data Base Systems, Language Processing & Retrieval, %
Behavioral Gaming and Simulation Research, Education & F
ﬂ Training, Mathematics & Operations Research, Computer
n Center Department, and Special Service Operatioms. In

addi*’ su, the back of the Report contains descriptions ‘Q
of Division-~sponsored books, demonstrable programs, w

meetings aud colloquia, and professional activities of
the staff.

January 1967 i T™-530/010/00

T T o Pl o N 3 CE e SR NS S

iy it 8
v
ACKNOWLEDGMENT |
‘ The work reported in this document was supported by the SDC Independent |
4 Research Program and by the following contracts and grants: |
| Agenc Contract or Grant Number :
w American Documentation Institute 65-1 @

j Department of Commerce "

; Bureau of Public Roads CPR-11-4191

Department of Defense
Advanced Research Projects Agency SD-286
DA-49-083 O0SA-3124
Order 773 (AF 19(628)-5166)

o

B F 1962867C0004
il \%
Department of Health, Edu -and Welfare oM :f‘
i ~g."F. Office of Education 7.14-9120-217 . EI i
4 i B L ' OE-6-85-076 ;
R Public Health Service 1 ROL 1M00065-1

| Fund for the Advancement of Education, 4
Ford Foundation

S S e T e e e

National Science Foundation GN-408
. GS-307
GY-371 |
NSF-C 424 ﬁ
GN-544 L
i Southwest Regional Laboratory for

Educational Research and Development

State of California

Department of Education 2591 '
U. §. Air Force %
Air Force Cambridge Research Laboratories, F 19628670008 s |
Office of Aerospace Research AF 19(628)-5166 . :
Air Force Office of Scientific Research, APOSR-1203-67 b
Office of Aerospace Research AF 19(628)-5166 &
Electronic Systems Division, “
Air Force Systems Command AF 19(628)-5166 ’ g

Rome Air Development Center AF 19(628)-5166

u. 3. N‘w !‘[|
Office of Naval Research Nonr-4421(00) =~ %
Nonr-4427 (00) "
Nonr-4745(00) i; ;;

yop - e

January 1967

’I'H. .'ll' l!.l'

CONTENTS

AND‘OVERVIEinO...............-......a.......cccccccccocccccocccvii

ADVANCED‘PRQQRAMMING..........n.......l................C.....O..............l-l

Compiler Construction Techniques....coceee cocoectosvocsscscesscsssscacesel=l
Syntax-Directed Compilers and Translatorfc...cccccesessssccccsvesecssl=3
Translation Between Procedure-Oriented Languages.....ccceccceeeecesecl=h
Compiler Techniques for Paging....cccccccececceccscccsccccsscvescescesl=bh
PL/1I for SDC 360 Time-Sharing System.....ccceceeeeesessccscccececcsal=?

Programming Languages....cccccceccesccsccccccoceecscscsccsssssscsceccceel8
LISP 2.--..........--ccc.ccccccccoccccccccc.cccccccc.c.co-cocc...ctcl"s
Data Base Oriented Programming Language....ccccceceeeccccccccecncesol=l2

Aid' to Prosr&mims.....-.-...-.‘.-...........“...-...-.-........-......N'la‘
Interactive Programming Support SyStem...cc.crccocsrccscccsccscscnssl=l3
A“tmted‘ Flow‘ChlrtiIIS.......‘..u...........u....‘...‘....u.........1'1‘7
Graphic INpPut/OUtPUt....cceceecersoccccscsccassccscscsascoscosvessoceelelB
Automatic Code IMProvemenit.. ..ccccececcescrssscscssccoscscssscscssssssl=2l

Computer Programming Management,.........c.cceeceeeceesescescscescsceseel=22
Program Cost Analysis....cceccecccocescencesaesccrascsscacssccscsnaseel=22
A System for Reporting Cost Data for Computer Progranming...........l-24

Compl‘eted Stl’ﬂ‘.eﬁ...-.‘.......“...............‘............‘.....-.-......1'2‘5

. ‘RESEA‘RC‘........i...........0....'.0.‘...'.02'-1
Formal Models of Information Processing.....ccccceccececcrscccccsscoccceel™d
Theory of Algorithmic LanguaBe/Seececs soccsssecscsscsscavocsssscocaels3
The I-O];ic °£ ‘Ql.lelti‘.ﬂtll.................‘,................“a..........2'4
Augmentation of Man's INtellect . ccerercesvscccorovscovssecscrsscsssscseeld™d
Problem Solving and Lesrning by Man-Machine Teams....cococeveccenese2=5
A“mented‘ Statiﬂtici‘.‘an*..‘..........-........-......-...”“..........2"9
synthe"t’ of Behavior.....'t..‘ﬂ.....&.@......9.0....‘6“...‘...60..lanll
Steps Toward Validating a Computer Model ¢f Social Influence.......,2-13
Completed StudAed..cceecscecsccscscccsoscsccsvccssssccvssccrsscssssccssscdell

, S S" s;....-.-.-.-..o»ooccooccu‘cacocco.coacccocc.coccoouce.;coa"l
Time-Sharing System Development. .coccececececcssceossccosscnccossioseasesed®3
‘Re.“mh in Tm‘smringu.u.uu.....u....u...-.....................3"9‘
Programmer Ferformance Uader On-Line and Off-Line Conditions......cs....3=15
Time-Sharing Computer NetwOrkS....ccoococevvcccvocssscsscnscssscssssessssI=lB

) E 4 §¢oocOccccoou-oococccoccocucocccncceconooccoccococc-coccmcooll"'l
G!nerll'hrpﬂse D&'pl‘ay ‘syltemu..-..-.a..-....u--...-............-....4'5
Tss"mmu.ou.e.-...........-..-u...o-o..-..».....-.-....-..c........u4'7
Time~Shared Datu Management System...cececevevecevecccssceltocacascscssslt=9
Methods for Mandling English Text Within TIMS..:...ccoccnceccsccennoascsoliell
Fact Retrieval fyom TIMS Using Natural Languagie......ccecceossccsccecsdi=l2
Evalustion of List Processing for Data Manugemint.......ceeeeeecoosccescd=13d

tit TM-530/010/00

. ra— w————u-—w—-—'————'——-—-w——w—'—'—-——w—' " fres -

SR I . WA RS P B i e e D i e S Db i e e e O U S N T S VY S

January 1967 iv T™-530/010/00

*

mﬁME PRMESSI!!Q AND‘ ‘RETRI‘EVAL...00.0‘00‘00000090000000oo.o....oooo‘osbooooos-l ﬁ

Language Processing. ... c.coeceeeresccenusosesssesosscsserossscnsncoccensed®d
Lexicographic Studied..cveivieriieiceereentecacrvesocsccroscvescecesd=l
Anaphoric and Discourse AnBlySiS....cccecescescnctvecccccoscscccnscesd=h
Synthex: The Computer Synthesis of Language Behavior........cceceee.57
Transformational Grammar TeSter.....cacesoecvecocstoccsccsacsccscsssdoll
Synonymy and Semantic Classification......cceieeveevcecescscceccoeesdelt
Query Subset Studies.....ccceececcscccsecceroscnrcsasssrcscosccscessd®ly
Stylistic Analysis...ccceeeeuseeceecesococseasconsssnsscsonsssconcesdol?

Document Retrieval.......eeeevcescocsoscococecsosccsssconscossssscossessd=lB
Automatic Classification.....cvceeeveeececrcrcosecescosscsscscccrencead=lB
BOLD: Bibliographic On-Line Di8play....cccvececcccceocscsccccceseessI=20
SURF: EDP-based Support of User Records and FileS.......ccecevveoseo$=25
Automatic Extracting and AbStracting...ccveeveececccccsosccncecceeesI26

Evaluation Studies...cccoceeuiecoeccesesrosecssosssscsscnsssssaccscneessI®26
Document Representation TechniquesS........ceeoceeeeeeevsvocccsccosases 926
Empiirical Study of Relcovance ASGoSSMENt...ceviocscccconscsccccncesveesI=28

Completed StudieB...cccecevecsesesevsnsoncscacsessosssassacssancncessoseI®3l

e AT I T L e i Y.

. = 5 "RESE-“R.‘“ooo-ooooooouo:ooo.oooooooooooocn.o 6.1
Human Dnta Processinu Behavior. ..cocoeeeeeersrsncosonscacescaccaccnsces 6°b
Decision Making and Leader Selectfon......cceeeevecceccceccscnsccsocseesbebh .
Bargaining and Negotiation Behavior........cceceececevvocsavoovcscnceseesb=? f
LGVi‘.‘athan......-.....................-..................................‘6'1‘2 » £
Computer Methodology for Dats AnalysiS......eecececevcecccncaroscsncesscbelb oy ¢

TRACE: Time-Shared Routines for Analysis, Classification, Km ‘ﬁ
u

and‘ ‘Eva‘lu‘ati‘-onowooooooo-o.oocoooocco.a‘ooo..oooo-oooao..ooooc0000005"1‘6‘

IDEA: Inductive Data Exploration and AnalysisS..eccceeeeceucesacacsosberl?

Display and Computer Aids to Human Prodlem SOLving....seeeeeeecsoes.6°22
VARIANC: Algorithm to Compute Predict:.:d Preasymptotic Variance

0f Response Proportions.....vceiensscsesccescscocascvacsssssesessesb=23

BINAL: A Program to Analyze Binary 7equUENCESB....ccccevvescnsccscesssb=2b

Completed Studies....oceeiecneceresanioteersesscscescacsnsssncssessesescd=25

EQ!% !‘IQ“ !mD,TMIMm.OOO0000000oov00.0.0..0..0.00000060..0000.000000000-0.7-1

Development of a Computer-Based Educational System...........oeeeecevsoc?=3

Computer-Based Instruction in Stotistical Inference...cc..e.ceveeecccceca?=S

PIANIT: Programming Language for Interactive Teaching.........c.........7=8

Vocational Counseling.....cc.cveeeenreerocecrvoccocoonencnoseesoscoscossed=ll
Evaluation and Revision of Classroom ProceduresS........eceneeeeeeesoeses?~1b
Porelgn Language Study...ooeeerecroseeerssconcsecscocasscsnssuscsascoseed=l5
Methods of Presenting Instructional Material........e.ccveeeevcesecccsse?=l6
Si.lmﬂ.‘ati‘.on‘ Of a Flexible S‘Chool‘o.u.‘...o..........-...-............,...ao7'l‘8‘
Computer-Assisted Teaching of Mathematics.cveueensueeaecenovascononsosessf=20
Completed StUdLes. .. oiureieeiniietirioorencanscoroccecessosssssssaacesesl=20

TR R T YT
ET SEIYTEE
R R

EaES v

foned i e Y W i B s S o Bt et e e e el e D St i i i e TN S i SRS ST O e it o s e e g
S i c £ S S el i K

January 1967 v T™-530/010/00

T TICS AND OPERATIONS RESEARCH. ..ccvvececcencocanissanssnsassoss sarens8=l
Mathematical Models of Stochustic System ElementS...cvecee.vccceeccsssee8=3
Mathematical Models of Vehicular Traffic....cccerveeeccescraccaoeesd=3
Models OFf COmbBAC. covoceeeerrcosrocsescssonscosassnssscsannsasssansee B3
Statistical Methods in Oporations Research......ccoceveeciecinccssonsss 84
Generally Applicable Statistical Techniques....c..cioeeesecescnscss B84
Factor Analysis Methodology.....ccececeericcsocscarconserorscncsssoes8=5
Mathematical Programiing....c..c.eoeecosccscocssocsccossssssasssssssesss85
Straceglies of Iten Presentation in Learning Processes.....c..........85
Scheduling Under Resource RestraintsS......c..ccecesrveecccscscccocsssB=?
Static Allocation of Computer Core-Storage Space.....cceccsvevecess s8-8
Dynamic Programming and Control Theory.....c.....ceceeescsseccceccss 89
Numerical ANAL/SiS....cccceereroscsscocssscesocsssaarossonassssssscscsseB=9
Vehicular Traffic Study.......ceeeeuceererosecsroresasonsscasacosecsnses8el2
Statistical Decision Procedures for Mathematical Learning Models........8-20
Celestial Mechanics and Differential EquationS.........cevceevanccsses..8=21
Data Compression TechniquesS...c.cevevceecccectoascsosssansesnnssosesses 822
Completed StudLes. covvoeeiiecessssuorocscncessssanssatsssssnssssssenese8-23

I ‘ERGM‘ER DE?A‘MNT-...--....................-....-..................‘9*1‘
Programming Branch...e..coeesierseresecesccocsorssoosssoasssssasscccccoanead=d
Special Projects Staff..c.....coeetoreracnsrsosacsiianccstoscencendd=d
Operating SyStem.....ccueeceoreocescssasssosssvansossonnssssssonasssssd™d
SUPPOXL SYSLEMB. .o svovrsrsosoararssossssssarsostcacsssssssssensvecd=h
Computer Center Englneering.......cceeceeieeereronssncossccccccoscesnsasd=d
sta’:iltic&l‘ ‘services.‘.--.--......-...;-...--....‘..‘.-.-..................‘9'7

Resear\‘vh ﬂnd‘ Technolow mbora‘tory..ootttt.t.tott“.ttt0000000‘00000‘0009-7

PECIAL SERVICE OPERSTLONS ... cecon-ooscsovsssssecnssnssssoncsssscasesosssesslO=l
’ Informstion Processing Information Center.........cceceseetoaroacccscs 10=1
Information Center on Information Science and Technologye:..e..ovees.s..10-3
Programming DocuUmentation. ..oeeeeeseucecsssossoessssntssssssossssossnssl0=3

RESEARCH AND TECHNOLOGY DIVISION BOOKS.:...ceeseecseseoreccssscsassensssesssll=l
Annual Review of Information Science and Technology..ec.oecoeecocerceaall=l
Automated Language Processing......cceoevcecescacescrsscecsossssnsaseaell=2
Handbook of Nonparametric StatisticBc...cccicveocvocncesrcsorscrosnsseselle2
Table of Random NUmberS...cecvveeesocesscesscsscsccsosssssoscsasvesassealle
Man=Machine Digltal Systems.....-cceceeeatccessssssocccessvecrsvscnsessll=d
Computer Applications in the Bahavioral ScienceS.....cceeecseesrcecsasall=ld
Manpower Development...ccceeeececcssasossccssscoressoasevesssssscesssesll=d

‘l]!‘!moRY OF DmONSTRA‘B‘m,MTD PRMRAMS‘-t.-.tttot..t.....tt.ttttott.tt.ttt.‘A‘l
smmsm..t‘..t-.0--.-t.-o.-0..0-.&'.005-.-0-..tu.&.ttotct'-."‘-‘.ot-w.-‘-OAA.3‘

REsmcH‘com‘ gum.ooo--.oitctu0'00t.ct--.-.‘0-00...--t.to'-od.'t‘ct..-o-t--..’A‘B
P.ROFESSIONAL Ac‘mivITIESO--t.ooto-.-0‘0ttt‘.t".-.a..»a-ocotbttot-to.-"t.-.--tA*?

f

W R

Januvary 1967

it e oy

Sgkes v

Ciita oo

Ipietat Tl

vi

R R P P T

MW”’ T ——
| REseARCH & TECHNDLOGY |
| D#/ISION

Tt

RESEARCH
DIRECTORATE

i o e B e

TecuNotoey | |
DIRECTORATE

Sl T et

™-530/010/00

COMPUTER CENTER |
DEPARTMENT |

7 Mathematics & T]“
] Operations Ressavch |

Information
~ Systems
Technology

Programming
Bronch

“ i
- ‘\ Informatior: Processing ‘
Research 1

Education & H‘
Training

Labor:.ry & |
Support Operations

\
|
,;‘

" Behavioral
Gaming &
_ Simulation

Programming
Technology

~ Language)
Processing 1
~ Research N

Systems]

Augmentation of
] Man's Intelligence |

FIGURE 1.

ORGANIZATION OF RESEARCH & TECHNOLOGY DIVISION

TR T

TR A

e SR

Sy

R SR

b

P

1

]

b

1

a £
I | 3
o %)
i ¢
b :

]

£

January 1967 vii

™-530/010/00

INTRODUCTION AND OVERVIEW

Mission

The mission of SDC's Research & Technology
Division is to provide support for .the rest of
the Corporaticn and for its customers. The pro-
gram consists of extensive research and technology
development, particula:ly in the information
sciences, and the provision of a new co.puter
center for the Corporation. The research and
technology tasks are intended to develop the
tools which SDC's customers will use in carrying
out their functions and which the professional SDr,
empioyees will use in the fulfillment of their
contractual commitments to governmental and other
clients. The computer center is being developed
in the Research & Technology Division se¢ that the
latest technological developments will be avail-

able to all SDC professionals at an early stage.

Organization

The program is carried out in three orgarniza-
tional units--the Research Directorate, the
Technology Directorate, and the Computer Center
Department (s<e Figure 1). Because of the close
relationshipsjamong these units, the lines of
demarcation are not clear-cut ameng them. The
Research Directorate is generally responsible for
programs with long-range implicat ons, for which
there may not be an immediate match to existing
requirements. The Technolegy Directorate's work
spans the interval between these long-range pro-
grams and appliable technology; it is therefore
concerned with applied research, pretechnology,
and technology development, as well as a certain

amount of fundamental research. For much of the

Technology Directorate's work, the end objective

iy pretty well known at the time the project is

undertaken and its relationship te SBC and our
customers' operations is often fairly clear-cut
(although the way of achieving those desired ends
may not be quite so well determined). The Computer
Center Department has been developing the software
for a new computing complex, intended for a wide

range of corporate users.

Technical Overview

The research and technology programs are com-
posed of several main threads of activities which
are mutually supporting. Typically, each thread
includes projects ranging from fairly basic

research through the development of technology.

The first of these threads relates to the
handling of large files of structured information--
the data base problem. 1In this 2iea, we are
concerned with developing a series of tools that
SDC's professionals and customers can apply to the
operational problems of data management. We want
to make it possible for a nonprogrammer to describe,
organize, and update his data, and then have the
programming system carry out the mechanical func-
tions of processing the data. In addition, we
wish to make it simple for the user to ask for
data in a manner that is convenient and natural to
his way of operation and to have the system under-
stand the details of data storage, organization,
and conversion. Our interests in this area
include the content as well as the format of the
computer output.

The second main taread of our efforts concerns

computer programming languagee. Most past work
in this area has consisted of developing languages

for the professional carputer programmex. These

TN T A S T T o e

i

v

RSN N TRy
o S i wdail ENEE RTINS SLINRE N

January 1967 viii

Iénguages were aimed at relieving him of scme of
the tedium and bookkeeping neceSSéry to produce
computer programs. A variety of such languages
has been produced, including the JOVIAL language
developed by SDC and used extens’vely within the
Corporation and externaily. We have augmented
this traditlonal approach to programming languages
with initial efforts at providing languages for
the nonprogrammer. The overall work spans the
spectrum from bass: theory of programming
languages through the implementation of compilers
for several languages of present interest. Encom-
pessed in this domain are the development of new
aids for the programmer and of techniques for

managing the romputer program deve' pment process.

The third thread of our activities concerns the
executive systems within which the programs of a
computing complex operate. In particular, an
innovative technology of time-sharing, which makes
it feasible for users to operate on-line in direct
two-way conversation with the computer, has been
developed through this work. Our efforts are
aimed at exploiting the capability inherent in
time-sharing systems and in understanding the
basic scheduling and allocation processes
associsted with having a number of prog.ams
operating more or less simultaneously in the
computer complex. In addition, much of the
overall emphasis of our programs in technology
and of the techniques that we use in research
revolves around our unusual on-line capabilities;
we are concerned with the advantages made feasible
by having the computer directly accessible to the
users and with expioiting these advantages for the
various purposes toward which the whole program is
aimed.

The fourth thread is concerned with computer
processing of natural language, that is, English
ag it 1s spoken and written--as distinct from the
formatted languages of data bage systems or the
formal computer languages. A sizeable program of
basic research is being devoted to solving the

problems of semantic and syntactic analysis‘ﬁf

T™-530/010/00

text by computer, toward the eventual goal of
providing capabilities for using subsets of natural
English as query or command lanpuages for computers,
and enabling computers to read, understand, and
generate Eaglish text. At the more applied end
of the spectrum, we are concerned with developing
tools for automatic classification and indexing
of documents and otherwise automating the
storage and retrieval functions of libraries

and document centers as well &3 of individual

document holders.

The fifth thread of our activitics relates to
the processes of education. In this area we are
concerned with new technologies for instruction,
particularly the use of progranmed materials;
with the potential offered vy the computer for
assisting teachers, counselers, ang administrators;
and wicth che implications of “hese new technologies
for school administration, including problems of
flexible scheduling of resources and personnel.
This program is continuing to broaden in scope and
to place increasing emphasis on bringing new

technologies into use in the public schoo? systems.

Finally, we have programs in mathematics and
operations research and in exploring the processes
of humau decision making, and of man-machineﬂ
interaction, through behavioral gaming. Much of
the mathematical work is of a research nature and
relatzs in a general way to corporate interests in
simulation, modeling, and system analysis. The
work in behavioral gaming and simulation is leading
to a better understanding of the nature of group
decision making and the functioning of organizutions,
and is also resulting in a set of innovative tools
for the conduct of behavioral games and computer=
based data analysis. 1In the long run, we hope to
see this work lead to improved comprehension of
the interaction of people within their society and
to the knowledge that makes it possible to improve
that society.

It should be pointed out that these basic threads
intertwine as we begin to derive appliable tech-
nologies from them.

The operating systems provide

et AR e Jhadhi

January 1967 ix

the framework within which all of the computer
programs operate. The data base systems are
integral to the operating system and will, in

our plans, provide a data management function for
all system users. The operating and data base
systems are written in the programming languages
that we have been developing; and our language
processors or compilers are embedded in the
systems. Although there was a considerable gap
between the natural langusge efforts and those
related to the more formal languages, we are
begloning to develop systems that combine mixed-
mode retrieval capabilities of both structured
and unstructured data. The mathematics and
operations research personnel provide consulting
agsistance for many of the other research ana
technology projects. The work in education has
been focusing on the potential of onéline‘man-
machine interaction, made possible by time-sharing
technology. The behavioral gaming area is pro-
ducing novel techniques for human use of computer~
based consoles and displays. Finally, the Computer
Center Department will be providing--on an
operational basis for a variety of users--the

data base, time-sharing, and advanced compiler
concepts developed by the research and technology

program.

The past year was one of actual or impending
transition for many of the 70-some R&TD projects
that utilize a computer, as we moved toward
replacing existing facilities with a third-
Specifically,
the Philco 2000, which since 1961 had supported

many SDC's Independent Research projects and the

generation computing installation.

original Systems‘Simulation‘Rese&rch\Laboratory,
was sold in September 1966. The IBM Q-32 computer,
which has been supporting the balance of the
computer-based projects in R&TD on the SDC-
ploneered Time~-Sh
phase out late in V7.

'ng System, is scheduled to
Replacing these computers,
as well as some othevs at SDC, is a series of
IBM S/360 machines, for which R&TD's Computer

T™-530/010/00

Center Department has been developing the complete
software. A 360 Model 50 was operational from
October 1365 through July 1966; it is being
replaced by a time-sharad Model 65 which began to
achieve a useful capability during the latter

part of the year.

The changeover in computers is resulting in mixed

consequences. On the one hand, certain experiments
have been delayed due to reprogramming, a hilatus

in machine availability, and the uncertainties

that inevitably accompany the installation of new
equipment. On the other hand, many of the projects
are taking this opportunity to make long-sought
program changes and design improvements afforded
by this breathing space and by the more powerful

capabilities of the new installation.

Turning to specific projects, the data base area
was marked by increased usage of our prototype
TSS-LUCID, an on-line data

management system, was used by about 50 people

data management tools,

each month during 1966, including many extern:l
users, for a wide range of data management prob-
lems. The General-Purpose Display System (GPDS)
was successfully harnessed to a particular
application, namely the calculation and display
of salary maturity curves. Various parts of the
new Time-Shared Data Management System=--an
integrated set of data handling tools based on
experience with LUCID, GPDS, and other systems--
reached promising stages of design, coding, and
TDMS is scheduled to be a major

resource on SDC's 360 Time-Sharing System.

checkout .

Ia the realm of programming languages, the
techniques of metacompilation received increased
emphasis as a means of reducing the cost and
time to produce compilers. A compiier system,
called META, and an interpretive system, called
METAS, have been developed and refined; they have
found many useful applications including the
production of compilers, translation between
programming languages, data base conversions, and

program reformatting. A version of an advanced

]
;

B R N T R A TR R, U N R T

TR AT TS

H

Januery 1967

list processing language, LISP 1.5, was developed
during the year, and work was initiated on LISP 2,
which will provide improved capabilities for
manipulating complex data structures and perform-
ing lengthy arithmetic computations. Design

and coding were well under way for an Interactive
Programming Support System, intended to give

the professional programmer the maximum benefit
of the on-lime capability of time-sharing.
Programs were developed to facilitate automatic
recognition of handwritten characters, automatic
flow charting, and automatic code improvement.
Finally, a handbook to aid managers in preparing
estimates of computer program development pro-

jects was published.

The executive system area underwent profound
changes, with final improvements made to the
Time-Sharing System (TSS) on the Q-32, and the
development of a new system on the 360. One of
the first general-purpose time-gharing systems,
TSS became operational in June 1963 and has been
continually improved and refined over the years,
to the point where its sponsor, the Advanced
Research Projects Agency, felt that it had well
fulfilled its purpose as a developmental research
project. During 1966, the system was made
available to interested users on a subscription
basis; ARPA support is no lenger required and
has been redirected to more developmental efforts.
The more than 500 users who previously had free
access to the system are now limited to those
who use it on a paid basis. Durigg the year, a
comparison of on-line versus off-line programmer
performance resulted in qualified advantages for
time-sharing. Additionally, a small step was
taken toward the next important area in executive
systems~-the connecting of several computers into
a network--by the linking of the Q-32 computer in
Santa Monica to the TX-2 computer at Lincoln

Laboratory in Boston.

In the natural language area, several new
studies were initiated to complement the existing

work on automated language processing. The new

M-530/010/00

studies, sponsored by the Advanced Research Pro-
jects Agency, include a computer-based semantic
analysis of sense relationships of the words in

a dictionary, the development of an on-line

transformational grammar tester, and a study of the

Addi-
tionally, Protosynthex III, a fairly complete

use of English subsets in query systems.

approach to a natural language processor, emerged

from the preliminary design stage. In the library

application area, BOLD, a highly automated display-

oriented document storage and retrieval system,
and SURF, a personal file retrieval system, were
further refined and received initial usage. A
new method of automatic document classification,
called ALCAPP, broke through previously restric-
tive barriers of cost and storage space. A paper
on ALCAPP, as well as one on an SDC study to
evaluate document representations, were two of the
three prize-winners at the annual meeting of the

American Documentation Instituce.

The education and training area completed several
studies in 1966, including the development of a
computer-based simulation of an innovative school;
the development of 28 criterion tests that indicate
absolute levels of mastery in foreign-language
comprehension, speaking, reading, and writing; and
a comparison of linear vs. branching strategies
in presenting programmed material. Two major new
studies were begun during the year: the develop-
ment of a computer-based educational system for
the Southwest Regional Laboratory for Educational
Research and Development, and a study to adapt the
ShC~-designed "empirical trial-and-revision”

process to the development of instructional

materials and procedures for classrooms serving

Congid-

erable progress was made in ongoing investigatioas

predominantly Spanish-American students.
into the use of time-sharing in education: in one
case to improve the counseling function; in another
to improve the teaching of statistical inference
at the college level. A very promising outcome

of the last-named study is an on-line lesson design

:JN‘ 4,

o
i

S

e T o T e

January 1967 ®i

and teaching program called PLANIT, which 1s

recelving wide interest and initial usage.

The mathematics and operations reseavch staff
continued to sclve a number of challenging prob-
lems. With partial funding from the Bureau of
Public Roads, SDC's Vehicular Traffic Study
completed the coding, debugging, and exercising
of an initial version of a computer simulation
model of a freeway diamond interchange. A new
project was begun on ways tc compress the enor-
mous amounts of data transmitted from spaceborne
hardware. In celestial mechanics, new procedures
for existence proofs were derived and applied,
and a very efficient aumerical technique was
devised for solving certain differential equations,
Additional work yielded new results in such areas
as optimal strategies for item presentation in
education, stochastic duelg, life-testing,
validation of simulation models, factor analysis,
The algorithmic

lauguages project continued to contribuvte

and mathematical programming.

important insighits into formal languages through
the noteworthy pubiication of 12 papers in
major journals during 1966.

In the area of man-machine interaction, work
A robot-=like

system, capable of following simple commands,

continued along a broad front.

was programmed and several films were made of
its operation on a display scope. The augmenta-
tion of human intellect by machine was furthered
by the initiation of an "“augmented statistician"
project, the development of on interactive prob-
lem-solving task called Shimoku, the completion
of a set of expzriments to test the effectiveuness
of various digplay aids to human problem solving,
and the development of various on-line data
manipulation systems. The continuing research
on bargaining and negotiation behavior completed
several major experiments during the year,
including a transnational study which culminated
in a conference of participating researchers
from various nations in Santa Monica in November.

The Leviathan system, a computer-based model of

™-530/010/00

large soclal organizations, was used experimentally
as a training tool in a management workshop con-
ducted at the University of Southern California

for Alr Force officers.

As mentioned before, the Computer Center
Department completed design and programming for
a number of operating systems on a series of
IBM 360s: a batch-processing Model 50, which was
operational frem October 1965 through July 1966;
an interim batch-precessing system on the Model 65,
operational since July; and a time-sharing system
on the Model 65, for which an initial version was
released in November. In addition, the Department
has been developing other supporting aids, includ-
ing a 360 JOVIAL compiler, on-line and off-line
debugging tools, program and text editing capabil-
ities, file maintenance programs, and assembly
language processors. The laboratory and planning
staffs have been active in the selection and
acquisition of a complex of displays and other
ancillary equipment to be used in connection with
the 360.

Organizational Changes and Appointments

In recognition of his technical and administra-
tive accomplishments as assistant to the R&TD
Manager, Bill Barancik was appointed Assistant
Division Manager in January 1967.

During 1966, several organizational changes took
place in the management and composition of the
various areas of the Research and Technology
Directorates. In March, Gerald Shure wus named
head of the Dacision Processes Research staif.
In August, the Research Directorate underwent a
restructuring: the concept of "staff" areas was
changed to one of "program" areas; Decision
Processes Research was replaced by Behavioral
Gaming & Simulation (with Shure as head); and a
new program, Augmentation of Man's Intellect, was
formed with Research Director Kenneth Yarnold as
acting head. In December, a logical bifurcation
of the language Processing and Retrieval staff
resulted in a research-oriented Language Processing

- T Y T e o o TEem e o o

January 1967 xit

Research Program, under Robert Simmons, in the
Research Directorate, and an applications-oriented
Information Systems Technology staff, under

Carles Cuadra, in the Technology Directorate.

In the Computer Center Departmenc, Al lrvine,
formerly head of the UCLA Computer Network pro-
Ject's programming staff, joined SDC to head the
CCD's Programming Branch, and Jerry Hanna was
appointed Assistant te the CCD Manager, respon-
sible for the nonprogramming aspects of the

Department's activities.

Other major appointments during the year
included:

Research Program) and Gerald Shure to Senior

Andy Gafarian (Mathematics & Operations

Scientists; and Robert Bleier and Sally Bowman
(both of the Data Base Systems staff) to Research

Leaders.

Interaction with Other Divisions

During 1966, the Research & Technology
Division increased its efforts to communicate
with and support ¢ r corporate organizations.

A survey undertaken in June of 1966 indicated
that, during that month alone, approximately 60
R&ID personnel, or about 30 percent of the profes-
sional staff, were actively engaged in 23 clearly
identifiable, special-purpose, ad hoe activities
These
activities ranged from briefings on R&TH projects

in support of other SDC organizations.

to long-term consultation on projects of other
divisions. It should be stressed that this survey

did not cover the normally ongoing corporate-wide

responsibilities of R&ID, which include the

development of the Computer Center, maintenance

of infoumation‘centers‘on‘infonmatton‘processing
and information science, furnishing of statistical
services, and, more generally, the overall
development of the products of research and
technology, which are intended for the use of

the other SDC organizations and their cwstomers.,
An importaant advance in corporate communication

was the formation of five Interdivisional Tech~

nical Steering Committees by SDC President Melahn

TH-530/010/00

in September 1966, The committees, chairved by
genior corporate mandgers and composed of high-
level technical representatlves from the various
ShC organizations, are intended to provide a
mechanism for the communication of technical
information among SDC's divisions and to help
solve common problems in the areas of data base
systems, education‘and‘training technology,
executive systems, natural language processing,
and programning languages. 1In addition to actilve
participation on the Committees, R&TD has supported
them through initial conception and planning, and
provision of recording personnel. During the last
four months of 1966 the five Committees met

a total of 21 times, and can point to a number of
accomplishments, such as the‘undertaking of new
interdivisional projects, improved utilization of
common resources, and‘measurably enhanced communi-

cations,

Another innovation in 1966 was the R&TD internship

program.

Under this program, individuals selected
by the other divisions Join R&TD for periods of up
to six menths, to participate actively in research
and technology projects. The objective is to pro-
vide the participants with a working knowledge

of R&TD's technology, which they will ultimately
carry back to their own organizations. Eight
interns joined R&TD in the last half of 1966,
Judging from initial indieatiéns, the program is
accomplishing its aims and will be continued in
1967,

Also during the year, R&TD provided two 2-day
sessions of special briefings and demonstrations
expressly for personnel in the other divisions.
Approximately 150 middle management and senior
technical personnel from throughout SDC received
detailed descriptions of the ten most frequently
demonstrated R&TD products.

Communications

As in the past, R&TD continued an active program

of communication, both internally and externally,

Division personnel were coordinators and hosts for

s
3

k{

I
A

ST e v e e R

r,‘mi

January 1967

a number of lecal, national and international
meetings. Also, 20 research colloquia, featuring
both SDC and eiternal speakers, were held during
the year; these are open to all SDC persorqel

and invited outsiders.

One of the most effective ways in which we
have communicated to the outside world is through
live demonstrations of the programs developed
in R&TD,
to SDC received first-hand exposure to man-machine

During 1966, several thousand visitors

interaction under time-sharing, as the computer
displayed to them, on scopes or teletypes, the
results of the actions taken by the demonstrators
or, in many cases, by the visitors themselves.
Additionally we gave or supported a large number
of remote demonstrations, linked via teletype to
the Q-32 computer in Santa Monica, at symposia
throughout the country and abroad. During the
year considerable effort was devoted to improving
our demonstrations, from the standpoints of both
presentation and technical support. A number of
the more frequently demonstrated programs are
briefly described in the Appendix.

During 1966, approximately 40 consultants and
sélected graduate students participated in the
Division's prograni, over periods ranging from
several days to several months. Apart from
the technical contributions made by these people,
the exchange of ideas gained by these close
working relationships has been of great value to

SDC and to the visiting personnel.

Another effective medium of communication is
the "lend-lease" program, instituted in 1966.
Similar to the internship program described above,
the lend-lease program enables technical special-
iste from outside agencies to work on SDC projects,
providing a valuable exchange of ideas between
these people and R&TD researchers. During 1966,
personnel from Shell 0il, Atlantic-Richfield,
IBM, and Bolt, Beranek and Newman joined R&TD to
participate in the development of projects in

data management and programming languages.

e i vt e e . e cre wenamie o

xiid ™-530/010/00

As is traditional in science and technology,
SDC makes a great efforq-ts communicate its
During 1966,
Division personnel published 60 articles in the

findings to the external community.

external literature; this was augmented by over
300 SDC documents, most of which are available

through the Defense Documentation Center.

Finally, R&TD personnel gave a total of 175 oral
presentations for professional meetings, university
In addition,

many members of the Division are officers in their

colloquia, and invited lectures.

professional societies and editors for journals
in their field.

Detailed information on all these activities
can be found at the back of this report.

Postdoctoral Fellowship Program
In the fall of 1966, R&TD instituted a Post-

doctoral Resident Research Fellowship Program.

Fellows selected under this program will receive

a $9,000 stipend while conducting res<arch of

their own choosing in the Research & Technology
Division in Santa Monica. Major resources available
to Fellows are the knowledge and experience of a
multidisciplinary staff of ecenior investigators,

and the facilities of a computer-based man-machimne

laboratory.

A representative, but by no means exhaustive,
list of areas that may be proposed for research
includes man-machine interaction, operations
research, mathematical modeling, digital simula-
tion, education and training, experimental gaming,
decision making, computational linguistics,
information management, computer graphics,
automata theory, formal and programming languages,
programming systems, and the application of informa-
tion processing to law, medicine, economics, and
other fields.

The fellowship pregram was developed partly as
a result of the successful experiences of NSF and
NIH fellows who have spent their research periods
at SDPC.

e e A s S MRS A At 2w e e i

TR

R e e

January 1967 siv

Research Advisory Committee

The Research Advisory Committee continued to
play an important role in the Corporation.
During 1966, the Committee met for four 2-day
sessions at Santa Monica (including a joint
meeting with the Board of Trustees) to consider
the work of R&TD and co offer broad guidance on
the overall program. During the year the RAC
focused on the follcwing areas: R&TD's operating
plan, the "augmentation of man's intellect" pro-
gram, education and training, and executive

systems.
»

In July, President Melahn announced the
rotation of the chairmanship of the RAC to
Dr. Merrill Flood, succeeding Dr. C. West
Churchman who had chaired the RAC since its
inception in 1962.

serve as a valued member of the Committece.

Dr. Churchman continues to
The

complete list of RAC members is as follows:

Dr. Merrill M. Flood (Chairman)
Professor and Senicr Research Mathematician
University of Michigan

Dr. William C. Biel (Secretary)
Associate Dean of the Graduate School
University of Southern California

Dr. C. West Churchman
Professor of Business Administration
University of California, Berkelev

Dr. Harry D. Huskey

Professor of Mathematics and Electrical
Englneering

University of California, Berkeley

Dr. Joln L. Kennedy
Department of Psychology
Princeton University

™-530/010/00

br. Anthony G. Oettinger
Professor of Mathematics and Linguistics
Harvard University

General Earle E. Partridge
USAF, Retired

Organization of Report

In the main, the report that fellows has been
organized to reflect the several threads of attack
indicated in the technigal‘overview. Iu cases
where a project belongs administratively under
one drea, but fitg funct lonally more clearly in
another, the functional relationships have
governed. Thus, the administrative structure of
R&TD, and in particular the organizational changes
that occurred late in the year, are not necessarily

reflected in the project descriptions that follow.

If it becomes increasingly difficult for us
to pigeonhole a gilven project--for example, to
judge whether the PLANIT language for on-line
lesson design belongs under education or man-
machine interaction or programming languages or
some other area--we take these multiple att.ach-
ments to be a healthy sign. Our aim is to
continue to break down the traditional barriery
imposed by different disciplines and skill fields,
with the goal of producing tools that draw upon
many areas of knowledge to fulfill a wide range

of uses,

Donald L. Drukey
Vice President and Manager
Research & Technology Division

n

B R R am oo

- v T TEeE T T TR W o R

T v Y T

(Cz €3 €32 €3

2

=
o

_
1

Tanuary 1967 1-1

T™M-530/010/00

£. H. Jacobs, Head

The Research & Technology Division's extensive
work in programming technology is being conducted
by several staffs. For purposes of this report,
these efforts have beun integrated in a siugle
section tictled “4dvariced Programming." Con-
stituting the major part of this section is the
work of the Programming Technology staff, headed
by E. H. Jacobs.

parts of the work of the Programming Systems

Also included are appropriate

staff (see also page 3-1), the Information
Processing Research staff (see also page 2-1i),
and the LISP development activity.

The area of Advanced Programming embraces study
and development of tools and techniques for the
computer programmer, the nonprogramming user of
computers. and the manager of computing installa-
tions. The major areas being explored are
compilers and programming languages, aids to
programmers, and studies of the programming

process.

The first of these, compilers and programming
languages, has been a major activity at SDC for
some years and the JOVIAL language snd compilers
have emerged as usable tools.
aims at finding new techniques of compiler pro-
duction and at increasing the language capability

available to progranmers.

In the realm of improved compilers, the
techniques of metacompilation are being studied,
as a possible means of reducing the time and cost
required to produce compilers. These techniqﬁes
have shown the capability to produce certain parts

of compilers, notably the so-called “front-end"

Continuing rasearch

which tramslates from source language to an inter-
mediate language and, in some cases, to machine
language. Both a metacompiler and a metalanguage
futerpreter have been constructed and are being
ueed to explore the problems of *"describing” a
compiler. The metalanguage interpreter has also
been used for other applications, including the

tranglation of one POL into another.

In programming languages, one current project
is aimed at extending LISP, an advanced list
processing language. List processing languages
have been found useful in work involving extensive
manipulation of symbols (as opposed to arithmetic
computation), but their utility has been blunted
by the slow speed of their processors and by their
limited capability to handle problems involving
both symbolic manipuiation and arithmetic computa-
tion. The LISP project is producing an advanced
processor, with a built-in computational facility.
One version of such a processor, called LISP 1.5,
was built during the year and used to test ideas.
Another version, LISP 2, is being built to imple-

ment these ideas in a complete system.

Exploration in another dimension, furnishing
new aids to programming, is being vigorously
pursued. The work includes finding aids that
help the vrogrammer to make better use of the
higher level languages, making it easier to get

programs written and assisting in code checking.

A major project in this area is the design and
development of an interactive programming support
system. Such a system will be designed to give

the programmer the maximum benefit of the on-line

January 1967 1-2

capability available in a time-sharing mode of
operation. Compilers and checkout tools specifi-
cally designed for a time-sharing environment

will have many more points of programmer inter-
action than are normally found, Further, the
language or control structure will be shaped to
allow the programmer to switch from function to
function (for examp®e, from a compile mode to a
debug mode) without having to make a‘corresﬁondtng

switch in language.

Several other projects are expected to contri-
bute to the interactive system. The work on
compiler construction described earlier will
provide the basis for the compiler used in the
system, Other contributing projects are Automated
Flow Analsis and Graphic fInput/Output., The first
of these is developing programs to analyze other
programs in order to get a wmachine-produced flow
chart. During the year, a program was written
that produces a series of flow charts from a
program written in JOVIAL. The first chart is
very detailed and successive ones present less
detailed information,giving a better overall
picture. A byproduct of this work was the
development of a program to automatically improve
code written in JOVIAL,

The Graphic Input/Output project is developing
techniques by which a programmer may write his

code directly into the computer (as opposed to

T™M-530/010/00

use of a teletypewriter or keypunch). Initial
work is on character recognition routines that
can operate rapidly enough to be useful in the
on-line environment. At the same time, routines
that display lines of code and make deletions and
insertions are being developed. Several experi-
mental recognition routines as well as parts of
the needed control programs have been written and
checked out on the Philco 2000.

Study of the program development process has
also been a significant activity. This research
ts aimed at systematizing and improving control
and planning techniques for use by managers of
computer program development. The work includes
analysis of the process of program development to
identify relationships among programming products,
resources, and environment. The goals are to
identify and develop economical and efficient
management methods for realizing programming
products and to establish criteria for measuring

the quality of these.

The central effort in this area has been the
statistical analysis of numerical data, character-
i{zing completed computer programs, to derive
improved methods for estimating costs. The work
has resulted in publication of a handbook for use
by managers in preparing estimates of a computer

program development project.

LA e D

ﬂ

g 1

i

‘

d

' i

d 1

' 4]

r
31

- P
1t f -
| iz

f l;

&3

January 1967 1-3

COMPILER CONSTRUCTION TECHNIQUES

Syntax-Directed Compilers and Translators¥

E. Book

Je. Igawa

M. Schaefer
D. V. Schorre

Description

The objective of this study is to develop
techniques that will simplify the task of pro-
SDC's
experience has shown .hat the 9 toc 12 months

ducing a compiler £-r a new computer.

currently required to produce a compiler for
command-control systems is a serious delay in the
production of operational programs. The use of
metacompilers has received much study by the
computer community and is the focus of this
project. This technique offers not only a pos-
sibility for comstructing compilers for new
wachines, but also a way to build compilers for

new languages.

The metacompiler makes use of a rigorous formal
description of the language for which a compiler
is to be produced. In addition, it requires a
description of the translation (or compilation)
process. (This description includes, either
explicitly or implicitly, a description of the

target machine language.)

The work has taken two major forms, called META
and METAS.

META is & compiler system which aczepts as input
a description of a desired compiler, in a special-
ized foim, and which outputs the desired compiler

in 30 executable form.

METAS is an interpretive system which consists
of the METAS language, a METAS compiler, and a
pseudomachine which is implemented on the Q-32
computer. The METAS5 language allows a variety of
data structures to be declared and used in the
language. It also contains some operations not

yet available in a system like META, but useful

*Suppdrted‘inmpart by the Advanced Research
Projects Agency.

R B ST NSO U O R S S U - S

T™-530/010/00

in data manipulation, e.g., relational and
arithmetic c¢perators; an assignment operator;

search, concatenate, enter operators; etc.

The META language consists of two sublanguages.
The first of these, called SYNTAX, is used to
describe the syntax of a desired source language,
specifying a mapping of a program in the source
language into a tree-structure representation.
The second sublanguage, called GENERATORS, spec-
ifies the correspondence of the tree structuvre
This is the
It is the
link between the string of marks input. to the

to a desired target language.

semantics of the source language.

computer (the source language program)and the
actions to be performed by the computex to

achieve th. desired result. This language is a
cross between a pattern matching notation and a
macro notation. It is a new language and will

be developed further. The two sublanguages are

‘nonprocedural or descriptive languages which are

specially designed. for the specification of

compilers and/or interpreters.

The subroutii.2s that do the work specified by
the SYNTAX and GENERATOR languages are written
in a language called MOL (Machine Oriented
Language). These routines could have been
written in any procedural programming language
such as JOVIAL, ALGOL, MAB, etc., or even in
assembly language. However, the MOL language
wag designed and a compiler for it implemented
for the reasons specified below.

First, MOL is based on a compromise. On the
one hand, it is desirable to take advantage of
the computer hardware in producing machine code
for various features of the language. On the
other hand, it is undesirable to descend to the
level of actual machine operations. MOL has an
ALGOL-1like €lavcy, but the operands and some

operators are concerned with machine registers.

Such things as indirect addressing, partial word

fields, user control of index registers, and
similar considerations are specifiable in this

A‘a’[*

e e

e A oG

Mo S

January 1967

language. MOL combines an assembler's vocabulary

with a compiler's grammar,

Second, it was felt that more control could be
exercised in adding features that wouid mesh this
language into the META system if it were specifi-

cally designed and implemented for that purpose.

Third, since MOL is a procedural language, it
provides an early test of the ability of the

system to describe a conventional compiler,

Progress

The SYNTAX and GENERATOR languages were designed
and a description of the syntax of both languages
was written in SYNTAX. This also showed the
mapping into the internal model (tree structure).
‘ihe‘mépping‘of the internal model to Q-32 code
was described for both SYNTAX and GENERATOR in
the GENERATOR language.

The procedural language MOL-Q32 was implemented
in an earlier version of META which did not have
the generator language. The subroutines required
to implement SYNTAX and GENERATOR were written
in MOL-Q32. This resulted in the entire META
system being described in its own language and
able to compile itself. This process was actually
performed by bootstrapping from a more primitive
version of the system.

A MOL for SDC's S/360 System was designed and
a compiler for it was described in META. The
GENERATOR portion of META was changed to produce
IBM 360 code, instead of Q-32 code, from the
internal‘modé}. The resulting version of the
META system for the 360 is currently being checked
out, ‘The‘bootstrap‘process to move from one
computer to another is very well defined using
this method.

The METAS system has been useful in describing
POL-to-POL translations (p. 1-5), data base con-
versious, some analysis of a subset of English
as used in questions, etc. Specifically, JTS-to-
JS, TINT-to=JTS, J3-to-JS, FORTRAN-to~JTS, and

JS-to~PL/I conversions have been accomplished.

ot it B e i i o < T et

1-4 TM-£30/010/00

Variouc data bases have been convertel for the
LUCID system (p. 4=7). The METAS system has also
been used to reforwmat METAS programs and to write
the METAS compiler, A calculation program and an
input processvr for JOVIAL constants have been
written in META5. The last two uses were of
rarticular interest since they were written for
on-line interaction between the user and the

computer.

As the METAS system became a working tool for
POL-to-POL translation, the META5 language was
expanded to facilitate string and character
manipulation. The METAS system is currently
being moved to the $/360 computer and, since the
METAS language is totally machine independent,
programs written for Q-32 METAS will run with no
modification on the 360, The J3-to-J$ translator
was used to bootstrap the METAS system over to
the J§/360 dialect of JOVIAL,

Plans

While the METAS system is being moved to the
5/360, improvements will continue to the language
and system as needed. Tree-building and manipu-
lation capabilities may be added along with
multiple input/output capabilities, to pevmit
the production of compilers. Pebugging capabili-
ties will be made available. Study will be made
of the feasibility of partial recompilation of
METAS5 programs. More POL-to-FOL translators will
be written including a PL/I-to-JS translator.

The META system is also being moved to the
$/360. When this is completed, improvements will
be made. One planned improvement is the addition
of a feature to describe and handle a dictionary
containing information about data types. The
GENERATOR language will continue to be developed,
Afte. this, work will split into two‘directioﬁs:
(1) further investigation of metalanguages and
procegsors, and (2) the use of META to produce
compilers and interpreters for various non-

procedural languages for experimentation.

st L b e Bt B L R ST e S e 2T e e S e et e e e Y

K" A A e et A

g

. |

D

l

e . A

January 1967 1-5

Project Documentation

1. Oppenheim, D. K. The METAS5 language nad
system. SDC document TM-2396., July 21, 1965.
49 pp.

2. Book, E. and Schorre, D. V. A higher-level
machine-oriented language as an alternative
to assembly language. SDC document TM-3086/
001/00. August 12, 1966. 29 pp.

3. Oppenheim, D. K. and Haggerty, D. P. METAS:
A tool to manipulate strings of data.
Proceedings of the 2lst Natinnal ACM
Conference. August 1966, 465-468. (Available
as SDC document SP-2243/000/01.)

Iranslation Between Procedure-
Oriented Languages

D. P. Hanz vty

Description

A major difficulty hindering the introduction
of improved procedure-oriented languages (POLs)
into an established computing facility is the
incompatibility between the new or improved
languages and older languages long in use. It is
often desirable to modify old programs by using
the new language or to combine routines written
in the old language with routines written in the
new one. One method of minimizing this difficulty
is the design of translation programs between old

and new POLs.

This project is exploring the possibilities and
limitations of automatic translation of one POL

into another,

Several programs designed to accomplish a
translation from one POL to another existed at
the inception of this project--an SDC program to
translate FORTRAN II to JOVIAL (J2) and an IBM
FORTRAN II-to-FORTRAN IV translator. Two others
were being programmed--a TINT-to-JTS translator
and a JTS-to-JS translator.

The first two translators were produced using
""traditional" methods, i.e., they were written
in the conventional programming languages J2 and
FORTRAN, respectively; in contrast, the latter
two transiators were written in METAS, a syntax-
directed compiler-writing system (see page 1-3).

D RSNV S AT PN SO ST S

T™-530/010/00

The languages selected for translation in this
particular study were JOVIAL (JS version) and
PL/I (i.e., a JS-to-PL/i translator) and the METAS

system was selected to vealize the translator.

The language pair was chosen because both would
be available on IBM System/360 and a POL-to-POL
The METAS

technique was selected because a TINT-to-JTS

translator would have practical value

translation was partially implemented at the time
and seemed to indicate that the method could be

applied to the more complex JS-to-PL/I translatiom.

Progress
At present, the translator is operating on the

0-32 under the Time-Sharing System.

The translator was written in the METAS language
and debugged on-line under the Time-Sharing System.
The use of the METAS language facilitated the
writing of the translator in several ways; the
specification of the syntactic recognition process
for the various JS forms is not only precise and
transparently explicit but also succinct. The
transformational processes necessary to produce
the PL/T equivalents are also expressed quite

clearly and briefly.

The language specifications as a basis for
writing the translator were, for JS: SDC TM-1682/
003/00, JOVIAL (J-6) Grammar and Lexicon; and for
PL/I: 1IBM, File No. $360-29, FORM €28-6571-3,

IBM System/360 Operating System PL/I Language
Specifications.

Although it is assumed that the JS input text
has been found syntactically correct by the
‘generator' phase of a JS compiler, the philosophy
adopted with respect to the translator has been
to produce as complete a translation as possible
no matter how incorrect or garbled tire input text
may be; hence non-JS program segments will produce
output, e¢.g., J3 programs will translate although
usually incompletely.

The translator has converted a JS program that
was designed to test the ability of a JOVIAL

The PL/I

equivalent’ of this program has been submitted to

compiler <o compile a JS program.

IBM for syntax-checking by that part of the PL/I
compiler; the program consisted of about 315
A much
larger J3 program (about 1800 statements and 250

statements and 120 data declarations.

data declarations) has also been translated; this
translation should give an indication of how
useful the translator is for translating J3
programs (for which it is not designed),

i.e., how difficult the postediting job is.

Several PL/I translations have been compiled
by the F-level compiler and have revealed errors

in the translator.

The project has noted several aspects of pro-
gramning languages that add to the difficulty of
translation (these remarks also apply to the
compilation process): (1) any ad hoc devices
that a particular compiler uses to "fit" a
language to a machine constrict the translation
process; (2) the existence of structural cone
nectivity (see E. T. Irons, "Structural

Connections in Formal Languages,' Communications

of the ACM, Vol. 7, No. 2, pp. 67-72, for an

exposition of this concept) in a language adds
a considerable burden to a translator, and hence

should not be introduced unnecessarily.

The METAS system is being converted to the IBM
System 360. When this is completed, study of
translation techniques will continue through the
application of METAS to other language pairs.

In particular, a PL/I-to-JOVIAL translator offers

a promising research avenue.

Project Documentatiocn

1. Haggerty, D. P. Use of the JS to PL/X
translator. SDC document TM-2823. January 19,

2- Haggerty’ D‘o ‘Po
METAS system.
1966. 18 pp.

- JSPL: An application of the
SDC document TM~3003. June 14,

- T e - - T e TR T - ST i T e I S
’ _ .
January 1967 1-6 ™=530/010/00

Compiler Techniques for Pagingk

R. J. Dinsmore

Description

The goal of this project is to‘éstablish the
compiler techniques for producing computer code
that takes advantage of "page" and "segmentation"
features of new computers such as the IBM 360/67
and the GE 645,

When the current generation of compilers was
designed, computer memories generally consisted
of a single block of locations whose addresses
were simply a continuous sequence from zero to
the highest available. The new computers, however,
subdivide memory into sma?' « blocks called
"pages" and '"segments," and it appears that
special compiling techniques are needed to properly
utilize these features. That is, compilers must
produce computer programs that will take advantage
of the small blocks of memory and minimize the
number of times a process is interrupted for the

loading of new pages or segments.

Other SDC projects (Automatic Code Improvement
and Automatic Flow Charting) have shown that the
generator phase of a compiler can obtain a great
deal of information about the structure of a
program, and it is anticipated that this is the
kind of information useful in the paging problem.

Progress

The work plan on this project consists of a
study of an existing compiler, the construction
of a compiler that includes the new techniques,

and a study of gains realized,

This project was instituted *ite in the year
with a study of the JOVIAL compiler for the
IBM 360 and some of its output code. A number
of possibilities for structuring a program have
been hypothesized and are being considered

for implementation in a compiler. Also the

tSﬁpﬁbftéafbyiihe Advanced Research Proijects
Agency.

T

T
ANt R

|
o
.
¢
a
P
3
4
IJ
ORN
A

{
=

January 1967 1-7

differences in design between existing compiiers

and a paging compiler are being investigated.

In addition to the program structure itself,
two additional techniques are being considered.
One of these is to have the program utilize
statistice on its own past behavior in loops and
at branch points. The other technique is to have
the program furnisiv notice of its future page

needs to the executive.

Plans

Work will continue to find more potentially
profitable ways in which programs can be
structured. An experimental cempiler will be

built to test each of these techniques.

PL/I for SNC 360 Time-Shariug System

W. BE. Meyer

Degcription

The purposc of this project is to investigate
the difficulties involved in moving a compiler
from one third-generation operating system to
another., Specifically, the project is investi-
gating the transfer of the PL/I F-level compiler
from the IBM 0S/360, a system designed for
multiprogramming, to the SDC 360 Time-Sharing

System,

The dependence of compilers and assemblers on
operating systems has been increasing over the
ltaat ten years., This increasing dependence
implies greater difficulty in transferring
With the

advent of multiprogramming systems, this depen-

compilers from one system to another,

dency is increased substantially because of the
desirability of dynamic relocation, standard data
structures, and flexible and dynamic linking of

program segments.

Because of the widespread interest in PL/I and
becauvse of its potential usefulness in the SDC
Time-Sharing System, PL/I was chosen as the
object of this study.
with the IBM 0S/360; the SDC 360 System is

It was written to operate

T™=-530/010/00

sufficiently different that the transfer require-

ments are significant.

Progpress

A list of probable problem areas was developed.
They are:

1. The compiler interface with the operating
system,

2. The compiled program's interface with the
operating system.

3. The form of the compiled program as output
by the compiler.

4. The form of data aggregates (e.g., files,
records, data sets, control blocks, etc.) recog-
nized by the operating system and the compiler.

5. The differences in input/output procedures;
this is related to 4, above.

6. Dynamic (execution time) calls on the
(This may be unique with 05/360.,)

7. Possible side effects introduced in moving

library.

support programs from one operating system to

another.

In the latter part of the year, Program Logic
Manuals for the PL/I compiler and the PL/I library
were received from IBM, and a study of the compiler
and the library was begun, All compiler inter-
facing with 0S/360 is contained in six control
programs. All references to 0S/360 in these
rontines have been identified. There are 62
calls, generated by 19 different system macros.
This list of references will be used as a basis

for the evaluation of the problem area 1, above.

With respect to the object program's interface,
the PL/I compiler does not generate code that is
operating-system dependent; all operating system
interfacing is isolated in the PL/I library.
There are 17 library routines using 20 system
macros that supply the object code interface
with the operating system. These macros are,
for the most part, the same as those used in the
compiler-0S/360 interface.

The form of the output program is not a problem

in the case of PL/I since the "object module" that

January 1967

is vutput must be processed by the linkage editor,
which outputs a program in a form readable by the
loader. The need for link-editing arises because
all memory allocation, data management, data
conversion, and input/output processes have been
placed in the PL/I library and the library
routines must be linked to the objact program

by the linkage editor.

The study of the problem areas will be con-
tinued. The variances between the 08/360 and
the SDC 360 System data aggregates will be
tabulated and the differences between the two

system interfaces will be evaluated,

PROGRAMMING IANGUAGES

LISp 2%
SDC: J. A. Barnett III: L. Hawkinson
Project Leader M. I. Levin
D. C. Firth P. W. Abrahams
R. E. Long D. Crandal
E. Book R. A. Saunders
R. E. Martin E. C. Berkeley
c. Weissman
S. L. Kameny

Description
The LISP 2 Project is a joint development of

SDC and‘Information‘International, Inc.

LISP 2, which is based on LISP 1.5, is a new
programming language for manipulating complex
data structures and performing lengthy arithmetic
calculations. As in LISP 1.5, programs can be
treated as data, and storage can be regained
through a compacting technique known as "garbage
collection," The LISP 2 Source Language (SL),
which resembles ALGOL, is the standard input;
the LISP 2 iIntermediate Language (IL), which
resembles LISP 1.5, is used for programs that are
to e treated as data., Type declarations are
available for efficient compilation of arithmetic
operations. LISP 2 includes bit operators and an

open subroutine capability. The most general form

*Suppdrtedﬁby the Advanced Research Projects
Agency.

1-8

™-530/010/00

of a datum is a symbolic expression; other forms
include numbers, functions, strings, and iuteger-
indexed arrays, All of the system programs are
themselves written in LISP 2. The 1/0 package
transforms input inte a stream of characters which
are converted into tokens by the fiunite-state
maching., The supervisor controls the various
SL is tramslated into IL by

the syntax translator; IL is trauslated into

LISP .2 operationms.

agsembly language by the compiler; and assembly
language is translated into machine language by
the LISP 2 assembler, LAP, Machine mobility is
achieved through core image generation. (See

Figure 1-1.)

Pregently implemented on the Q-32 computer,
LISP 2 has two components: the language itself,
and the programming system in which it is embedded,
The system programs that define the language are
accessible to and modifiable by the user; thus
the user has an unparalleled ability to shape the
language to suit his own needs and to utilize
parts of the system as building blocks in con-

structing his own programs.

While it provides these capabilities to the do-
it-yourself programmer, LISP 2 also provides the
complete and convenient programming facilities
of a ready-made system. Typical application areas
for LISP 2 include heuristic programming, algebraic
manipulation, linguistic analysis and machine
translation of natural and artificial languages,
analysis of particle reactions in high-energy
physics, artificial intelligence, pattern recog-
nition, mathematical logic and automata theory,

automatic theorem proving, game playing, infor-

mation retrieval, numerical computation, and

exploration of new programming technology.

The LISP 2 programming system provides not only
a compiler, but also a large collection of run-
time facilities. These facilities include the
library functions, a monitor for control and on-

line interaction, automatic storage managemwent,

P

T T T T T T T T e T ey

January 1967 1-9 T™-530/010/00
PATTERN. [R $-EXPRESSION) TOKENS
‘ I \ $-EXPRESSION [* 1
{ I ‘ | |
COMPILEK | | Reaper CONTROL |
] r’ |
LAPCODE | CONTROL | |
PATTERN- Lisp 1 I | -—-——---CO';’;'::LS FINITE-
| AssemBLY | AP I SupeRVISOR pelb I} SYNTAX TOKENS | STATE |
DATA | eroc CODE ‘ | TRANSLATOR [* ‘ |
maNtpuLator| | PROGRAM ; 1 " | | machne §
¥ T
00?.{‘“ l CONTROL 1
| | I i
\ ‘ | ! A []
l f | 1 S-EXPRESSION |] CH“RACTERS
| coxe | f&é‘e l | | | | ‘ ‘
l | GENERATOR | L | erNT |CHARACTERS J /g |
I | | i |
, CONTROL T
| ‘ I |
FACILITIES [LIBRARY FUNCTIONS] l
| |PrimiTIvES] — 1
I Time-
[GARBAGE COLLECTOR | sHarnG ‘
| moniTor |
[META-COMPILER | | —

il

FIGURE 1-1.

LISP 2 SYSTEM COMPONENTS AND INFORMATION FLOW PATHS

T T T T

>

January 1967

and communication with the monitor system of the

machine on which the system is operating.

A particularly important part of the program
library is a group of programs for bootstrapping
LISP 2 onto a new machine. (Bootstrapping is
the standard method for creating a LISP 2 system
on a new machine.) The bootstrapping process,
achieved by the technique of generating a complete
LISP 2 core image on the target wachine (core
image generation), represents a major milestone
The LAP

assembler, a part of the core image generator,

in the implementation of large systems.
produces relocatable binary code. During the
bootstrap process, this code is assigned an
absolate core address and relocated as necessary
as if it were being loaded. Associated data
structures are assigned locations and their binary
core images generated. The code, data structures,
and binary images are then placed on an external
output device such as magnetic tape. The boot-

strapping capability is sufficiently powerful so

that the new machine requires no resident programs

other than the standard monitor and a non-
relocatable binary loader to read the tape

produced.

LISP 2 includes and extends the capabilities of
its ancestor, LISP 1.5,which is notable for its
mathematical elegance and symbol-manipulating
capabilities. However, LISP 1.5 lacks a con-
venient input language and efficiency in the

treatment of purely arithmetic operations,

LISP 2 was designed to maintain the advantages
of LISP 1.5 while remedying its deficiencies.
The first major change has been the introduction
Source Language
The two

of two Jdistinct language levels:
(SL) and Intermediate Language (IL).
languages have different syntaxes but the

same semantics (in the sense that for every SL
program there is a computationally equivalent IL
program). The syntax of SL resembles that of
ALGOL 60 while the syntax of IL resembles that of

LISP 1.5. 1IL is designed to have the same

1-10

™-530/010/00

structure as data, and thus to be capable of being
manipulated easily by user (and system) programs.
An advantages of the ALGOL-1like source language is
that the ALGOL algorithms can be utilized with
little change,.

The second major change has been the introduction
of type declavations and new data types, including
integer-indexed arrays and character strings. At
a future time, packed data tables, which can
presently be simulated through progeamming
techniques, will be added. Type declarations are
necessary to obtain efficient compiled code,
particularly for arithmetic operations, but by
using the default mechunisms (whereby the system
automatically makes type declaratiomns), a pro-
grammer may omit type declarations entirely
(albeit at the cost of efficiency).

Figure 1-2 shows an example program, called
RANDOM, in its Source Language format, in the
equivalent Intermediate Language program as
produced by the syntax translator, and in the LAP

output from the compiler.

Progress

A first LISP 2 system was implemented on the
Q-32 and demonstrated in May of 1966. The
LISP 2 Intermediate Language (IL) was used for
all programming of LISP 2 including the system
primitives; IL was found to be powerful enough
so that little or no machine language or assembly
language code was required. A few minor changes
were made in IL on the basis of experience
The

gen-

obtained by project personmnel in using IL.
system was produced through the core image
eration process using LISP 1.5 on the Q-32 as the
bootstrapping vehicle. A syntax translator for
translating from source language to IL was written
uging metacompiling techniques (see page 1-3).

A gimple pattern matching routine and a LISP
"pretty print" have been programmed in LISP 2

to aid in system checkout. Also, several
extensions to LISP 1.5, including a context

editor, were required.

(7

*E

B
Fa

I
b .
—

- —

— T - — - e _— J— A A"H”GJ
January 1967 1-11 T™-530/010/00 l
N ‘
U |
<SOURCE LANGUAGE> <Q-32 LAP LANGUAGE>
; - REAL SECTION TEST: (LAP |
| ’ %R RANDOM COMPUTES A RAND(M NUMBER IN (FUNCTION ((RANDOM . TEST) REAL)
} - %R THE INTERVAL (A,B) ((A REAL LEXICAL VALUE)(B REAL LEXICAL VALUE))
| z\ E DECLARE (¥-1) INTEGER OWN Y: (STF TOP.) ‘
| REAL FUNCTION RANDOM(A,B): (BEGIN) |
DO ¥-3125*Y; (LDA (Y . TEST)) "
| Y-Y\67108864; %R \ DENOTES REMAINDER (MUL 3125 (L567.7 R S)) :
a RETURN A+Y*(B-A)/67108864.0; (ARGS) |
i E.iD; (STB PUSHA.)

(LDA (NUMBER 67108864) S) 1

e TR (-r i
»

<INTERMEDIATE LANGUAGE> (CALL (REMAINDER . LISP))

(SECTION TEST REAL) (STF (Y . TEST))

(DECLARE (Y INTEGER OWN 1)) (LDC A) ;
(FUNCTION (RANDOM REAL) ((A REAL)(B REAL)) (FAD B)
d (BLOCK () (FDV (NUMBER 67108864.0)) 4‘
(SET Y (TIMES 3125 Y)) (FMP (Y . TEST)) }
(SET Y (REMAINDER Y 67108864)) (FAD A) ;
% (RETURN (PLUS A (TIMES Y (END) :
4 (QUOTIENT (DIFFERENCE B A) 67108864.0)))))) (RETURN)) |
(((REMAINDER . LISP) FUNCTION 1

(FUNCTIONAL INTECER INTEGER INTEGER)VALUE)

((Y . TkST) OWN INTEGER VALUE))

TEST)

A

FIGURE 1-2. A SAMPLE LISP 2 PROGRAM IN SL, IL,AND LAP

‘

e I S VR

e
i ;

e

S v

N At

SN

P e

January 1967

Plans

The Q-32 LISP 2 system will be polished and a
mechanism for swapping binary programs from disc
storage will be Installed. An operational Q-32
system will be completed in the first quarter

of 1967.

Implementation specifications for putting
LISP 2 on an IBM 360-1like machine will be written.
Multiple register usage, virtual memory manage-
ment, and paging techniques will be included in

the design work.

Several problem areas need to be resolved.
The first is that LISP 2 must be polished to
reduce its size, Also, the swapping mechanism
has been designed to help alleviate this problem,
particularly ia view of future "page-turning"
operating systems. 7%he second problem involves
finding a target system to which LISP 2 may be
bootstrapped. Neither the IBM 360 nor the PDP-6
time~sharing system has progressed fast enough
to be used as an operational vehicle ior LISP 2.
Lacking a stable, reliable time-sharing environ-
ment, mobility of LISP 2 onto other systems is

being compromised.

Pro ject Documentation

1. Abrahams, P. W. (III), Weissman, C. (SDC),
et al. The LISP 2 programming language and
system. SDC/III document TM~-3163.
September 26, 1966. 28 pp.

2. Kameny, S. L. and Weissman, C. ‘The Q-32
LISP 1.5 mod. 2.6 system: Operating syscem,
input-output, file, and library functions.
SDC document TM-2337/103/00. April 11, 1966.
27 pp.

3. Levin, M. I. and Berkeley, E. (III). LISP 2
primer. SDC document TM-2710/101/00 (Draft).
July 15, 1966. 165 pp.

4. Firth, D. C. and Kameny, S. L. Syntax of
LISP 2 tokens. SDC document TM-2710/210/00.
August 25, 1966. 11 pp.

5. Kameny, S. L. (SDC) and Hawkinson, L. (III).
LISP 2 intermediate language. SDC document
T™-2710/220/01. July 5, 1966. 56 pp.

6. Barnmett, J. A. SIM, an s-expression pattern=
matching function. SDC document TM-2710/260/
00. June 29, 2966h. & pp.

T™M-530/010/00

7. Saunders, R. A. (III), Barnett, J. A. and
Firth, D. C. (SDC). The LISP 2 compiler.
SDC document TM-2710/320/01. February 1, 1966.

55 pp.

8. Book, E. The LISP 2 syntax translator. SDC
document TM-2710/331/00. April 15, 1966.
27 pp.

9. Howard, M. V. Operating instructions for the
LISP 2 supervisor in the LISP 2 core image.
SDC document TM~-2710/510/00. October 14, 1966.
5 pp.

Data Base Oriented Programming Language®

E. B, Foote
R. G. Howard

Description

Data management systems, such as LUCID (see

p. 4-7), have several features distinctly different

from procedure~oriented compiler systems such as
FORTRAN or JOVIAL. The first is the English-like
restricted language of the former. This language
is valuable because it is user-oriented and easily
learned. However, it lacks certain power inherent

in the procedure-oriented languages. The second

difference--not as apparent to the user but equally

significant-~-is t'e organization of the data in
storage. Although languages like FURTRAN and
JOVIAL allow flexibility in what is stored, and
in the hierarchical structure between data
elements, they put the material away, in core or
tape or disc, in a relatively rigid format. Data
management systems like LUCID, on the contrary,
have a very flexible format, dictated by the data
it~elf. The goal of this project is to study the
possibility of obtaining in one system the power
of the procedure-oriented language and the capa-
bility offered by the data structure used in the

data base management system.

Progress
The language is being investigated in the
context of SDC's Time-Shared Data Management

System (TDMS)--(see p. 4-9). The first step has

*Supported‘gy the Advanced Research Projects
Agency.

=
B

January 1967 1-13

been to study the possibility of building a
convendent bridge for the user between a data
management system and a procedure-oriented
language; that is, to enable a user who has

built a data base using the manipulative features
of TDMS to use the same data base for more exten-
sive computations. For example, a user who has
built and used an inventory of bomb components
might wish to use linear programming to determine
the most bombs he could build out of components
in his inventory. Such a lengthy computation
exceeds the capacity of TDMS. The user would
need to use something like JOVIAL but would
prefer not to have to convert his data base to

a new format.

The use of the TINT* system on the Q-32 computer
was considered as the procedure-oriented language
base since TINT is more readily modifiable than
available compilers. Several new language forms
were devised to carry data back and forth between
the formats of TDMS and TINT. However, taking
material from the tree structure used in TDMS
into tabular format of TINT can result in wasting
of a great deal of space, because the tree
structure does not allow space for absent ele-
ments while the table must allow space for the
largest potential entry. Other approaches were
considered and several appeav promising. One of
these is to add a facility to a compiler such as
JOVIAL that would enable a user to get elements
from a data base as he needs them. Then the
user can perform computations on the elements
immediately or construct tables based on his

knowledge of the data.

The JOVIAL compiler for SDC's $/360 Time-
Sharing System will be studied to determine if
it can be matched to the data retrieval package

cof the TDMS system, If this appears feasible,

*Teletype INTerpreter--an on-line assembly-
oriented language system.

™-=-530/010/00

the compiler will be modified to furnish a vehicle

for experiment and further development.

AIDS TO PROGRAMMING

Interactive Programming Support System*

M. B. Bleier
H. Bratman
E. R. Clark
J. S. Hopkins

Description

The goal of this project is to develop a pro-
gramuing support system that (1) takes advantage
of the intevactive capability of time-shared
systems, (2) facilitates the programmers' work
by providing an integrated capability in system
language, information, and function, and (3) makes
advantageous use of a tabular display in program
composition, program editing, program debugging,

and program and system documentation.

Among the functioms that will be provided in
the system are:

Program Composition: Original preparation of
source-ianguage program

Alteration (temporarily
or permanently) of
source-language program

Maintenance of program
and data files

Program Compilation: Grammar checking
Partial recompilation

Compilation of optimum
object code

Display of variables that
are selected by symbolic
name

Program Testing:

Symbolic alteration of
values of variables

Tracing

Assistance in preparing
and storing data for

program parameter testing

Display of variables

controlled by conditional

statements

*SﬁppoéiédVinipart by Rome Air Development Center.

January 1967

Production of "set-used"
information and glossary
of names used in the
program

Documentation:

Reformatting of source-
language program text

Production of flow charts
containing variable
levels of program
details

Assistance to user in
learning the system
The system is designed to give the user an
integrated language for the program production
processes of composition, editing, compilation,
execution, testing, and documentatim. The
commands for performing a particular action are
all in the same format, even though the action
may occur in different functions. For example,
once ; programmer has learned the commands to
sinsert and delete statements in a program, he
is able to perform simple kinds of file mainte-
ngnce without learning new or contradictory

commands.

Also, in developing a program, the user will
deal with only a single entity, the system itself,
instead of being concerned with a conpiler, an
editor, a debug package, etc. He can perform
actions as needed without awareness that difterent
functions are being used. For example, if the
user gives a command to execute a program and
that program has not been compiled, the system
will compile it Ior him. The system is designed
for programmers rather than problem solvers.
However, the system and its language are designed
to be learnable in steps, so that a novice with
a simple problem would need to ilearn only a small

part of the system.

In addition to providing an integrated language,
the system exploits the capability of time-shared
interaction, especially during compilation,
During compilation the compiler usually makes
some arbitrary decisions. For example, when
there are more index variables than registers,

the compiler uses predetermined rules to assign

1-14 M- 530/010/00

registers. In an on-line, interactive situation,
the compiler can ask the programmer for advice.
If the programmer has information about the
frequency of use of some or all of the indexes,
the compilez‘can use this information to make

more efficient assignments.

Another feature of the system is improved
coordination of programs, providing better
service to the user. Increased efficiency in
operating time is expected, because programs
within the system do not regenerate information
that has already been computed. In particular,
the compiler provides a great deal of information
that is useful in debugging. An example ig the
dictionary generated during compilation, which is
currently being used by some dcbugging routines.
The flow chart and glossary programs need much
the same information about the structure of a
program generated by a compiler with line-at-a-
time or partial recompilation capability,

Figure 1-3 shows the relationship between system

components.,

Progress
Investigation is proceeding along three paths:

. Design of the system language and the
techniques of user-system interactions.

. Design of the system functions that support
the system capabilities.

. Design of system control and program

integration.

1. Design of the System Language. The conver-

sational requirements of various components of
the system, such as program composition, compila-
tion, testing, and documentation are being
studied.

an integrated language is being developed. The

As the requirements are formulated,

development of the system design concurrent with
the language design ensures that the system
contains all the capabilities implied by the
language. A document has been published that
describes the system from a user's point of

view [3].

sl ‘

AAT
i
zioibil3

=

January 1267 1-15 T™-530/010/00
Normal Activitics Alds
Qg ,,,f
i‘ Programmer
£ System 7 | Teachi: “
f} | y Teaching ’;
. (The progremmer commwicatec (Programmer is “
1 1with & control program which | - instructed in ‘ !
| ‘selects a subroutine to per- | - correct techniques‘ %
form the functiions requested.) - to be used.) | } |
— e — m——— - - — 1 1
| I 1 i
A ‘\‘ | ‘
1 Editing Documentation j
i _ §
) | (This function performs file \\ (Set-used listings, ‘\‘
== maintenance, prepares input 1 program listings, and i
L ‘ for other routines and pre 1 flow charts are pre- “
' _pares output. 2 “7tpareg.7)l) ‘
Compilation
{Tuis fuuction selects the | ‘ — e
compiler requested by the | ___ Debugging
| programmer for this run.) | |
m | e —— ‘ ' (Current values of variables |
| t - are inspected and the path |
‘ I | — — — | followed through the programi|
6—»' Execution [is aispleyed.) |
L I —
]
Program Information
| _ (This information is generated by
™m various subroutines for use by every |
‘{ function on this chart.)
E FIGURE 1-3. COMPONENTS CF THE INTERACTIVE PROGRAMMING SUPPORT SYSTEM

January 1967

2., Design of Various System Functions and
Tables.
being checked out on the Q-32.

A version of the syntax anmalyzer is
This component
performs the following functions:

. Analyzes syntax of all inputs to sece if they
are correct and indicates location of error if
they are not.

. If the input is a system command, encodes it
in binary and searches the dicticnary for any
variable names in the command.

. If the input is a JOVIAL statement, removes
redundant blanks from the statement and makes
entries in the dictionary for wvariables used or
defined.

The syntax analyzer is being written in JOVIAL
and uses techniques developed by the META and
METAS5 metacompilers {(p. 1-3). This will result
in an efficient program that can be easily

modified for changes in input syntax.

Formats that facilitate the attaching and
detaching of program units and system commands
to the main body of the program have been
proposed for the Text Structure Directory (TSD)
and the Program Structure List (PSL).
have been devised to attach, locate, and trace

program units in the proposed TSP format. A

scheme to encode system commands, consistent with

the proposed TSP format, has been devised.

Research is being conducted in the area of
partial recompilation, which combines the
problems of program editing and incremental
compilation with those of modifying executable
programs. The program text is maintained in a
list form to facilitsate program editing. State-
ments are compiled into independent subroutines
whose computation sequence is described in tke
PSL. An execution nonitor is being designed to
operate on the output of the compiler. This
component executes the independent program
segments in the proper sequence and directs the
operation of any program test requests made by
the ‘'user.

Algorithms

1-16 TM-530/010/00

3. Design of System Control and Program Inte-
gration.
control are¢ being designed to operate within
SBC's S$/360 Time-Sharing System.

Time-Sharing System is under way to determine

A central controller and input/output

A study of the

its optimum use with the Interactive Programming
Support System. A prototype controller will be
written to operate on the 360 with dummy system

components.

Work on the Interactive Programming Support
System will concentrate on completing the system
design and building the framework of the system.
The aim will be to build a mockup of the system,
with certain parts "running' and certain parts
only represented, in order to meet the various
The emphasis will be

on developing the system language and showing the

constraints oen resources.
forms of user interaction. The aim is to gain
experience in wusing the system and testing the
effectiveness of the program composition and

editing language and furction.

The tasks to be worked on in the immediate
future include:

. Development of the system language.

. Pesign and construction of the program
composition and editing programs.,

. Completion and revision of the syntax
analyzer.

. Design and construction of the system control
program,

. Modification of the existing JS $/360 compiler
to be operable under the control program, match
the output of the editing program, provide some
interactive capability, and match existing testing

programs.

Project Documentation

1. Jacobs, E. H.
support system.
January 1, 1966.

An interactive programming
SDC document TM-2819.
“ \p‘p .

2. Beeler, R. G., Jackson, C. W., Hopkins, J. S.
Interactive programming
SDC document TM-2819/001/00.

9 \PP.

and Jacobs, E. H.
support system.
February 21, 1966.

e ey Ty YT T O T I

T o

M

[P SN NSO S NP SR TS S Sy S U Y |

1-17

January 1967

3. Bratman, H. and Hopkins, J. S. Initial design
specifications for the interactive programming
support system. SDC document TM-2819/002/00.
July 20, 1966. 54 pp.

Automated Flow Charting

L. Fine

The flow chart is a traditional programming
tool used in program design, production, checkout,
maintenance, and documentation. It provides a
means for correlating what a program actually
The level of

detail desired in a flow chart is a function of

does with what it is meant to do.
its intended use. For some purposes a general-
ized flow chart, piving an overview of a program,
is most useful, whiie for other purposes a
detailed flow chart, giving the exact flow of

a program, is most appropriate. However, the
production and maintenance of such flow charts
is often in itself an overwhelming, and hence
rather neglected, task. For this reason, a
program that takes a symbolic program and from
it automatically produces multilevel flow charts
can serve an important purpose. In addition to
relieving the programmer of the tedious aspects
of flow diagramming, such a program produces
flow charts that have a consistent degree of

accuracy and a standardized format.

This project is developing a method for auto-
matically producing multilevel flow charts. The
most detailed flow chart is first produced and
then, by iteratively applying a set of algorithms,
it is successively condensed to produce flow

charts at various levels of detail.

Progress

As a start on the problem of analyzing symbolic
code, a program (SURE) was written which would
take a program written in JIS (JOVIAL for Time-
Sharing) and produce complete set/used infor-
mation. This program was then augmented to
perform more detailed analysis and was found to

That

be useful in improving the symtolic code.

T™-530/010/00

is, SURE can reformat a program so that it will
be shorter and will execute faster. This work
appeared so promising that a separate project
aimed at automatic code improvement was started
(see p. 1-2i) while the automatic flow charting

work continued.

.. method of producing multilevel flow charts
has been implemented in JOVIAL.
operating on the Q-32 computer, and will be
adapted to operate on SDC's $/360 Time-Sharing

It is currently

System,

written in a subset of JOVIAL, determines thie

The program takes a source program

function of each source program statem~unt, and
assigns to each statement (other than a branch-
type statement) a separate box that indicates
its function. Text that describes the action of
the source statement is placed in each box, and
flow information is associated with each box.
Finally, certain adjacent boxes are grouped
together, thus producing the most detailed flow

chart.

A study of the number of entries to, and exits
from, ecach box, as well as some information about
program flow, indicated that certain configurations
of boxes can be grouped together without essen-
tially altering the picture of program flow. This
study led to the development of a set of seven
rules that, when applied to the flow chart,
condense it by grouping together certain config-
urations of boxes and thus produce a more general-
ized flow charit. By reapplying the rules to this
flow chart the next-level chart is produced. The
seven rules specify how different boxes are
combined, how the text is modified, and how the
flow information is updated. Initially, simple
program structures are grouped together and then
more complex structures are combined, until
finally the flow chart is in its most generalized

form.

The method and the program that impiements it
are still in the developmental stage. The program

checkout has been completed . 1t very little

experime~tation has been done. The results of

applying tlie rules are encouraging but the rules
do not reduce all source programs to a most
generalized flow chart consisting of a single

box.

The output of the flow charting program is a
printer-drawn flow chart., No attempt has been
made to produce a well-drawn picture, since this
project is primarily concerned with the analysis
techniques. A number of researchers are working
on the "drawing' problem and it is expected that

this project will utilize their results.

Plans

The next step will be to generate a number of
computer-produced flow charts to be used in
evaluating and refining the method. A study will
be made to see if the seven rules can be extended
to reduce all source programs to one-box repre-
sentations. Further investigation will also be
directed toward determining what constitutes a

‘ flow chart level.

The present output will be replaced with a more
sophisticated "picture-drawing' capability,
preferably by adapting one of the flow charting
programs already implemented outside of SDC, and
an on-1line display console will be used as an
output device. Long-range plans include an
investigation of user interaction with the

program, a feature that is not possible now.

Project Documentation

1. Fine, L. Automated flow diagramming--boxes
end text. SDC document TM-2969/001/00.
Lpril 18, 1966. &/ pp.

2. Fine, L. Automated multilevel flow
diagramming., SDC document SP-2629.

October 26, 1966. 19 pp.

January 1967 1-18

™-530/010/00

Graphic Input/Output*

4. I. Bernstein

The primary purpose of this project is to extend
on-line programming facilities aand techniques
through the use of graphic input/output equipmente-
namely, the RAND Graphic Input Tablet, CRY displays,
and their associated hardware. The attainment of
this goal requires the development of character
and shape recognition routines that function effi-
ciently in an on-=line time-shared environment and
the integration of these routines into both current
on-line programming systems and extended programe
ming systems. To be useful, the character
recognition routines must not only be able to
recognize inputs from a large variety of users,
but must provide the users with a relatively
large character set. The extended systems include
languages for which the placement of characters
is more meaningful and nstural in a two-dimensional
format; for example, in flow charts, automated
analysis and manipulation programs, and theorvem~

proving and game-playing programs.

Progress

The central ideas of the character recognition
techniques being developed are that maximum use
be inade of the seris! nature uof the real-time
input data and that the principal unit of infor-
mation is the stroke. The program extracts
descriptors in the form of ''feature" strings
from each stroke as it occurs. Multistroke
characters require that the strokes constitating

them have the proper spatial relations.

In order to tailor the character recognition
programs to a given user, they are being con-
structed to allow each user to provide hig own
input vocabulary of characters and to associate
these with the desired output character. buring

this procedure a control program constructs a

*Suﬁboféedwin'bart by the Advanced Research
Projects Agency.

January 1967 1-19

dictionary for the user and allows him to test
the level of achievement in recognition. If the
uger is unsatisiied with the results, he may add

samples until the recognition rate is acceptable,

To date, four feature extractors and two
methods of analyzing the spatial relations
bhetween strokes have been programmed for the
Philco 2000 using a RAND Graphic Input Tablet
for input and its associated display for output.

One extractor generates a "feature" each time
it detects a local minimum or maximum in the X
or Y coordinates (i.e., each time the writing
instrument reverses direction of its left-right
or up-down motion). Another divides the stroke
area (the rectangle circumscribing the stroke as
defined by the absolute minimum and maximum
values of X and Y) into four equal areas upon
completion of the stroke. The "feature" list
consists of the subareas through which the stroke
passed in order of occurrence. A third "feature"
extractor divides the stroke area into five sub-
areas by superimposing a diamond-shaped area at
the center of the rectangle. The fourth extractor
fits straight-line segments to the stroke path
and measures local curvature in the path by
computing the angular change between adjacent
line segments. '"Features" in this case are a

function of the collected local angular changes

~ that are all in the»same direction of rotation

(clockwise or counterclockwise). Collection is
terminated by a change in direction of rotation,
by a sharp angular change regardless of direction
of rctation, or by the end of the stroke. The
"features" themselves are classifications based

upon the amount and direction of curvature.

Of the two methods of analyzing the spatial
relations between strokes, only one has proved
useful to date. It classifies the relationship

of a pair of consecutive stroke rectangles into

one of three classes: coincident, proximate, or

unrelated. To those clqesified as proximate or

unrelated, a quantized direction is added. For

T™-530/010/00

this purpose direction is quantized into eight

headings.

The other analyzer, which generates the relation-

ship between the imaginary line segments formed by

joining the stroke end points, has been temporarily

laid aside until more work can be done to provide

better discrimination,

The feature extractors and the first spatial
analyzer have been integrated in a basic control
package which handles the input/output chores and
the construction of the stroke-character dictio-
nary. The dictionary is a tree. All characters
with common beginning strokes have the same path
in the tree, no branch occurring until a dif-
ference occurs. Thus, a "1," a "P," and an "R"
occupy one path in the tree, with the "I" and the
"P" as intermediate and defined sub-elements of

an "R."

Tests with each of these techniques showed a

variety of shortcomings.

The feature extractor based upon the detection
of local minima or maxima in X and Y was overly
discriminating and required too many samples for
adequate recognition., The area feature extractors
were unable to consistently discriminate between
all the 99 characters in the test set. The ex-
tractor based upon measurements of path curvature
and rotation was not completed but appeared to

be overly discriminating.

Several techniqies for better smoothing and
tiltering were tried in order to improve the
min-max extractor, in the bYelief that some of
the problem was due to noise. This did not prove
to be the case and further work on this extractor

has been suspended.

Using similar techniques on the cuvvature feature
extractor showed that noise was not its principal
problem, but rather that there was some incon-
sistency in determining the proper termination
point for each fea.ure in complex characters.

In an attempt to solve this problem, a cornmer

Jatsuary 1967 1-20 TM-530/010/00

FIGURE 1-4. GRAPHIC INPUT/OUTPUT EXPERIMENTATION |

Experimenter writes character oi RAND Tablet with stylus. The display scope shows the large 3
hand-drawn character, plus the computer-recognized matching character immediately above it. J

IText Provided by ERIC ‘

T S D “:;,;:L!_ff.;_;”_'“~ RS B vl

January 1967 1-21

detector was developed that looked at both the
local geometry and path velocity for clues in
locating a cormer. The corner Jdetector proved
successful and was incorporated in both the area
feature extractor (using five subareas) and the
curvature feature extractor. This addition
enabled the area feature extractor to provide
adequate recognition for at least one user on a
set of 99 characters that includes the upper and
lower case Roman alphabet, lower case Greek
alphabet, 10 digits and 13 punctuation marks.

The computer ou which the work was being done
(the Philco 2000) was turned off before completion
of modifications and testing could be done on the

survature extractor,

Plans

In an attempt to smooth the transition from
the Philco 2000 to the IBM S/360G, some RAND
Tablet outputs of drawn charactecss were recorded
on tape and converted to IBM format. This tape
will permit preliminary work to proceed on the
$/360 without full hardware capability and will
provide a controlled mechanism for program

improvements and testing.

Both the curvature and area feature extractors
will be programmed for the IBM S/360 to work
under the SDC Time-Sharing System, initially
incorporating the most obvious improvements.
When the programs are brought to the appropriate
state, the existing versions will be tested for
various capabilities, with a typical set of
poterntial users. Work will also begin on
Ilmbedding the recognizer in a system that allows
& programmer tO prepare a computer routine di-
rectly on the RAND Tablet.

Project Documentation

1. Bernstein, M. I. An on-line system for
utilizing hand-printed input. SDC document
™™-3052. July 11, 1966. 19 pp.

2. Bernstein, M. I. Some system considerations
for on-line character recognition in a time-
sharing system. SDC document SP-2636.
October 28, 1966. 11 pp.

TM~530/010/00

.

Automatic Code Improvement

‘Eo Ro Clar‘k

Almost any program of a certain winimal com-
plexity can be improved. Improvement may mean
making the program shorter in storage space
required, faster in execution time, or rearranged
so that the program logic is easier to understand.
Undoubtedly, these improvements can be done most
effectively by an experienced programmer who
understands what the program is to do. Since
such people are not always available, and, cven
if they are, the process is time consuming and
expensive, a processor has been written to
anaiyze a program automatically and attempt to
improve it, The processor nerds no understanding
of what the program is supposed tc do; its object
is to produce a better program that will do the
same thing,

Progress

A program called SURE (Set-Used REformatter),
has been developed which accepts a program
written in JOVIAL, automatically looks for any
of 11 specific situations, and improves the
program if any of these are found. The particular
methods implemented were selected by weighing the
difficulty of detecting and improving a given
situation against the likelihood that such a

“sltuation will occur. The improvements made in

a well-written program may not be very signifi-
cant, but the processing time of SURE is not
great, and the processed program is permanently
improved since the changes are made at the
symbolic language level. A poorly written

program can, of course, benefit even more.

The original version of SURE generated an inter-
mediate language which was processed for possible
improvements. SURE was rewritten to make its
improvements by working directly on the symbolic
statements. This version mukes the same improve-
ments as before but, not requiring an intermediate

language, is about one-third shorter. SURE

SOV L PO Proa

=

N RO s,

=

-

T s tial L

T,

January 1967 1-22

originally accepted the JTS version of JOVIAL as
input. It now accepts the full J3 language in
addition to the special primitives belonging to

JTS.

Plans

SURE will be modified to run under SDC's S/360
Time-Sharing System. Additiconal methods of
automatic improvements mizht be implemented if
the need for a particular improvement is demon-

strated.

Prgject Documentation

1. Clark, E. k. Executive service: Set/used
reformat processor (SURE). SDC document
IM-2708/205/00. April 7, 1966. 13 pp.

2. Clark, E. R. 9n the automatic simplification
of source-language programs. SDC document
§P-2389. Aprii 11, 1966. 20 pp.

COMPUTER PROGRAMMING MANAGEMENT

Program Cost Analysis¥®

T. Fleishman

V. LaBolle

E. A. Nelson

G. F. Weinwurm ,

d. J. Zagorski (Defense Systems Divisiom)

Description

The aim of this project is to develup tuchmiques,
standards, and guidelines for managers of computer
programming projects, to aid them in planning.
controlling, and estimating the costs of computer
This work has been character-
ized by three major steps, namely: (1) the col-
lection of data that detail the costs and cost

programming jobs.

factors for completed programming jobs by means
of a questionnaire, (2) the validation of these
data to eliminate errors in the data, and (3) the
use of statistical techniques, e.g., multivariate
regression, to derive numerical relationships,
primarily linear equations, for estimating the

cogts of proposed computer programming projects.

I§§ppdrted‘by the Air Force Electronic Systems
Division, Directorate of Computers.

T™™=530/010/00

Progress

Using the foundation provided by earlier results®
from an analysis of data on 74 programming projects
completed at SDC, project membecs did additional
work tn derive estimating equations that were both
easier to use and more accurate. To make the
equations easier to use. the logarithmic trans-
formation adopted earlier for some variables was
dropped--especially for the major cost measures
used as dependent variabies, i.e., man-months,
computer hours, and elapsed time in months. As a
result, a derived statistic cuch as the standard
error of estimate for mun-months could be measured
in those units rath2r than in their log, and the
meaning of the resulte could be readily inter-
preted. To improve the accuracy of the equations,
seven data points with excessive cost measures
were c¢liminated. This truncated sample was used
to derive equations that riduced the strong
influence of these outliers. To further increase
the statistical precision, the remaining total
sample (N = 67) was divided into three subsamples

based on the program size measured in man-months.

Concurrent with this work, an effort was under
way to validate additiona’ data collected earlier
to form a wmore homogencous and representative
sample from svurces other tham SDC. These new
data were to be merged with the SDC data to form
a larger data base that would be analyzed in
similar ways. The new analysis was to stress
subsampling &s a way to derive more accurate

equations.

In the latter part of 1965, over one hundred
data points from completed programming efforts
were collected from 8 industrial organizations
and .4 U. S. Air Force agencies. After authentica-
tion of these data in the spring of 1966, the newly

acquired data points were combined with the SDC

*See SDC document TM-2712, Research into the
Management of Computer Programming: A
Transitional Analysis of Cost Estimation
Techniques, November 12, 1965.

January 1967 1-23 - 530/010/00
£
ﬁ% data on hand, to form a total data base of 169 - Procedure-Oriented Languages are more effec-
- data points as inputs to the enalysis. tive (see Table 1-2), i.e., have lower resource
¥ Four subsamples were analyzed as meaningful use, object instructions, and computer usage
&J ways to divide the data in terms of costs: rates, thun Machine-Oriented Languages.

(1) Programming Application--a division of . The average expaneion ratio is approximately
3.3 Machine Language Instructions to one Procedure-

programsinto categories--Business, Scientific,

Utility and Support, and Other (a miscellaneous Oriented Language Instruction. T

category such as ccommand and control, research TABLE 1-2. MEAN COSTS, PRODUCTION RATES,
f and development); (2) Program Source Language, gggégg:ﬁgﬁgnmxgégidgATEb BY
ﬁ a separation between programs written in machine-
f oriented languages and procedure-oriented lan- | y' “’ ﬁ T -]
4 . (1) ! tion r Sio | | ‘ | Mean |
;% guages; (3) Production Computer Size, a division w l “Mgan lcomputor
N based on equivaleat purchase price of small, 1 Number | Mean “ Meanw‘Objeit ‘prs/wooo
S ‘ | of | Man- |Cmptr |Instr/Man< Object | |
; gj medium, and large computers; and (4) Stand-Alone Applicatioanoints‘MonthsM Hgs ~ Momth | Iﬂ::r H
i{ -3 versus System Program, "one-shot" programs — —— f —t—— 1 —] f
g ‘ ‘ . pMachinev M b | 1 g
9] produced as single entities versus programs Oriented 1 123 48 | 289 610 | 30
>§ E% created as integral parts of a larger information ;}Procedure- H “ N ‘
processing system, H‘Qriented | 46 18 | 99 1977 w 10

Within each of the four groups, statistical

tests of significance were performed on the The data for the other two subsamples, Computer

means of the following variables: Man-Months, Size and Stand-Alone/System, showed no cenclusive

Computer Hours, Elapsed Time in Months, Number

&3 O3

results,
of Object Imstructions, Source and Object Pro-

duction Rates (Instructions/Man-Months), and Several sets of estimating equations were derived 5

for the total sample and for a number of subsamples.

Source and Object Computer Usage Rates (Computer

Hours/1000 Instructions). The results of these These results, as well as others, were summarized

in a handbook for estimation of computer program- "

g T

ez

L

= tests on the data (see Table 1-1) ghowed the
ﬁ le following: ming costs. The equations for the subsamples

i‘gj . Utility and Support programs are more costly presented in the Management Handbock [3] exhibit

| fJ to produce than the other thres applications. better statistical precision than the equations

| % . Business (file-oriented) programs are less for the total sample.

{3} P costly than the three other program applications. The Management Handhook also contains other

‘ TABLE 1-1. MEAN COSTS, PRODUCTION RATES,AND material based upon technical literature and the |
- COMPUTER USAGE RATES BY APPLICATION experience of project members. These guidelines
é n f “"” T | —— = =—1 are intended to help managers estimate the cost
; &J | 13 : Mean of computer program development. In the handbook
, Number| Mean | Mean Oh fect the computer programming process is divided into

of | Man- ‘\Cmptr | Instr/Man €

six categories: Preliminary Planning and Cost

Application|Points

Months ‘ | Hrs ‘ ; Month
d ‘ : ‘ {* —t ' Evaluation; Information System Analysis and
4 Business | 79 73 1521 ,]
‘§ﬁ " Scientific M 27 l 137 “ 882 | Design; Computer Program Design, Code, and Test;
tility and} Information System Integration Test; Information
! EX 1. P A6 o |
| t::gport H gg‘ 766 ‘ 410 ~ System Installation and Turnover; and Computer
| \) .

b

|
i
N
J
A

|

January 1967 1-24

Program Maintensnce. BEach of these process
steps is described in terms of tasks, inputs,
and outputs. For each step a number of cost
factors are listed together with some statistical
and/or intuitive indication of their influence
on costs. Planning factors such as unit costse
or percentage-of-other-item costs are also given
for the process steps. Examples of forms for

recording cost estimates are also included.

This Handbook should be interpreted as an
initial effort to present the manager with a
comprehensive set of applicable guidelines.

If feedback indicates that guidelines in this
form are useful, the Handbook should be sup-
plemented and revised as more information becomes
available through further research and develop-

ment.

No further analysis of the collected data is
scheduled at this time; however, the analytical
results to date and the data bate could be used
in future project endeavors, such as the one
planned for the first part of 1967, namely, the
continued development of an operational system
to collect cost data during the program develop-

ment process.

Project Documentation

1. LaBolle, V. Development of equations for
estimating the costs of computer program
production. SDC document TM-2918. April 5,
1966. 49 pp.

2. Fleighman, T. Current results from the
analysis of cost data for computer programming.
SDC document TM-3026/000/01. July 26, 1966.

97 pp.

3. Nelson, E. A. Management handbook for the
estimation of computer programming costs.
SDC document TM-3225. Octaber 31, 1966.
141 pp.

4. LaBolle, V.
of computer programming.
Engineering. 1966, 17 (11), 564-571.

Development of aids for managers

Journal of Industrial

TM-530/010/00

A System for Reporting Cost Data for
Computer Programminpg®

L. Farr (Advanced Systems Division)

T. Fleishman

V. LaBolle

E. A. Nelson

C. L. Starkey (Defense Systems Division)

G. F. Weinwurm
Description

In the work to develop estimating equations for

computer program development costs (see p. 1-22),
one major difficulty was obtaining data that
relate products to costs. Even when these data
were available, they showed the poor quality of
"after-the-fact" data--unstructured, ambiguous,
and disorganized. Recorded data were aimed mainly
at orgenizational or contractual accounting and
not at planning and control of computer program-
ming projects. The reporting system being
developed is intended ror use during a computer
programming project. In addition to prcmoting
the recording of uniform data that can be
compared from project to project, the system
gshould provide information for cost control of
individual projects and inputs to a data bank
that can be analyzed to supply improved planning

factors.

Progress

The inicial effort in the development of a
reporting s'stem was completed during the first
This work used a definition of

the computer programming process as a context in

part of 19 o,

which to identify and define proposed data clements
to be collected in the system.

The programming process was broken down inte the
following seven steps: Information Processing
Analysis; Information Processing Desir 1; Computer
Program Design; Computer Coding and .aeckout;
Computer Program Functioral ‘'lest? Information
Processing Integration Tes’.; and Information

Processing Installation and Implementation.

*Supporﬁed by the Air Force Electronic Systems
vivision, Directorate of Computers.

s:
‘
E
L]
’

4

S

o e

B = R e L A S -

S T T S TR T RS

L s

i

e,

e

January 1967 1-25

Each step identifies a stage in which a subset
of the proposed set of data elements is to be

collected.

Several forms were duveloped to collect the
data at each process step. Separate forms were
proposed for (1) collection of both cost data
and technical data, (2) tracking of estimated
and actual costs and cost factors through the
life cycle of a computer programming project,
and (3) formation of a quantitative history of

resource exypenditure patterns.

The system is intended to provide a basis for
collection of comparable (uniform) cost and tech-
nical data from .omputer programming development
projects whether performed "in-house' by the
Air Force or by a subcontractor.

The first version was designed to be compatible
with existing management and budgetary systems,
e.g., the Prograw Budget, Cost Information
Reports (CIR), and System Program Management
Procedures, as described in the AFSCM 375 series.
As part of a task to consult for the SAC Airborne
Data Automation Project, members of the Program-
ming Management Project made recommendations for

data collection on computer programming work.

Plans

Review of the completed work by managers has
suggested areas of potential improvements, such
as clarifying the definitions of the cost and
technical data items. The continued work is
aimed at making these improvements. Plans for
the early part of 1967 call for testing the
feasibility of the system in an Air Force agency
that is responsible for a large number of pro-

gramming projects.

Project Documentation

1. Weinwurm, G. F. Data elements for a cost
reporting system for computer program
development. SDC document TM-2934/000/02.

™-530/010/00

2. LaBolle, V. and Fleishman, T. Programming
managenment project consulting for the SAC
airborine data automation project. SDC document
TM-3094. August 18, 1966. 24 pp.

COMPLETED STUDIES
The following studies in the Advanced Programming
area were completed prior to 1966 and are not
described in this report.

Compiler Construction Techniques

1. Book, E. The LISP version of the META compiler.
SDC/I1I document TM-~2710/330/00. November 2,
1965. 11 pp.

2. Book, E. and Bratman, H. Using compilers to
build compilers. SDC document §P-176. August
31, 1960. 11 pp.

3. Book, E., Bratman, H., Schwartz, J. I. A one-
pass JOVIAL compiler. SDC document TM-970/

4, Book, E., Bratman, H., and Schwartz, J. I.
JOVIAL-X.2, the language of the one-pass
JOVIAL compiler. SDC document TM-970/002/00.
January 31, 1963. 11 pp.

5. Cohen, V. L. and Hopkins, J. S. Phase I of
the JOVIAL generator (NGENL). SDC document
T™-555/021/01. March 17, 1965. 343 pp.

6. Dobrusky, W. B. Design for JOVIAL compiler
for the small computer. SDC document TM-739.

7. Englund, D. E. and Clark, E. R. The CLIP
translator. Communications of the ACM, 1961,
4, 19-22, (Also available as SDC document

8. Oppenheim, D. K. The METAS5 language and
system. SDC document TM-2396. July 21, 1965.
49 pp.

Programming lLanguages /

1. Foote, E. B, and Sandin, N. A. JIS users’
manual. SDC document THM-1577/000/01. April
8, 1965. 63 pp.

2. Isbitz, H. A formal description of CLIP.
SDC document TM-543. October 14, 1960. 18 pp.

3. Kameny, S. L. LISP 1.5 reference manual for
Q-32. SDC document TM-2337/101/00. August
9, 1965. 85 pp.

4, Kameny, S. L. Input-output file and library
functions: The Q-32 LISP 1.5 mod. 2.5 system.
SDC document TM-2337/102/00. September 22,
1965. 14 pp.

1:f
!

SN eTeemea e

SRS

e Lot

January 1967 1-26

7.

Perstein, M. H. The JOVIAL (J3) grammar and
lexicon. SL° document TM=-555/002/04.
October 20, 1965. 138 pp.

Shaw, €. J. A comparative evaluation of
JOVIAL and FORTRAN IV. Automatic Programming
Information, 1964, (22), 1-15.

Weissman, C. LISP primer: A self-tutor for
Q-32 LISP 1.5. S8DC document TM-2337/010/00.
June 14, 1965. 166 pp.

Computer Programming Management

1.

Farr, L., LaBolle, V., and Willmorth, N. E.
Planning guide for computer program develcpment.
SDC document TM-2314. May 10, 1965. 179 pp.

Farr, L. Quantitative analysis of computer
programming cost factors: A progress report.
SDC document SP-2036. August 26, 1965. 19 po.

LaBolle, V. Office of naval research/computer
program implementation process: Final report.
May 1965. SDC document TM-1954/004/00.

June 3, 1965. 25 pp.

Nelson, E. A. Research into the management of
computer programming: Some characteristics of
programming cost data from government and
industry. SDC document TM-2704/000/00.
November 15, 1965. 43 pp.

Peach, P. Quality control for computer
programming: A final report on an initial
study. SDC document TM-2313/001/00.
September 9, 1965. 17 pp.

Weinwurm, G. F. Research into the management
of computer programming: A transitional
analysis of cost estimation techniques.

SDC document TM-2712/000/00. November 12,
1965. 203 pp.

T™-530/010/00

s

January 1967 2-1

TM-530/010/00

INFORMATION PROCESSING RESEARCH

T. B. Steel, Jr., Head

The activities oi che Information Processing
Research staff for the past year fall into three
main categories. First, there are studies in the
area of formal models of information processing
concerned with the development and analysis of
theoretical descriptions of various aspectu of
information processing systems. Second, there is
an effort to study and develop information pro-
cessing systems intended to promote more effective
cooperation in man-machine teams in problem-
solving contexts. Finally, some work is continu-
ing in attempts to advance the frontier of support
technology in the area of programming languages.
This last work is reported under the topic of
Advanced Programming (see p.1-1 et seq.).

The importance and relevance of the first class
of projects derive from the phenomenal growth of
the information processing field. As a result of
this growth, most developments in technique have
been ad hoc and empirical; theory is virtually
nonexistent. The history of science strongly
suggests that, unless the development of a
theoretical framework begins to catch up with
ad hoc studies, and organize them, progress will
slow down. Thus, the principal objective of
these projects is the pursuit of theoretical
investigations into the nature of information
processing procedures. While the means of inves-
tigation may occasionally be empirical and parti-
cular, the objectives remain theoretical and

general,

A common theme among this first set of studies
is the development of abstract models, covering

machines, programming languages. procedures, and

algorithms. Although the individual models are
disjointed and sometimes even mutually contra=-
dictory, the employment of common research
techniques is intended to lead to a ratiomal
attempt to locate integrating principles among the
various theories. This latter endeavor, while

not fornulated as an explicit study, is an under-
lying researca objective.

The principal achievement of this research is
the development of fundamental insights into
information processing principles. In pavticular,
continuing study of the relationship between the
phrase-structure grammars developed by linguists
and the procedure-oriented programming languages
is important not only to a comprehension of the
general structure of language, but to the improve-
ment of ways in which languages of all kinds may
be developed and processed. Additionally, the
growing understanding of several models of data
processing in terms of formal logic, in particular
a model of question asking, shows promise of
providing substantial tools for integrating a
variety of information processing problems in a
form susceptible to analysis.

The second category of studies--in the area of
man-machine partnership--is evolving in a signifi-
cant manner. In previous years these studies were
a disparate collection whose principal connection
was the fact that they were all concerned with
“'artificial intelligence." During this past year
the Information Processing Reseawch staff,
together with representatives of other staffs,
conducted a study into the meaning and utility of

artificial intelligence reésearch both in the

~N
h
(2%}

January 1967

general research community and in the particular
context of SDC's mission. The study concluded
that "pure'" artificial intelligence research was
not of central intervest to SDC's mission, and,
indeed, was becoming a less attractive research
area in general. However, exploration of the
possibilities of man-machine interaction with the
objective of augmenting man's intellect was not
only of key importance to SDC, but also held

pronise of great general value and interest.

As a result of this conclusion, together with
the recognition that the skills and techniques
required are similar to those previously being
employed in the artificial intelligence area,

a gradual redirection of this research is under-
way. The change in title of the "Research in
Adaptive Programming' project to 'Problem Solving
and Learning by Man-Machine Teams' reflects this
movenent. A new study, "Augmented Statisti-
cian,'" is an example of a direct attack in the
new direction. As time goes on, this new area
will come to characterize this part of the staff's

work.

During 1966 several projects previously under
investigation were terminated (see Compleved

Studies, p. 2-14). One significant development

TM-530/010/00

has been the continuing withdrawal of SDC
involvement in several projects where the principal
investigator has been a consultant to SDC. In
these cases, termination of SDC's participation
has not meant a cessation of the research but
merely a shift in the institutional arrangements

for the study.

In summary, during 1966 the Information Processing
Research staff has reoriented its activities some-
what toward an emphasis on problems more central
to SDC's mission. It has also worked toward
bridging the gap between research and application,
both by better communication and by research
emphasis. One of its chief aims continues to be
the development of a science of information

processing,

Note: The work of several of the following
members of, or consultants to, the Information
Processing Research staff is described elsewhere
in this report:

S. Y. Sedelow, T. L. Ruggles - Stylistic Analysis

(see under Language Processing & Retrieval -
p. 5-17)

D. P. Haggerty - Translation Between Procedure=
Oriented Languages

W. E. Meyer - PL/I for SDC 360 TSS
(see under Advanced Programming - p. l-1 et seq.)

i
i

ag

\
- January 1967 2-3 TM-530/010/00
»
? FORMAL MODELS OF INFORMATION PROCESSING Progress
k 1 Computer algorithmic languages are formal g
; | Theory of Algorithmic Languages® languages; that is, they consist of a formal ?
E 7. Doner syntax‘for‘deriving the meaningful units of @
| S. Ginsburg expression such as words, clauses, sentences, ¥
| T. N. Hibbard | e . |
% G. F. Rose arithmgtﬁc expressions, etc. Several grammatical %
i Consultants: S. A. Greib?ch, Harvard University; systems for deriving thérﬁyétaXOOf forma? lang?ageS‘ ?
| M. A. Harrison, University of California, are in the literature. These give rise to various 5
L gi:?:fe%;rgélz;;sgénéfrﬁlggzzfraigi1§§cgilif- families of formal languages such as the recursively ‘?
| University ehumerable sets, context sensitive languages, :
FE Description context free languages, and regular sets. Formal ?
: A serious drawback in the application of modern languages are also defined by special kinds of é
{ é data processing systems is the cost and time acceptors such as the finite-state acceptors and 15
L ? consumed in programming these complexes. The the pushdown acceptors. Both‘grammaficam and i
| é user's problems and their solutions are described aicepio;;ias:dmethOdshOf d:fini:gforTal \ g
; i in a language such as English. To use the :3°r;1° anguagei aved:enthﬁveStlf:t: as %
| % services of a data processor, this descriptive ave the languages obtained by these methods.
| j language must be converted into machine language; 0f all the models used to consider programming
F f that is, into program steps. In recent years, languages, the most universally accepted one is
? attempts have arisen to bridge gaps by construct- that of the context free language (i.e., a language
? ing programming languages that are: defined by Backus normal form). Four of the five
| 1. Rich enough to allow a description of the technical reports written during 1966 concern
solution of a wide range of problems. this model. In [1] context free grammars are
2. Reasonably close to the user's ordinary considered in which indexed brackets are inserted
language of description and solution. around the right-hand side of the rules in the
3. Formal enough to permit a mechanical trans- grammar. The resulting language, called 'bracketed,"
lation into machine language. appears to be a natural component in the theory of

The purpose of this investigation is to accomplish transformational grammars, a topic of concern in

the following: natural languages. In the report, an algebraic

1. Conduct research designed to develop a theory condition is given for one bracketed language to

for algorithmic (programming) languages. be a subset of another. It is also shown that

2. Develop suitable mathematical models of the intersection and difference of two bracketed

currently used mathematical languages such as languages with the same brackets and terminals is
ALCOL, COBOL, and JOVIAL.

3. Use the mathematical models to answer

a context free language. Report [2] concerns a’
special family of context free languages that

questions of ifiterest about these languages. arose from mathematical considerations. In it,
two characterizations of bounded regular sets

are given. In addition, certain connections with

items of mathematical interest are noted. Inmfhl,
*éﬁbﬁaried‘inrbart by the Air Force Cambridge
Research Laboratories, Office of Aerospace congidered. The partial algorithms considered
Research, and the Air Force Office of Scientific
Research, Office of Aerospace Research.

partial algorithms for context free grammars are

here are of the following form: "Suppose a certain

Javruary 1967

problem is known to be recursively unsolvable,
but in a particular case is known to have a

solution. Can aiw algorithm (called a partial
al

Among the results obtained are the following:

orithm) be found to determine the solution?"

There is no partial algorithm for findimg,-given
context free grammars‘Gl‘and GZ’ a generalized
sequential machine (complete sequential machine)

which maps the language generated by G, onto the

]

language generated by G In [5], a new device

is given which‘recognizgs exactly the context
free languages. (This device, unlike a pushdown
acceptor, is a special kind of linear bounded
acceptor.) The languages recognized by the
deterministic form of the device result in a
larger class of unambiguous languages than that

given by deterministic pushdown acceptors.

Report 3] concerns itself with a device that
is more powerful than a pushdown acceptor. This
device, called a one-way stack automaton, has the
same features as the pushdown acceptor with the
additional feature that i‘. can go into its push=
down store and recd, but not write. It is thus
more realistic i. wmodeling curremt compilers.

The family of ianguages acvepted by these accept=

~ors is then studied. In particular, various

closure properties and solvability questions are

considered.

Blans

Future work is expected to extend the research
to more realistic acceptors and the languages
accepted‘by these devices. Studies are also
under way to find new kinds of grammars and new

ways of using old grammatical rules.

Project Documentai:ion

1. Ginsburg, S. and Harrison, M. Bracketed
context free languages. SDC- document TM=738/
023/00. January &4, 1966. 35 pp. (To appear
in the Journal of Computer and System
Sciences.)

2. Ginsburg, S. and Spanier, E. H. Bounded

regular sets. Proceedings of the American

‘ y, 1966, 17, 1043-1049.

X

™-530/010/06

3. Ginsburg, S., Greibach, S., and Harrison, M.
One-way stack automata. SBC document TM~-738/
025/00. April 22, 1966. 58 pp. (To appear
in the Journal of the ACM.)

4. Ullian, J. Partial algorithm problems for
context free languages. SDC document TM-738/
027/00. October 10, 1966. 34 pp.

5. Hibbard, T. N. A:generalization‘ofrcontext
free determinism. SDC document ‘IM-738/028/00.
November 21, 1966, 67 pp.

6. Ginsburg, S. and Ullian, .J. Ambiguity in
context free languages. Journal of the ACM,
1966, 13, 62-8¢.

7. Ginsburg, S. and Spanier, E. H. Semigroups,
Presburger formulas, and languages. Pacific
Journal of Mathematics, 1966, 16, 285-296.

8. Ginsburg, S. and Rose, G. F. A characteri-
zation of machine mappings. Canadian Journal
of Mathematics, 1966, 18, 381-1388,

9. Ginsburg, S. and Rose, G. F., Preservatior of
languages by transducers. Intormation ard
Control, 1966, 9, 153=176.

10. Ginsburg S. and Ullian, J. Preservation of un~
ambiguity and inherent ambiguity in context
free lenguages. Journal of the ACM, 1966,

13, 364-368.

11. VUllian, J. PFailure of a conjecture‘abéut
context free languages. Information and

12. Ullian, J. S. and Hibbard, T. N. The inde-
pendence of inherent ambiguity from comple-
meatedness among context free languages.
Journal of the ACM, 1966, 13, 588-593. (Also
available as SDC document TM-738/010/00.)

13. Greibach, S. A. The unsolvability of the
recognition of linear context free languages.
Journal of the ACM, 1966, 13, 582-587. (A'so
available as SDC document TM-738/015/00.)

14, Ginsburg, €. and Spanier, E. H. Finite-turn
pushdown automata. Journal of SIAM on_Control,
1966, 4, 429-453. (Also available as SDC
document TM=738/020/00.)

The Logic_of Qu

T. B. Steel, Jr.

N. D. Belnap, Jr., Consultant at SDC
(University of Pittsburgh)

A large body of literature concerning the logic
of inference is in existence. The logic of

inference has a considerable impact on the infor-

- mation processing sciences, even though it is

essentially a logic of declarative sentences.

January 1967 2=5

Men rarely assert things to machines; rather,
they command or question them. Clear desiderata,
then, are a loglc of imperatives and a logic of

interrogatives. Nelther exists.

Initial focus is upon the logic of questions
on the grounds that it appears easler to formu-
lece. The tirst objective of the study is to
formulate suitable criteria for deciding what
kind of formal system will be acceptable as a
logiec of questions. An informal example of such
a criterion ig: it must be effectively decidable
about any piece of language whether it is a
question or not and, if it is, it must be
effectively dzciduble what pieces of language
count as answers (although not necessarily true

answers).

Given a satisfactory set of criteria, the next
task is to develop one or more gpecific examples
of a formal legic of questions in order to
gearch for fruitful theorems, Apart from its
intrinsic interest such a loglc is imperative as
a basis for the design of processors for true
problem-oriented languages. In such languages,
the user will! simply describe a problem for
machine solution, in contrast to the present
practice of providing a technique for solution

via a procedure-oriented language.

Progress

A set of criteria has been develecped and a
rather general formal system has been analyzed
subject to the criteria. Notions allied to what
is loosely meant in ordinary language %y

"question,'" '"direct angwer, complete answer,"

" and even '"rhetorical question"

“partial answer,
have been defined. The fallacy of inany questions

("Have you stopped beating your wife?") is
p

disposed of neatly when subjected to this analysis.

As a result of these analyses, the criteria have

been modified to sharpen theilr impsci.
The key element in this approach that dis-
tinguishes it from previous attempts at &an

interrogative logic is that a question is treated

™=-530/010/00

as identical with a declarative sentence on both
the syntactic and semantic levels of analysis.
It is recognlized as a question only on the

pragmatic level, by observing that the user

intends the statement as a question.

A detailed document claborating the theory has
been published [1). Under revision is a paper
intended to outline the connection of this logic
with data processing applications. In particular,
the paper discusses the reduction of English
questions to the necessary formalism. This paper
includes a correlation of the work in this project
with the Synthex project (see p. 5-7) and other
query systems. 1In addition, it elaborates and
modifies the quantification analysis found in
[1] on the basis of study completed during the
year and establishes several new notions pertinent

to the logic of questious.

Project Documentation

1. Belnap, N. D., Jr. An analysis of questions:
Preliminary report. SDC document TM-1287.

AUGMENTATION OF MAN'S INIELLECT

Problem Solving and Learning by Man-Machine Teams#

A. M. Hormann, Principal Investigator

T. L. Ruggles

S. S, Shaffer
Description

This study seeks to develop a syste.. of computer

programs that can exhibit some "adaptive' and
"intelliigent' behavior in a variety of problem-
solving situations, and thus to develop a machiae
capable of playing the role of "partner' to man
in his intellectual/creative endeavor. The first
stage of the research has been concerned with how
to develop an adaptive, intelligent, problem-
solving system--Gaku [1 and 2]. The second stage

has been to design a task environment that caun be

*Supported in part by the Office of Naval Research,
1‘J‘o So ‘NaV}'.

LT LTER LG AT I

January 1967 2-6

controlled by the experimenter as he presents
problem situations differing in kind and com-
plexity {3 and 4]. 1in this environment, a human
will attempt to solve a given problem by inter-
acting with Galm, using its capabilities in

varisus aspects of problam solving and learning.

One of the reasons for stressing the "learning'
capability of Gaku is the researcher's belief
that an intelligent, adaptive machine will be an
appropriate nartner for man in those problem
situations in which the man does mot have a clear
idea of, or cemplete information about, how to
solve a problen, how to find answers, or how to
perform a task. In such situations, detailed
decision making in advance is impossible or
infeasible. Man may start with incomplete intoe-
mation and vague ideas about solution methods
and strategies (and, therefore, insights can be
gained only during the course of problem solving
and interaction with the machine). The human
user cannoc decide in advance exactly and
completely what machine capabilities he will
need, or what techmniques, methods, concepts, and
terms he will use. He must decide as he proceeds
and must teach the machine, thus allowing it to

"grow" intellectually with him.

Although the development of Gaku is far from
the desired sophistication level indicated above,
it has been decided to use the system in a man-
machine context in order to gain new insights
into certain research problems. By this means,
Gaku's limitations and capabilities will be
discovered, and ways to improve the learning
mechanisms and the cowmunication means will be
explored. It may then be decided to make either
major design changes or relatively simple modi-

fications and additions.

Progress

The design of a task environment for man-
machine interactive problem solving has been
complieted and its implementation on SDC's $/360
Time-Sh?ming System has begun. A brief

T™-530/010/00

description of the environment called Shimoku
follows; it includes little discussion on Gaku
since Gaku has been described in last year's annual
report, and in [1] and [2].

The basic design of Shimoku is a four-in-a-row
game in which marked counters are used in a
4x4, 4x4xb4, or 4x4xbx4 board or playing surface
(the size of the board is one of the factors
determining complexity). Four-in-a-row positions
are determined in the same manner as are those
of 2-D, 3-D, and 4-D tic-tac-toe (see Figures 2-1
and 2-3). The counters are marked with numbers
and suits, similar to a set of playing cards
(in Shimoku, however, four shapes of counters are
used instead of suits). The scoring rules include
elements that are similar to poker (see Figure 2~2),
and the action rules consist of '"placing,"
"sliding," and "exchanging'" counters or the

playing surface of the given board.

In [3), a detailed description of Shimoku is
given and some sample problem situations are
discussed to show how a human player might
exploit the capabilities of Gaku to aid him in
In this

environment, the man faces conflicting subgoals

man-machine interactive problem solving.

while attempting to reach a main goal; he must
weigh the consequences of different courses of
action, including compromises and local sacrifices,
for the purpose of overall gain; he must make
decisions in the face of incomplete and inexact
information; and, mosc important, he must

formulate policies or strategies for long-range
planning., 1Im all these, the player can be
assisted by Gaku, to whatever degree his own

cleverness and Gaku's development permit.

Inﬂ[&l, one variation of Shimoku, interpreted
as an assignment task (one type of operations
Within this

task context, a player starts with an initial

research problem), is described.

capital and a given configuration of counters on
the Shimoku board, and works through three

contractual periols, each of which has a different

gﬁ

January 1967 2-7 {M-530/01/00

L» FOUR OF A KIND

T ONE SHORT OF STRAIGHT

- STRAIGHT

AN ENER | X

N L1 1O || X1 [1|
X o T
EIRXBEEEREEN L1

FIGURE 2-1. 2D AND 3D SHIMOKU

wPAW‘ER*N‘S‘ 1 EXAMPLES SCORE

| STRAIGHT FLUSH .

|

* , — T
‘ 1 1
TG | e |
| _ | ‘ ‘1
77 ‘ - ‘ — ; ‘ | | ' \1‘
| ‘ [r—— | - ; |
|3 | 4| [4pPOINTS |
i i‘ § \ ‘ - J

i _ _ _) B 1 B)

FOUR OF A KIND
(4K)

FLUSH
(FL)

STRAIGHT
| (ST)

‘ E FIGURE 2-2. FOUR PATTERNS FOR SCORING IN SHIMORU

™-330/010/00

January 1967

4X4X4X4

4D "SHIMOKU

FIGURE 2-3.

January 1967 . 2=9

set of contractual demands for certain produvcts,
The player is also given a set of action rules,
determining how the counters (resources) may be
bought and manipulated (assignment actions), and
stipulating their corresponding costs. His
assigning performance in each period ‘s evaluated
in texms of payoff value--depending on how many
contractual demands are fulfilled. This value
is then added to whatever is left of the capital
for that period; the new capital and configurs-
tion at the end of the period then become tcig
starting conditions of the next period with a
new set of contractual demands. The objective
is to score (in terms of the amount of capital)
as high as possible at the end of the third

contractual period.

The initial effcrt ia implementation of Shimoku
has been concentrated on the visual display of
Shimoku configuration, using an IBM Model 2250
display unit and a Graphic Input Tablet,
in order to provide near-'"natural" imteraction

between a human player and the environment.

Plans

Implementation of the Shimoku environment must
be carefully planuned, as many variations are to
be incorporated in one package of programs. The
experimenter must be able to present problems of
diffgrent types and complexity. Preliminary
experiments with a human player will then begin,
first independently of Gaku. Gaku will have to
be newly implemented since the work done so far
hrss led to many design changes and added features,
some of which could not have been incorporated
using tie old facility (the Philco 2000). The
implemeatation, however, will not be started
until & suitable programming language becomes
available for the 360 in its time-sharing mode
(JOVIAL is being‘usedﬁfor Shimoku, but a list
processing language such as LISP 2 will be
desirable for Gaku). In the meantime, communi-
cation between the human problem solver and his
environment (eventually including Gaku) will be
studied along with the display techniques for

U N N

™-530/010/00

effective interaction. A flexible and "natural’
communication means is needed to help the human
problem solver move smovothly from idea-getting
(conceptual stage) to trying-ou- (experimentation
stage) to result-judging (evaluation stage)--and
then usually back to the first stage again. The
uger's effectiveness as : problem solver can be
influenced greatly by the nature of communication
allowed; his own learning, in turn, will influence
Gaku's secondary learning, which can oniy come

about by communication.

Project Documentation

1. Hormann, A. M. Gaku: An artificial student.
Behavioral Science, 1965, 10(1), 88-107.

2., Hormann, A. M., Designing a machine partuer-~-
prospects and problems. SDC document Sf-2169/
000/01. October 15, 1965. 55 pp.

3. Hormann, A. M. A new task envirvomament for
Gaku teamed with a man., SDC document: TM-2311/
003/00. May 27, 1966. 26 pp.

4, Heormann, A. M. Shimoku posed as an :ssignment
task. S5DC document TM=2311/004/00. September
28, 1966. 13 pp.

Augmented Statistician

R. E. Dear
R. L. McCornack
W, E., Meyer
T. B. Steel, Jr.
E. A. Stefferud

Consultants: N, S. D. DuBois, University of
California, Los Angeles; H. Solomon, Stanford
University

Description
The development of modern statistical theory

began roughly at the beginning of this century.

Ets product: have had an impact on measurement

in diverse disciplines vanging from anthropology

to zouology. Statistics has aided measurement
through its various methodologies, each of which

is designed to explore the total variacion in a

system that has random elements or a combination

of random and fixed elements; and through its
concepts for estimations, it has been used for
tests of hypotheses, and for more generalized
decision-making structures. To make the latter

(estimations aspect) more ceoncrete, we may list

T

January 1967

¢

the notions of confidence intervals, power
functions, and risk functions which include a
number of cost elements; for the former (measure~
ment aspect) we may note the analysis of variance,
regression analysis, correlation analysis (all of
which are interrelated), sample survey design,
acceptance sampling, sequential analysis and
optimal stopping strategies, and time series

analysis and spectral analysis.

Much effort on statistical issues by a large
nuinber of scholars has found its way into the
literature. This work now fills many journals and
many volumes, providing a reservoir of research
techniques for the investigator. The concepts
and methodologies were initiated and developed
without any aid from the digital computer.
Advances in computer hardware and software have
been swift, and this has led teo inquiries by staff
members in SDC's Research Directorate akont the
desirability of dynamic interaction betwcen a
statisticlan and a computer and the possible
cousequences for research in all intellectual
activities. The issues involved are, at best,
amorphous at present, but enough work has been
devoted to the topic to indicate that "the
Augmented Statistician" is worth experimental

S‘t‘Udy .

Progress

A feasibility study and an analysis of the need
The
(1) an Augmented
Statistician is technically feasible, (2) it will

meet an existing need, and (3) its cost/

for such a system have been undertaken.

conclusions reached are:

effectiveness cannot be determined without building
a prototype.

The initial purpose of the Augmented Statistician
will be to provide the professional statistician
and the qualified user of statistical techniques
a dynamic, on-line, display-oriented capability
for data analysis.

2-

10 ™M-530/010/00

Data analysis was chosen as the area for
initial emphasis for three reasons. First, the
arguments of several statisticians (e.g., Tukey)
for the use of on-line data processing in data
analysis, plus the SDC experience with the TRACE
system (see p.6-16), indicate a higher potential
utility for a data amalysis system than for other
possible application areas. Second, much of the
programming and system design required for the
data analysis capability is prerequisite to other
more specialized areas such as time-series analysis,
geometric probability and clustering techniques.
Each of these is a candidate for the next step.
Finally, the opportunities for innovation in
information processin, technology seem largest in
this area. The feedback requirements and language
design problems do not appear as obvious in this

application as for some others.

At the beginning three major program components
are required: (1) a control and sequencing program,
(2) a package of computational subroutines, suitably
selected, and (3) a general display capability.

The control program will require the greatest
ingenuity. Much of the subroutine package can be
borrowed from existing libraries with little
modification beyond that required to insure data
set cempatibility. New display equipment in SDC's
Research & Technology Laboratory will provide the
necessary display facility. Compatibility with
TDMS (see p. 4-9) will allow it to be coupled with

other existing tools for data handling.

In order to insure usability of the system,
certain constraints need to be a sliad to the
By using SDC's
IBM S/360 Time-Sharing System, and at the same
time insisting on compatibility with the IBM

programming technology employed.

operating system, the potential body of users is
large. Similar remarks apply to the programming;

languages used.

There should be no question that an Augmented

Statistician can be built along the lines indicated.

Y

Sy
s}

L

January 1967

The question that cannot be answered without
further work is whether a real quantum jump in

effectiveness can be attained.

Plans

The next objective of the project is to design
and implement a prototype system, ccacentrating
on data analysis. This will be done within the
framework of the SDC 360 Time-Sharing System.
Given this prototype system, an evaluation with
users having real data and real problems will be

undertaken to provide guidelines for future work.

Project Documentation

1. DuBois, N. S§. D., Jv,
cal system. SDC document TM-3043.
1966. 18 pp.

2, Steel, T. B., Jr. The augmented statistician.
SDC document TM(L)~3201/000/01. lNovember 11,

An interactive statisti-
July 1,

1966. 17 pp.
Synthesis of Behavior
L. Friedman, Principal Investigator

S. S. Shaffer

Description

The primary goal of this investigation is the
formulation of a theory of instinctive brain
mechanisms. Information processing in brains
has so far resisted analysis. 1In order to
correlate neurophysiological structure with
behavioral output, a theory of functional opex-
ation of brain processes has been formulated,
based on experimental observations of ethology
and neurophysiology. To validate the operation
of the proposed mechanisms, a simulated robot,
which embodies the postulated mechanisms and
organization in its simulated "brain," is being

programmed.

Three basic groups of mechanisms are assumed.
These are the Behavior Unit (BU), the Releasing
Mechanism (RM), and the Selector of Releasing
Mechanism (SRM). The BU is a functional unit
which produces behavior directed toward the
accomplishment of a single goal, set at some
arbitrary level. The organism must be provided
with a set of BUs that can express all possible

2-il TM-530/010/00

f1,2,3].

hehavior by being activated either succesively
or im concert. An Executive Control operates
by activating the BUs just as a piano player
produces a melody by striking keys. The Executive
Control consists of hierarchies of RMs triggered

by inputs from the environment and competing for

activation by SRMs. The detailed structure of

this cemplex organization has been worked out

" ‘The simulated robot, called ADROIT, is programmed
to be displayed on a computer-controlled cathode

ray pube.‘ ‘The experimenter activates the actions
of the robot with a stylus operating on a Graphic

Input‘Tabiet (Figures 2-4 through 2-6).

Progrese
All the BYUs for the simulation have been pro-

grammed and were operational on the Philco 2000

before that computer was replaced in September

1966.
SEEK desigrated tvpe of object

These Blls are:

GO TC object (or some designate? place)

MOVE ARM TO object

GRASP object

RELEASE object
A decision making strategy was incorporated in
the "GO TO'" BU to enable the robot to attain the
desired position despite arbitrarily placed
A film

showing operation of the BUs was made on February 26.

obstacles which it had to avoid en route.

In addition, an early versinn of the Executive

Control has been implemented. A complex pattern
of behavior units, demonstrating a nest-building
capability, was actually produced by the robot.
During this demonstration, the Executive Control
showed one of th: basic characteristics of animal
behavior: The robot éxhibited a sensitivity to
unexpected enviromnmental changes* while it was

accumplishing its objectives. Thus, if a new

desirable object for the nest were placed directly

*As distinct from features randomly placed in the
field, but not changing during the runm.

T R I B eI RN P [T T e S T T I S SR T R e e 5 e vy e e e s 5 i
. S - A — TP T .. e - e

January 1967 2-12 TM-530/010/00

FIGURE 2-4, EXPERIMENTER USING DISPLAY SCOPE AND GRAPHIC INPUT TABLET TO
ISSUE COMMANDS TO ROBOT (PHILCO 2000 COMPUTER IN BACKGROUND)

FLGURE 2-5. SCOPE DISPLAY OF ROBOT MAKING FIGURE 2-<6. CLOSE-UP DISPLAY OF ROBOT)
ITS WAY THROVWGH OBSTACLES IN RESPONDING TO "“MOVE ARM TO" .
RESPONSE TO "GOTO" COMMAND COMMAND ?

Aruitoxt provided by Eic:

January 1967

in its path, the vobot promptly grasped it,
abandoning the attempt to get to a more distant
object. If the experimenter introduced a building
object in a correct position in the growing
structure of the nest, while the robot was away
gathering another element of the nest, the robot
would, upon its return, place the mewly acquired
element correctly next to, rather tham on top of,
the one introduced by the experimenter. Such a

pattern was filmed on September 28.

During the course of this work, close contact
has been haintained‘both‘with‘researchers dealing
experimentally v ith brain function and structures,
and with groups engaged in the construction of

hardware robots.

Plans

Work will continue on elaborating performance
of the Executive Control to permit the robot to
display various phenomena cof instinctive behavior
dealing with conflict situations, such as dis-
placement, oscillation, alternation, and
supp;ession‘of conflicting drives. In addition,
higher-level decision making mechanisms will be

investigated.

Pro ject Documentation

1. Priedman, L. A model of goal-directed
behavior. Artificial Intelligence, Publica-
tion S-142, Winter General Meeting IEEE,
January 1963, 66-82.

2. Friedman, L.
and their computer analogues.
SP-2292, December 10, 1965.

3. Friedman, L.
compater synthesis.
press.

Theories of imstinctive behavior
SDC document
42 pp.

Instinctive behavior and its
Behavioral Science, in

2-13

T™-530/010/00

Steps Toward Validating a Computer Model

of Social Influence®

Principal
Investigators

J. T. Gullahorn and J. E. Gullahorn
Consultants at SDC

(Michigan State University)
S. 8. Shaffer

Student Associate: M. Useem, Harvard University

Description
Previous steps toward validating portions of

HOMUNCULUS, a computer model of social behavior.
have concerned relatively static sections of the
model in which decisions were made on the basis of
given values. During 1966 emphasis was shifted to
validating parts of the model enabling simulated
persons to modify their own behavior amd to exert
social influence intended to increase their E

rewards from face-to-face interaction.

Progress ﬂf
The current research involves a computer simu- Ef
lation of Harold Gerard's small-group experiment Ei

on the anchorage of opinions. In Gerard's study
subjects first read a case involving a union-
management dispute and predicted the outcome on a
7-point scale. Gerard then selected subjects for
three=man discussion groups, varying the degree
of agreement on the predictions. <Cohesiveness
was also manipulated systematically through
instructions to the subjects. In the first
simulation runs of this experiment, independent
variables were level of liking, amount of disa-
greement among opinions, and degree of confidence

of each simulated person in his opinion.
Wh2n Gerard assigned groups to the “mildly
disagree' or "strongly disagree" conditions, he

considered only the average differences among

*This project received its early support from SDC's
Independent Research program. 1In 196¢ it was
supported in part by SDC, where the principal in-
vestigators were Visiting Scientists, and in part
by a National Science Foundation Senior Postdnctoral
Fellowship to John T. Gullahorn and a National
Science Foundation research grant to Jeanne E.
Gullahorn.

January 1967

opinions and did not consider relative positions
along the 7-point continuum. Since data from
other studies indicate a positive relationship
between extremity of opimion and confidence, and
since high confidence would make subjects less
amenable to group influence (in terms of one of
the propositions operating in our simulation
model) , we decided to conduct a series of sensi-
tivity runs to see whether diiferent distributions
of initial opinions would produce different
outcomes of the simulated group interaction.
In general, these sensitivity rumns demonstrate
that initial opinion distribution is more than a
minor noise variable. 1Indeed, Gerard's findings
concerning opinion change can be reproduced by
holding all parts of our model constant and
varying only the imitial opinion distribution.
For example, in runs simulating discussion by
subjects in the "strongly disagree--high
attraction" condition, an average of 26 percent
of the simulated subjects changed toward another
in their groups when initial opinien positioms om
the 7-point continuum were 2, 4, and 6. With
initial positions 1, 4, and 5, however, 43 percent
changed--a result matching the 44 percent change
reported by Gerard.

A small-group experiment, a variation of
Gerard's "The Aachorage of Opinions irn Face-to-

Face Groups," was designed and pretested during

-the summer of 1966. While incorporating Gerard's

stimulus situation and general design, we have
added several categories to classify activities
(helpful if social exchange theory is to explain
influence) and a questionnaire designed to measure
the importance to the subject of maintaining

consonance and integrity.

Plans

Work on HOMUNCULUS is continuing in five areas:
(1) refining the analysis of approaches to vali-
dation of computer simulation models; (2) testing
additional hypotheses in simulation runs and
further vaiidating the role conflict modei;

(3) reifining and replicating the “anchorage of

2-14 ™M-530/010/00

8. Ginsburg, S. and Spanier, E. H. Bounded ALGOL-

10. Ginsburg, S. and Spanier, E. H. Mappings of

opinion" experimenis with small groups; (4) refining
and validating the computer siwulation model of the
""anchorage of opinion" experiments; and (5) docu=
menting the relationship between the computer models
and specific assumptions and hypotheses from social
psychological theory. In addition, the computer
simulation model of the "anchorage of opinion"
experiment is serving as the core of a graduate
seminar in computer simulation of social behavior

in the Department of Sociology, Michigan State

University.

COMPLETED STUDIES

The following studies conducted by the
Informatiown Processing Research staff were com=
pleted prior to 1966 and are not described in

this report.

Theory of Programming Languages

1. Ginsburg, S. Sets of tapes accepted by
different types of automata. Journal of the
ACM’ 1961, ‘_8_“(1)" 816860

2. Ginsburg, S. and Rice, H. 6. Two families of
languages related to ALGOL. Journal of the ACM,

3. Ginsburg, S. and Rose, G. F. Some recursively
unsolvable problems in ALGOL-like languages.
Journal of the ACM, 1963, 10, 29-47.

4. Ginsburg, S. and Rose, G. F. Operations which
preserve definability in languages. Journal
of the ACM, 1963, 10, 175-195.

5. Ginsburg, S. and Spanier, E. H. Quotients of !
context free lamguages. Journal of the ACM, £
1963, 10, 487-422.

6. Ginsburg, S. and Hibbard, T. N. Solvability
of machine mappings of regular sets to regular o
sets. Journal of the ACM, 1964, 11, 302-312. |

7. Rose, G. F. An extension of ALGOL-1like languages. bod ‘
Communications of the ACM, 1964, 7, 52-61.

like languages. Transactions of the American
Mathematical Society, 1964, 113, 333-368.

9. Ginsburg, S., Hibbard, T. N., and Ullian, J. S.
Sequences in context free languages. JIllinois
Journal of Mathematics, 1965, 9, 321-337,

languages by two-tape devices. Journal of the
ACM, 1965, 12, 423~434.

January 1967 2-15

k1. Ginsburg, S. znd Greibach, S. A.
context free languages. SDC document TM-738/

12, Greibach, S. A. A note on pushdown store
automata and regular systems. SDC document
™-735/016/00. August 30, 1965. 13 pp.

13. Ginsburg, S. and Greibach, S. A. Mappings
which preserve context semsitive languages.
SDC document TM-738/018/00. October 27, 1965.

29 pp.
i4. Ullman, J. Pushdown automata with bounded
backtrack. SDC document TM=738/022/00.

December 3, 1965. 33 pp.

Theory of Programmed Processes

1. Hibbard, T. . A simple sorting algorithm.
Journal of the ACM, 1963, 10(2), 142-150.

2. Hibbard, T. N. Anwémpirical study of minimal
storage sorting. Communications_of the ACM,
1963, 6(5), 206-:13.

3. Stockmal, F. J. On the inverse of a test
matrix. Communications of the ACM, 1965,
7(10) , 615.

4. Stochnal‘, Fo Jo
random numbers.
11, 1-12.

Calculations with pseudo-
Journal of the ACM, 1964,

UNCOL: Universal Computer Oriented Language

1. Steel, T. B., Jr. A first version of UNCOL.
Proceedings of the Western Joint Computer

Conference, 1961, 19, 371-378.
2. Steel, T. B., Jr. UNCOL. Datamation, 1960,
1, 18-20.

3. Steel, T. B., Jr. UNCOL: The myth and the
fact. In R. Goodman (Ed.), Annual Review in
in Automatic Programming. 2. New York:
Pergamon Press, 1961,

4. Steel, T. B., Jr., et al. The problem of
programming communication with changing
machines~-a propesed solution. Communications
of the ACM, 1958, 1(8), 12-18; 1958, 1(9),
9-15.

Pattern Recognition and Language Learnin

1. Prather, R. C. and Uhr, L. M. Discovery and
learning techniques for pattern recognition.
Proceedings of the 19th National Meeting of
the ACM, 1964, D2.2-1--D2.2-10. (Also
available as SDC document SP-1561/000/01.)

2. Uhr, L. M. Pattern-string learning programs.
Behavioral Science, 1964, 9(3), 258-292,

3. bhr, L. M. Recognition of letters, pictures,
and speech by a discover, and learning
program. Symposium on Pattern Recognition,
IEEE WESCON, Los Angeles, Talifornia, August
1964,

Deterministic

T™-530/010/00

Binary-Choice Model
1. Feldman, J. and Hanna, J. P. The scructure of

responses to a sequence of binary events. SDC
document SP-1664. May 22, 1964. 20 pp.

Stimulus-Sampling Models

1. Marzocco, F. N. Sinulation of learning
processes. Proceeudings of the Fifth National
Symposium_on Humzn Factors in Electronics,
1964, New York; IEEE, 77-80. (Also available
as SDC document SP-1597.)

2. Marzocco, F. N. Stimulus sampling pattern
recognition. 3Bionics_Symposium, 1963,
Coatributed Paper Pre-Prints. Wright-Patterson
Air Porce Base, Ohio: Air Force Systems Command,
1963. {Also available as SDC document SP-986/
000/01.)

3. Marzocco, F., N, Computer recognition of hand-
written first names. Preprint No. 8.2, 1964
Westerh Electroni¢ Show and Convention,

Los Angeles, August 1964.

Theoremn: Utilizing

1. Travis, L. E. Experiments with a theorem-

utilizing program. Proceedings, 1964 Sprin
Joint_Computer Conference. Baltimore, Md.:
Spartan Books, 1964, 339-358. (Also available
as SDC document SP-1402/000/01.)

Sensorimotor Development

Superimposed random coding of
Mathematical
(Also available

1. Greene, P. H.
stimulus-response connectious.
Biophysics, 1965, 27, 191-202.
as SDC document SP-2071.)

2. Greene, P, H. and Ruggles, T. L. CHILD and
SPOCK. IEEE Transactions on Military Electron
1963, MIL-7(2-3), 156-159.

ics,

Theory of Information Handling

1. Steel, T. B., Jr. A fermalization of semantics
for programming language description. iIn
T. B. Steel, Jr. (Ed.) Formal Language
Description Languages for Computer Programming.
Amsterdam: North-Holland, 1966. (Also available
as SDC document TM=~2043.)

- gt T - o o -
January 1967 3-1 T™-530/010/00

PROGRAMMING SYSTEMS

C. Weissman, Head

The Programming Systems staff is responsible
for the invention and synthesis of programming
technology into integrated systems that extend
man's use of computers and make him more pro-
ductive in that use, In striving toward this
objective, the staff has become involved in a
number of design and deveiopment activities:
som; reflect the success of past products;
others look forward toward future systems. In
the former category, emphasis has been on the
maintenance, st.-y, and improvement of 88,
one of the first gemeral-purpose time-sharing
systems (as reported in previous years). This
system=-which is now available (and fully
subscribed) on a limited subscription basis to
the user community-<has continued to prove its
utility as an effective, on-line, interactive
programming vehicle. The second category
includes projects for developing programmer-
and user~oriented languages and executive
systems for tomorrow's information processing
needs. Foremost among these activities are
the development of META compiler and LISP 2
systems (described in the Advanced Programming
Section of this report) and the experimeantal
design and developwent of a metwork of t‘me=

shared computer syscems.

An example of SDC's synthesis of past
experience in the programming systems field‘x
with the future needs of the Air Force is the
recently undertaken production of an advanced
development\prototype‘(ADP) time-sharing data
management system for the Department of Defense.

This work stems from an earlier SDC-designed

system (called GENISYS) and will be performed
in cooperaticn with the Data Base Systems
staff.

Thus, the focus of the Programming Systems
staff is upon time=sharing systems and networks
as the vehicles that permit close user~computer
coupling, and upon language systems that permit
& user-oriented dialog to comtrol the computer
and effect more productive use of these

machines,

In particular, efforts in the time-sharing
area have been directed toward the development
and refinement of new tools and techniques
that improve management and user control of
system resources and chat yield improved
reliability, quality, and responsiveness of
the services offered by the sysiem. Since its
inception in 1963, TSS has been unique as the
only large-scale time~sharing system to
service a large and varied iremote community
of users. In support of non-SDC and in-house
SDC users, the staff ' 1s rerolved problems of
scheduling user programs that are often large
(25K words average) and require extensive
computing time. Also, they have improved
large-file management and editing tools,
improved debugging capabilities, increased
disc-file executive commands, and provided
on=line system documentation. Some of the
changes made are not obvious to users., These
include adding the ability to load svstem
components as object programs for on-line

modification and debugging under time-sharing;

reassigament of disc inventory programs and

T T

P

bt o

o

b ad

.
P e
it Ay

January 1967

tables to drum for better system responsive-
ness; and redesign of the PDP-l executive
program to increase the number and type of
console channels handled by the system, The

channel capacity {s now up to 53.

These changes could not have been possible
without an intensive analysis of the behavior
of the operating system, and the needs of the
user community, The time~gharing analysis
efforts of prior years have continued; they
have been an excellent souvce of statistical
information on computer facility job descrip-
tions and user characteristics. Both simu-
lation and empirical data collection studies

were used in the analysis.

Another method of measuring the effectiveness
of the time-sharing system involved experimen-
tation and testing of user performance. An
experimental zomparison of on-line versus offe-
line programmer debuzging performance was
concluded, analyzed, and documented during this
period. Though the results of this experiment
may be interpreted statistically as favoring
time-gharing, possibly more importantly, the
study highlighted the difficulties of control-
ling such an experiment because of the enormous
range of individual performance differences.
However, the expérﬁment was a meaningful first
step in attempting to quantify measures in an
area previously supported only by subjective,
qualitative testimonials,

Finally, an understanding of the needs of

users was gathered through feedback from the’

4 o L e x Lt
ot s e i sttt Al A A s e

TM-530/010/09

more than 500 authorized users of the system,
plus reactionc by the large number of visitors
to belefings and demonscrations of TSS and its

programs,

Looking toward the future, the staff has
participated in two efforts to design a network
of time-gharing systems, The first effort,
performed in conjunction with the University of
California, Berkeley; Bolt, Beranek and Newman,
Inc,; and Stanford Research Institute, resulted
in a design for a network of SDS 940 computers.
The design specifications, edited and published
by Wayne Lichtenberger of UCB, are now being
circulated in the industry for comment.

The second effort has reached fruition as an
operating system. Less sophisticated than the
proposed 940 network, this system couples the
TX-2 computer at Lincoln Laboratory in Boston
to the Q-32 computer at SDC/Santa Monica by
commercial dial-up telephone lines., This
austere first step in networking is an encour-
aging example of technological synthesis,
Programs on either machine may "log in'" and
operate programs on ' ae other machine, .In
rontrast with the 940 network of like machines,
the TX=-2/Q~32 network uses dissimilar machines
and monitors, and yet provides a medium whereby
the running programs of one researcher may be
used directly on his machine by others not
using his equipment, (This method could prove
to be the only way for the data processing .
community to truly share the programs and the

work of others,)

]
oy

&)

ey

Y

ks o I . . ‘o) Low oyl S R R o T N e ek T R - e St e el e s D
Ao o182t wny Aﬂy_‘ AT W R L.r CRT T PP B R B e R D g e 0 0 e e A n et a2 Y Sl b A et . i

January 1967 3-3

“TIME-SHARING SYSTEM DEVELOPMENT:

S. M, Aranda, Project Leader

L. E, Durham

C. E, Fox

R. R, Linde

E. P. Myer

D. E. Perry -
Description . .

Sihce the Time-Sharing System (TSS) became
operational in June 1963, it has been continu-
ally extended. Today there are 53 cousole
channels that can handle approximately 48
physical terminals simultaneously; the largest
number of simultaneous users to date has been
31, with an average in the mid-twenties during
daily working hours. This expansion can be
attributed mainly to an increase in drum
storage (the swarping media) of approximately
35 percent, and an increase in the authorized
system users to over 500, Many of these uses
have been located in the nearly SO‘remotérorgaa
nizations having system access. These organiza-
tions encompass a large community-~the military,
universities, law, urban and Federal Government
groups, research organizations, and private
contractors~-with the common ties of performing
research and development under ARPA sponsorship.

The time-sharing executive system provides
the users with a variety of services, all g
accessed 4y on-line executive commands, and
tinplemented by execution of system programs,
As with any genéralopurpose system, the user

may also run his own private programs,

Regardless of the program's origin, users
may load, run, stop, debuy, and edit the
programs. The system handles accounting,
scheduling of jobs, input/output message
communication, flle storage, management status

and control, and error recovery. Users may use

*Suppofted‘by the Advanced Research Projects
Agency,

TM-530/010/00

disc files, tape, teletype, and local cathode=
ray~tube displays and RAND Graphic Input
Tablets, interactively, in an on-iine fashion,
They may also submit jobs to the comsole

operator to be run as "background" taske in a

fashion analogous to "job-shop'" operation,
Some of the language systems embedded in TSS
include TINT, JOVIAL, LISP, METAS, SCAMP
(assembly language), EDIT, EDTXT~-to name but

a few of the more pgopular tools.

Progress v
The past year has been primarily a period
of consolidation and refinement of the system.
This is so for two reasons: (1) The system
runs well and errov-free, providing an exten-
sive range of capabilities, and further pertur-
bations would not significantly improve it;
(2) the system was previously scheduled for
retirement in 1966, and even though its life-
time has been extended to 1967, plans were
formulated upon the prior schedule, Even with
these considerations, substantial system

improvewents have been realized.

ISS Executive. The major changes to the TSS

Executive include:

. Scheduler - Inclusion of a new three-queue
algorithm; allowing preferred users a larger
share of central processing unit (CPU) time;
inclusion of control logic to flash status
indicator lights for certain consoles.

. Debug = The ability to display, on teletype
(TTY), JOVIAL ftems in their symbolical defined
formats; the ability to display, on TTY,
machine regisﬁers in floating-point, hexadecimal,
octal or integer format; special provisions to
"patch" the system itself,

. Input/Output - Recovery from tape-read
paiity errors; implementation of automatic .and
manual control of the disc file "purging"
algorithm to delete dated "junk" files;

January 1967 . 3-4 T™-530/0.0/00

&
Sty
9%

T

e e 0
ki
Rt A

et

CBilox, Miss. .
T A o B : N N ‘»F R ﬂ | }
TeL U AT Mexdeo City, Mexico T |

FIGURE 3-1. REMOTE USERS OF TSS

SDC's Time-Sharing System provides remote computing capability which
makes the Q-32 computer accessible to users in various parts of the
United States, its possessions, and Mexico. Only a few of the nearly
50 remote users are represented above. TSS has also been used inter-
continentally from Copenhagen, Denmark, and Helsinki, Finland.

%;;-ﬁ,,.‘A
1 :
) .

- f\ Pyle: A4, I 2 J'«. P Nerd i s 5 L 5
o ‘\Lr -
Eb January 1967 3-5 ™-530/010/00
A
% implementation of a dump of disc files onto a are procesied by the PDP-1 and displayed as
?; backup tape (the IFTAPE) as a user-controlled stylus .tracks, i.e., are "inked."
3» y-q 1 . ki | [i |) V . » _ |
J’ alternative to file purging, redesign of the EDTXT. A new system service, EDIXT, was
i E‘ ‘ PDP-1 executive to handle 53 channels and to designed and is now operational, complementing
| é ™ handle IBM 1050 and TX-2 input; mmPlemgnmation‘ EDIT in the editing of disc files. EDTXT allows
! éi of reload of disc files from the IFTAPE; the user to edit his files by context, as well

provision to handle a RELOG call that combines as by line number. He may request the inmsertion

i A gE the functions of QUIT, LOGIN, and (optionally) or deletion of any character string (up to 72
; 4 R LOAD calls; ability of the system to load some characters) in the file. This may be done
a services as object progrems to yield an within user-controlled columms and for ome or
extended exscutive capability; ability to all occurrences. EDTXT, in conjunction with
;‘) allow a program to alter its size dynamically EDIT and LIBRY, provides an improved capacity
i (ALTER call); implementation of dynamic drum for symbolic file management.
“ repacking to process ALTER calls.
4 | LIBRY. To assist users in managing their own
i i » Miscellaneous - Inclusion of various symbolic and binary files, the program LIBRY was

frequency counters to determine areas of high made available during this period. LIBRY enables

: system activity, e.g., system DISPATCHER calls,
b SERVICE calls, IFTAPE calls, etc.; relocation

of internal disc inventory tables from disc to

its user to ménage files on his own master tape,
by directing LIBRY via interactive commands to
dump disc files of all forms (e.g., binary,

3 Sle et
o

ar ! 1 ‘0] | [of 2 af 8 :
drum in order to speed system access and program, symbolic, etc.) onto a single tape.
improve system responsiveness.

The user may also purge, rearranges, or insert

=y T B e e
- en s
"
s |

POP-1 Executive. The PDP-1 computer is used other files subsequently onto this master tape,
s § as a real-time communications processor in the which is created, inventoried, and controlled by
; system. The PDP executive program has required LIBRY.

L el gy
m

4 uumerous updatings to install major and minor The need for LIBRY became critical during the
; e] additions and‘correctigns. The two major year as the system load expanded. Because the

modifications to the PDP-1 were those implement- limited disc storage remained static at 4 million
ing the 1052 keyboard/printer and the processing words while the need for storage increased, disc
of TX-2 communications. Both of these required files became more transitory and disappeared by

automatic and manual file purging. LIBRY solved

rewriting other components and reassembly to

make : ilable foi functions in

make space available for the nev functions in part of this problem by enabling users to save
- the PDP main . of the other chan

£ the FDP main core. Some of the othew changes all their files on a single master tape, rather

made during the year are:
g y than saving them on separate tapes, one fila per

-, tape. Thus, LIBRY, the IFTAPE, and the disc-
4 | teletype stationg.

{1 , purging algorithms have combined to make TSS a
. A provision to handle model 37 teletypes.

. A provision te handle nine additiomal

working system that manages large files and allows

- . Upper- and 1 -ca. 1phabet- for ti

pper- anc lower-case alphabet for the users to manage their own files, without undue

L ‘ ity iter and el letype.

o Soroban typewriter and the model 37 teletype delays or hardships.

. Facility to specify maximum line length on
J teletype output. . HELP. Because TSS documentation is volumi-

. An alternate method of processing RAND » nous, the HELP program was developed to allow
‘ Tablet inputs, so that immediate Tablet inputs users to query the system, on-line, for infor-
Rjii‘ mation found in the TSS documents. HELP gives

........ o the user information on TSS commands and error

January 1967 ' 3-6

messages, JIS error messages, and DEBUG
capabilities. 1In conjunction with HELP, which
enters into a user-system dialog (see Figure
3-2), the EXPLAIN command provides an answer--
on a "one-shot" basis-~to any given query of
HEL"‘éﬁdJEXPLAINware first

experimental steps toward promoting - xwplete

the data hase,

user freedom from dependence on the off-line

documentation of a time-sharing system.

LISTF. With the system control of disc files,
a user has the ability to list all his current
LISTF helps the

user to housekeep the disc by -deletion of

files in the system inventory,

obsolete files,

Computer-Aided Secretary. The goal of this

project is to provide secretaries and techni-
cal personnel with a set of programs to speed
up and facilitate the work of producing
documentation., This entails providing the
capability to enter text into a file, to edit
the file, and to provide a set ¢f commands as
part of the file which dictate the final format
of the document. (The commands, of course,
will not appear in the final document.) With
this capability, documentation of a program
should not lag far behind its implementation,
thus making the program available sconer to
-persons who may be interested in its capabili-
ties., Experimental programs are being designed
and writteh‘in‘JOVIAL‘and‘checkedi@ut‘on the
Q-32, based upon similar work at MIT with the
TYPSET and RUNOFF programs, and IBM's Adminis-
trative Terminal System (ATS). Eventually,
these programs will be transferred to the $/360
TSS where they will be available as a system

resource.,

ISS Monitor. The program developed last year
that displays, on a cathode-vay tube, the status
and activity of all 7SS users and an up-to~date
display of the disc inventory, in both gross and
detailed terms, has been a significant contri-

T™-530/010/00

bution to the operational management of TSS
(see Figure 3-3). The program has been
modified to reflect system changes and to meet
the needs of the console operators who use the
display ‘for "tactical' decisicn-making, The
strategic decisions are management's preroga-
tive, reflected in the system access, sched=

uling, and priority given diffarent users.

The combination of administrative procedures,
a detailed status display of events and storage
capacities within the system, and the ability
of operators to take remedial action represents
a comprehensive management scheme that could be
The modifications

to the monitor program include:

usefully applied elsewhere.

. Work order number has replaced man number
on the wain display.

. The program now readily reflects the
deletion of files from disc and the IFTAPE, as
well as the effect ¢f such deletions on avail-
able disc gpace.

. Two display modes are now provided: an
abbreviated mode to prevent loss of characters
on the display when 22 or more users are in the
system; a detailed mode to display more detailed
information about any one user.

. Inclusion of a light-pen ™UNLUAD" capability
by which the operator can place disc files on
the IFTAPE. :

Liaigon and Demonstrations. Approximately

500‘time-shafing briefings and/or demonstrations
were givet during 1966. Some of the presenta-

tions were given to small and informal groups

_and proceeded from chalk talks about the con-

figuration and operation of the system to tours
of the R&T Laboratory and teletype demonstrations
of programs of interest to the visitors.

There were also many briefings and demonstrage
tibns‘given‘for large groups, both at SDC and

during conferences in major cities, supported

by such visual aids as closed-circuit television,

X

=

I N B e i
s e N aEm £
_ o ae . _

= G

e M AT i

i

LT

L e MR e D 8 e e R
el L A T TR e L L e T

B R Vet T ST
et Dot e AL SR D

)
5.
A
|-

|
‘

e g 9&*!: .

e &3 e

B

January 1967

USER:

SYSTEM:

USER:
SYSTEM:
USER:
SYSTEM:

USER:
SYSTEM:

USER:
SYSTEM:
USER:
SYSTEM:

USER:
SYSTEM:
USER:
SYSTEM:

3-7 TM-530/010/00

YHELP

THE FOLLOWING COMMANDS ARE RECOGNIZED 8Y HELP, AND CAN BE USED AT
ANY TIME OR PLAGE TN TME PRGGRAM SY MERELY TYPING IN THE COMMAND #ORDS

LIST ALLONS YOU TO OPTAIN A LIST OF SYSTEM COMMANDS
OR SERVITES.
TSS PRINTS AN EXPLANATION OF THE TIME-SHARING SYSTEM.
COMMANDS ALLOWS YOU TO ORTAIN AN EXPLANATION OF SYSTEM
COMMANDS » ,
RESPONSES ALLOWS YOU TO INQUIRE ABOUT SYSTEM RESPONSES.
CEBUG ALLOWS YOU TO INQUIRE ABOUT DERUGGING CAPABILITIES.
JTS ALLOWS YOU TO ORTAIN AN EXPLANATION OF JOVIAL

COMPILATIGN ERROR NUMBERS. 7
DISPATCHER ALLOWS YOU TO INQUIRE ABOUT DISPATCHER CALL MESSAGES.
EXYT ALLOWS vOU To EXIT TO THE TOP LEVEL OF HELP.
FINTSHED INDICATES TO HELP THAT YOU ARE THROUGH.

WHICH OF THE ABOVE ARE YOU INTERESTED TN?

LIST

wHAT DN YSU WANT LISTED=-SCRVICES OR COMMANDS?
SERVICES

THE FOLLUWING ' !E THE SYSTFEM SERVICE PROGRAMSE

D3UG ELIT EOTXT SURE TINT
LIBR nTAP JTSBIG AT3MAL

NOW VHAT 99 YOU WANT TO KNOW ABOUT?

7SS

THE $OG TIME-SHARING SYSTEM ALLOWS STMULTANEOUS ACCESS TO THE Q=32
COMPUTER BY MANY USERS. THE EXECUTIVE PROGROM CONTROLS THE SY3ITEM.
TO COMMUNIGATE WITH THE EXECUTIVE, YOU MUST FRESEDE COMMANDS WITH
AN EXCLAMATION MORK ¢ 1)s TO ENTER THE SYSTEMs USE THE “LOGIN“
COMMAND, FOLLOWED AY YOUR MAN NUMBER AND WORK CRDER NUMBER. AFTER
YOU ARE LOGGED TN, YOU MAY LOAD AN O0B.JECT PROGRAM OR SYSTEM SERVICE
PROGRAM RY USTNG THE “LOAD" COMMAND, FOLLOYED BY THE PROGRAM NAME

OR TAPE NUMBER. ONGE YOUR PROGRAM IS LOADZD, YOU MAY START IT RY

TYPING TN THE “GO* COMMAND, AND STOP IT 8Y TYPING IN THE WORD “STOP-.
TO LEAVE THE SYSTEMs TYPE IN THE WORD “QUIT".

NOW WMAT DO YOU WANT TO KNOW ABOUT?
COMMANDS

FNTER THE COMMAND TO BE EXPLAINED.

LISTF

LISTF ALLOWS YOU TO ORTAIN 4 LIST OF YOUR OWN FILES 8Y TYPING IN THE
WORD "LISTF*. THE SYSTEM PRINTS THE NAME AND FILE SPECIFICATION

FOR EACH OF YOUR FILES.

NOW WHAT DO YOU WANT TO KNOW ABOUT?

JTS

TYPE IN THE JTS ERROR NUMBER.

32

THERE TS AN ERROR IN AN *“1F" STATEMENT.

FIGURE 3-2. SECTION OF "HELP" DIALOG BETIWEEN USER AND SYSTEM

| January 1967 3-8 TM-530/010/00
- ‘
A
{ .]
T
R
‘,‘
|
. : ..) - 5 | N: .n;aur{.T Q \cp HA Y
% A o . ° . T \ K
‘ 12 313
= 13
= | 4 R
k| N
| 1§ 17
: ‘ 172 32
;| 8 dquuP, L? .
[i N o < 393
| : oY iz oE
QuUUP. 2
S'S P _Y 2 q
e 5
' 2%
27 .S
hd - 8 e
TPACKD
: TARE S
? « . DRPUMS
{ Py AN T .;‘B»YU“
; ‘ giur A
; IR AT A S S B SPU I
N
:
. |
‘ ‘\
! !
‘ [
|
|
? * ‘ A |
' [
4 JI5nAL 25509 \
|] ! \
|
I
“ I
| FIGURE 3-3. TSS MONIKTOR PROGRAM STATUS DISPLAY |
j The columns in the display indicate to the computer operator the following
| items: channel number (CH), program name (NAME), program word size (SIZE), ‘
drum number on which the program is stored (D), work order number and priority
(JOB), magnetic tape reel number (MOUNT). and the status of the program im the
job queue (Q). Also indicated are the tape drives being used by the various
channels (DR and CHAN), the number of jobs placed in a production stack !
(PRSTK), the availability of tape and drum tracks,and other usetul information. ‘
By light-penning the letters and numbers in the lower left corner of the f
display, the operator can request a display of current files sorted in various
ways. The information in the lower right-hand corner gives additional data on
a current system user (in this case, the person using channel 12). \
|
|

P

A T En Al A et e T e T T e TR EO d

ot T

Januvary 1957

slides, multiple teletype installations, and
documentation. Some of the major external
demonstrationg included: American Management
Association in New York City; New Jersey

Hospital Association in Princeton, New Jersey;

the Commanders' Conference, Air Force Logistics .

Command, Hill Air ﬁ%rce Base, Ggden, Utah; and
the National Industrial Conference Board
Seminar, New York City.

Among the year's visitors to SDC were repre-
ARPA, ARADCOM, Office of
Naval Intelligence, Pacific Air Command,
Aerospace Medical Research Labs, Adjutant
General §-“~ol, U. S. Marine Corps, Office of
Secretary of Defense, Jjoint Chiefs of Staff,
Naval Electronics Laboratory, NORAD, Royal

sentatives from:

Canadian Air Force, Air Force Systems Command,
College of the Armed Forces, Office of Anti-
Subuarine Warfare Programs, and the National

Range Division.

Repreéentative of the wmany visitors from the

field of education were those from the American

Council of Education, Cornell University,
National Educational Association, Pennsylvania
State University, the Claremont Colleges, UCIA,
USC, Canadian Ministry of Education, Japanese
Ministry of Education, and the Assistant to
the Leputy Administrator‘of‘Educatfon,‘Ontario,
Canada.

Other hriefings and demonstrations were given
for personnel from NASA, U. S. Departwent of
State, Office of Aerospace Research, National
Science Foundation, U. S. Geological Survey,

U. S. Civil Service, Bureau of che Census, and
Oak Ridge National Laboratory.‘

Interest from abroad was evidenced by visitors

from Cegos Informatique, France; Computer Center,

Israel; the Japanese Air Force; Innu‘Swéden;‘and

NATO.

The inventory of demonstrable programs,

T™-530/010/00

‘developed within R&TD, is given in the Appendix,
page A-l.

As of November 17, 1966, the Q=32 TSS has
been placed into service on a limited sub-
scription basis to a subset of thoae1usera,
local and remote, previously using the system.
Purchase of a share entitles a subscriber to
the best preferred service available on one
shift--four console hours a day, five days a
There are four shifts daily. 1It is
anticipated that few or no changes wiil be
made to TSS, except as required by periodic and

week.,

emergency maintenance, Some additional services
may be attempted as object programs. without
disturbing the basic system executive. In
particular, some changes can be expected in the
PDP-1 executive to satisfy current commitments

in the TX=2/Q-=32 network link, and in experi-

mental exploration of improved display "tracking"

and “inking" of RAND Tablet input.

Project Documentation

1. Schwartz, J. I. The SDC time-sharing system,
part I. Datamation, 1964, 10(11), 28~31;
p&rt II, 196"" lg(lZ)‘, ‘545550
as SDC document SP-1722.)

2, Bain, H. Time-sharing: ite users and uses.
SDC Magazine, November 1968, 9(11), 1-15.

3. Linde, R. R. and Chaney, P. E. Operational
management of time=sharing systems. SDC
document SP-2392, June 6, 1966, 30 pp.

C. Weissman, Principal Investigator
W. J. Erikson

B. L. Jones

R. A. Totschek

P. A. Mcleaacs

G. H. Fine

Description

The projects undertaken in this area cut
across various lines of time-sharing activity.

;Subpéftedfinmpart by the Advanced Research

Projects Agency.

{Also available

T T e il v ALK O U A |
: Eaneaike)

T tare mer 1

T et ey g D Rt

SR I AT TR

TR

T s TR TR AT

ECgratod

e e R T L T e e

¥

Aruitoxt provided by Eic:

ERIC

January

=
(=
o
-J

TeANE 3.ae IW

[w. . -
1086 VLK WAL RNCINT ROMNT

o
R e WA .
1vs . L
200 & PRARKTIR W
W00 AebPa ¥

nee

Som & PRais
Mt
' HEOMRNET

.‘ﬁ HEITS & AN LK
PRk ooae ner 1% st
von =83

L]
3
L3

FIGURE 3-4.

THRITIY IRY B
KALE .

"

BRIEFINGS AND DEMONSTRATIONS ON SDC'S

A
R oA

NURV 8.4

ME-SHARING SYSTEM AND

TM-530/010/00

PROGRAMS .

e

[E]

-? “_:\ -

e /B oS

nnnnn

January 1.67 ~w 3-11

They all relate to further understanding of the
behavior of the SPC Time-Sharing System (TSS),
and to formulating plans for improving or

extending the scope of time-sharing. 7o this

-end, the analysis of time<sharing carried out

in prior years continued this year. The
emph&sis‘has shifted, somewhat, from analysis
to simulation and modeling, and to experimen=
tation and empirical data collection. Some of
these activities reached their goals aad have
been terminated; others continue to explore

the area of interest more deeply.

Progress
Empirical and Simulation Analyses of Time-
Sharing. Since publication of the results of

earlier analysis of TSS [3], the system has
undergone considerable change=-more drums,
improved disc file management, more and
improved user-oriented programming and language
toole, and extended system access. To update
this analysis and to reconsider scheduling
strategies based on the updated analysis,
additional simulation and raw operational data
were collected and processed. To improve the
quality of simulation data, the simulators
were driven by input consisting of job- and
user=characteristics collected from previous
operational data. New data were collected

that supported the validity of the old data,
and hence the validity of the siwulation runs.
The simulators output data according to various
options: plotted cumulative response time as |
a furction of queue:disciplinm; frequency and
length of CPU requests (from programs); and
number of quanta serviced per unit time

(throughput).

The results of analysis of newly collected
operational data and simulation were used as
They
suggested a new, three-queue algorithm; lowering
gystem overhead by moving the disc inventory

the basis for improving TSS operation.

TM-530/010/00

tables and processing programs to the drum
(as noted earlier in the section on TSS
development); and adjusting the number of
quanta given each program when it rgaches the
Figure 3-5 .

shows the overall functional flow of the

head of one of the thrze queues,

present three-queue scheduling aigorithm,
With the publication of the final report on
these studivs [2] (and with TSS now in its
new subscribed role), this project has been

completed.

Paging Study. The development of second-
generation time-sharing systems based on
virtuale-memory addressing schemes (where
secondary storage is mapped into real core
memory in "pages™") has created concern over
the dynamic program behavior in the “paged"
environment of such systems. To date, only
qualitative predictions have appeared in the
literature., This study has attempted to
provide quantitative data on the behavior of
a variety of current time-sharing system
programs onerating in a simulated paging
environment, An attempt was made to find the
tradeoff points in system overhead between
“"demand paging"=-fetching a new page whenever
required=-and complete program swapping. From
data on extreme conditions, it was hypothesized
that wore meaningful algorithms could be
generated for less extreme conditions, such as
set=of«pages swapping. . Formulas were derived
for expressing core occupancy in page=per-
millisecond units for both full swap and paging=
on-demand techniques. Other formulas were used
to evaluate these data as a function of program
size and other parameters of interest. Data
for use in these formulas were collected by
embedding an interpretive executive in various
TSS object programs, e.g., JTS, TINT, LISP,
EDIT, etc.
program for typical user applications and

This executive executed the object

M
P

-——

‘ OF QUEUE n

January 1967 3-12 TM-530/010/00 g
[2%
ARRIVING REQUESTS |
ENTER QUEUE |
¥
777777777 QUEVE 1| YES) _ ‘
}V EMPTY ?
| ‘ | I
M | service next |
| QUEUE | REQUEST | | -
| | FOR | QUANTUM ‘
| ‘ 4
| |
‘ 1
1 — e = 3 ﬁ
| | REQUEST RE~ | | Put REQUESY l w
- : MAINSIN. | | AT BOTTOM | |
[e | «

| [service Top \l
| [ooms) i
|

‘IHREQUEST IN QUEUE] N
11FOR I QUANTUM]

WAS
QUEUE 111 PRES
N(Wmeou

[N

NO ~QUEUE It <, YES - e

EMPTY?

YES ‘l\PUT\REQUEaT | ‘
AT BOTTOM OF|

[Quevem™ |

|

|

IDLE CYCLE

fi‘ﬁ:‘

JL(so MS)

SERVICE TOP ‘

FIGURE 3-5

‘ EVE

i SOR | QUANIY secevED 20

| Ireor | QUANTA THIS CYCLE | \
(600 IN QUEUE 1117

YES !“PUTREQUEST
1 AT BOTTOM OF

QUEUE m

. FUNCTIONAL FLOW OF TSS SCHEDULING LOGIC

p —;;‘

5F g

e
Togn

ez e T e DL Tl

Leieatae T I

TRt U o S P S

January 1967

collected verious statistical data on paging

parameters.

The data obtained seem to indicate that the
handling of programs similar to the ones
examined may be difficult in & time-sharing
environment utilizing a paging-on-demand
strategy. Attempting to alleviate these
difficulties by reorganization of the programs
creates new problems in determining what
strategies can be used to automatically perform
the reorganization. The collected and analyzed
data summarized in Figure 3-€ have been
supplied to interested second-generation time-
sha%ﬁng system developers. The projec: was
concluded with the presentation of the findings
at the 21st National ACM Couference in August

[1].

Comparative Economics of Computer Systems.,

This project has been concerned with determining

the value of different types of computer systems

to the managers of these systems., The primary
measure of value has been total cost, where
total cost includes the costs of both the
system and the users of the system. The study
of ona aspect of this problem (the differences
between interactive and noninteractive program
debugging) has taken a significant portion of
the year.

With regard to the overall problem, cost
models were developed that allow comparison of
different systems, Also, a set of computer
system models has been derived for each of the
computer systems under study (time=sharing,
batch processing, personally operated, and
wultiple~console open shop). These models have
been employed to determine how the costs of the
different systems vary as system and user
parameters are varied. However, while these
models allow interesting comparisons to be made
between the different types of systems, they do

not adequatgly describe the process of program

TM-530/016/00

debugging. Because of this,‘an~experimeqtal

pilot study was designed to determine the

effects of interactive versus noninteractive
program debugging [4]. The experiment was con-
ducted to obtain data for the larger study to help
determine the economics of different types of
computer systems. In addition, the data would
permit an analysis of changes in the performance
characteristics of users who were debugging

programs on different types of computer systems.

This experiment is similar in many respects
to the study '"Programmer Perfurmance Under On-
Line and Off-Line Conditions," described below.
Both experiments used the Q=32 TSS for.one of
the teat conditions (on-line, or interactive).
However, the off-line condition in the study
described below involved a simulated batch~
processing system, while tiis study used a
simulated multiple~console, open-shop system
for the noninteractive condition. In addition,
different languages were used by the subjects
of the two experiments; the test problems were
much more difficult in the study described
helow; and the subjects in this study were
inexperienced programwers. However, even with
these wide differences, these two independent
studies reinforced each other by indicating the
same basic conclusions:

. The subject groups using interactive time-
sharing consistently took substantially less
time to debug their programs.

. Very large differences in individual

performance were noted between programmers.,

Plans

With regard to the first two projects reported
~=the analyses of time=-gharing and the paging
study-=no further work is contemplated. There
is a considerable amount of work that remains
to be done, however, on the comparison of
computer system costs. Before conclusions cun

be presented concerning the overall cost

January 1967 3-14 TM-530/010/00
24]\ ! f
23] s)
224 ¢ A
\ t4
2 /“",/"‘,
20-1'\ n

1.60 ‘ 160.0
TIME (MILLISECGNDS, LOG SCALE)

FIGURE 3-6, PAGE DEMAND STUDY

The graph indicates cumulative total number of pages referenced by various
programs a3 a function cf elapsed time from initial program execution.

S T S U 4

n

T A Ut AP

et e o B S B A S S B B s i

i J—
= .

m : i
e Sl = 3 i

mn

P

January 1967 3-15

differences between the various types of
computer systzems under study, several prelimi-
nary questions must be answered, The large
differences among individus?l programmers as
well as difficulties in defining and measuring
job characteristics have led to the recommeu=
dation that further study be directed towerd
determining the characteristice of the usners
(programmers), the jobs, and the systems used.
Then a more successful attempt could be made to
determine how these and related considerations
interact and how much they cost in the perform-
ance of a specified job for a particular type
of user., Documentation of this werk is in

progress.

In general, the major effort in the time-
sharing area will be one of corsolidaticn and
transfer of Q=32 supported recearch to the
System/360 Time=Shariag System.

Project Documentation

1. Fine, G. H., Jackson, C. W., and MclIsaac,
P. V. Dynanic progrum b::havior under paging.
SDC document SP=2397, June 16, 1966. 19 pp.

2. McIsaac, P, V. Job descriptions and sched-
uling in the SDC Q=32 time-sharing system.
SDC document TM=29%6. June 106, 1966. 28 pp.

3. Totschek, R. A, A statistical analysis of
the SDC time~gharing system. SDC document
SP=-2191/001/00. January 18, 1966. 18 pp.

4, Erikson, W. J. A pilot study of interactive
versus nonintersctive debugging. SDC docu=
ment TM=3296. December 13, 1966. 21 pp.

PROGRAMMER PERFORMANCE UNDER
ON-LINE AND OFF-LINE CONDLTIONS*

‘E"o Eo ‘Grmt
H. Sackman

Description
This study was conceived as an experimental

comparison of on-line versus off-line programmer

*Supported by the Advanced Research Projects
Agency.

P OIS LRy BTN

TM-530/010/00

\

debugging perfcrmance. ‘The SDC Time-Sharing

System was used for the on-line condition and
for a simiation of the off~line condition. A

set of rules and procedures was developed to

make the off=-1line simulation as coéparable as

possible with the facilities of curren* batch-
processing systems., Turnaround time in the
off~1line mode was held constant at two hours,
a response time considerably faster than turn=
around times for most off-line installationms.

The criterion performance measures were man-
hours for program debugging, reccrded by the
experimenters, and the centrai processor time
(CPU time), recorded by the computer for each
subject. These criterion measures were collected
for two programming problems--an algebra problem
involving solution of equations, and a waze
problem requiring determination of the correct
path through a given maze. The experimental
programs were considered completed when they

successfully processed standard inputs.

The experiment was run in accordance with a
latin-square design with repeated measurements.
Two groups of programmers, with six subjects in
each group, solved the two problems under on-
line and off-line conditions for debugging (as
indicated in Figure 3-7). The total sample of
12 subjects had an avereze of seven years'

programming experience.

[on-tine | of-Line |
tt‘Group I MAIgebra (6) ,Ji Maze (6)?
IGroup II yMaze (6) }Lﬁ Algebra (ﬁ)y
! Totals| ay | a2

Figure 3=7.. Programmer Debugging Performance
Experimental Design

The experimental design has the advantages
of pooling all 24 measuremwents for each
criterion variable (resulting in a larger
sample), and of using each subject as his own

S A VUL U S DS Y

-

;
f
;
i

January 1967

control. The analysis of variance with this
design permits separate tests for on-line/off-

line and problem difrerences.

Data on additional performance measures were
collected; these included ccding man-hours,
program lerngth, and the running time of the
completed programs, Data on several control
measures were also collected: general pregram=
ming experience, SDC Time-Sharing Syetem
experience, type of programming language used,
and scores on the two parts of the Basic
Programming Knowledge Test, recently developed
at the University of Southern California.

Progress

The experimental Jdata raised some unantici-
pated problems. The main problem was the
enormous range of individuel performance
differences, usually varying over an order of
magnitude between best and pooresi scores.
These individual differences were typically
observed in positively skewed frequency
distributions, and were so large that they

tended to overshadow on-line/off-line treatment

effects--an important finding in its own right.

These problems were partly resolved by the use
of statistical controls,

The results of this study [2] showed debugging

man=hours to be significantly shorter for the
on-line condition at the ,025 level. There was
a nonsignificant tendency toward greater CPU
time under the on-line condition. In terms of
mean raw~score values, debug man-hours off-~line
ranged from 50 percent larger for the algebra
“problem to approximately 300 percent larger for

the maze problem (50:35 and 12:4, on-line versus

off=1line debugging man-hours, respectively).

It was congluded‘from‘these results, under the
conditions of this experiment, that on~line
debugging was significantly and substantially
‘mpre‘effiéient than off-line debugging in terms

of programmer man-hours, and that there was

“Aap

TM-530/010/00

*

some tendency for more CPU time to be required
for the on-line conditionm,

To analyze the dimensions of individual
1ifferences, the correlation matrix of 15
performance and control vrriables was sub-
jected to an exploratory factor analysis., The
results showed two general and fairly well-
defined factors that were consistent with
trends in the empirical correlations, The
larger factor, showing heaviest loadings with
criterion performance and coding speed
variables for both problems, and with program-
ming language, was designated "programming
speed." The second factor, showing heaviest
loadings with program size and running time,
was described as '"program economy.' CGCeneral
programming experience showed some relation
with this factor, indicating a tendency for
more experienced programmers to write shorter

code associated with faster program run time,

In the interpretation of the data, limita-
tions and constraints of the findings were
noted, It is not known how representative
the algebra and maze problems are with respect
to problems "typically' faced by programmers.
The experiment was conducted at a single
facility with on-line operations the normal
mode, and with simulated off-line operations.
Only two~hour turnaround time was tested. The
effects of varying levels of turnaround time
were not systematically investigated and
could only be tentatively extrapolated from
the results. These extrapolations did
indicate, however, that the performance
difference between on-line and off-line oper-
ations for debugging man-hours tends to ‘
disappear as turnaround time approaches serc
for the off-line condition (see Figure 3-8).
The small size of the experimental groups,
combined with large individual differences,

led to large error variances in experimental

i%
%
R A
i IE

et

e

=2

R

PGP Py, TRy TR T RSy TR RN B
© Al

January 1967

HOURS

AVERAGE DEBUG MAN

3-17

OFF-LINE
ALGEBRA
ESTIMATE
o=
OBSERVED -
N-LiNE -
204 P =" OFF-LINE
1 — MAZE
| - ESTIMATE
20 ¢ -
I -
10 4 - ¢
“1 _-- OBSERVED
|‘ by —y ¥ T L] 0] T— T ' ¥ B
] 2 3 4 S 6 7 8 14

AVERAGE HOURS TURNAROUND TIME

FICURE 3-8. DEBUGGING MAN-HOURS ESTIMATED AS A FUNCFION OF TURNAROUND TIME

The slope of the curve indicates that the rate of increase of debugging
man-hours is a function of turnaround time. For the on-line condition,
tarnaround time is (effectively) zero; for the off-line condition,
turnaround time was un experimentally fixed parameter (from which these
curves were extrapolated),

TM-530/020/00

S T, P N g

Ko o e
AR T T e e

e R T L e

January 1967 3-18

measures and to some ambiguous results, There
were problems in describing the subject sample
in relation to empirical programmer populations.
Independent experimental studies were recom~
mended, utilizing other facilities, with other
program problems, on laﬁger‘and%more diversie
fied programmer samples,‘and‘with‘varying
levels of turn&round time,

This study indicated that valid generaliza~
tions of user performance in time-gshared
computing facilities are contingent upon an
established body of empirical findings on
userg--their needs, tasks, problems, resources,
experience, skill levels, motivation, and
interactive problem-solving behaviors. ‘ince
these empirical deta are virtually ncnexistent,
it was apparent that the piecemeal, haphazard
pattern of current user studies in time-shaving
should be restructured along the lines of an
organized conceptual framework for the field
&8 & whole, lexding toward a balanced, long~
range program of applied research to anticipate
and meet user needs. Accordingly,‘plann for
futurs work involve the collection, review and
evaluation of experimental studies on wser
performance in time~shared computing systems,
followed by the construction of a cunceptual
framavork for long-range developuent and growth
of experimental studies on user periormance,

Project Documantation

1. Grant, E. E. An empirical comparison of
on-line and off-line debugging. SDC :
document SP-244%., May 18, 1966. 16 pp.

2. Grant, E. E. and Sackman, H. An explora-
tory investigation of programmer performance
under on-1line and off-line conditious. SDC
dgcumcnt‘srbzssl. September 2, 1964%.

36 pp.

1M-530/010/00

TIME-SHARING COMPUTER NETWORKS*

C. E. Fox, Project Leader
L. E. Durham

G. He Fine

L. Gallenson

R. F. von Buelow

Description

Many consider the next logical step in the
evolution of timee-sharing computer systems to
be the linking of these systems iato networks.,
Such networks would greatly increase the
machine facilities available to cooperating
users, as well as allowing widely separated
computer installations to share programs, dat.,
and costs with other, similar installations.
Preliminary studies of time-sharing networks
indicate that they are today tecunically
feasible,

SDC has become invelved in two distinct
approaches tov establishing compuier networks,
The Iirst involves a network of dissimilar
machines (the TX-2 computer at Lincoln
Laboratory and the Q=32 computer at SDC); the
second involves a network i similar machines
(SDS 940 computers). At the present time, the
first network has been implemented; the second
is awaiting design spproval.

The link between the T¥-2 and the @-32 is
via a Western Union 1200 BPS line. The TX-2
connects to the SOC PDP-1 computer taletype
interface; in all respeccts {(except for higher
speed) , the TX-2 cperates like a teletype on
the Q=32, Thus the TX~2 can icg in, lead,
and executo Q~32 programs {and vice versaj.
This effort involves personnel fram SDC,
Computer Corporation of America, and Lincoln
Laboratory in writing protocol docunerie,
testing programs, and incorporating modifica-
tions to the PDP-1 and TX-2 exccutive programs.

*Supported by the Advanced Research Projects
Ageuacy,

1,
I
B
[
P
I
!

v

TS
3

it

T o g e

2

B, e ot e Mt iy e e i ey e 7o

T T

e

A A,

Wmm—‘: v b dhat E g ot ke i <
\
\

January 1967 3-19

SDC has likewise been involved in the design
of & network of SDS 940 computers. A Jasign
team, headed b; Wayne Lichtenberger of the
University of California, Berkeley, met at SDC
for a week in June 1966 to summarize a proposed
design for such & netwerk. The summary, edited
by Dr. Lichtenberger, was submitted to the

Advanced Research Projects Agency in September.

Progress
The TX-2/Q=32 jiink is currently being used

Object
programs have been written for both machines

for "shakedowm'" and demonstration,

to interpret the protocoi and react to the
transmitted data. Complete iine transmit/
receive ("echo') testing has been accouplished.,
In addition, a TX-2 prograwm has accessed the
Q-32, logged in, loaded TINT, and computed
with this avatem; the results of the computa-
Q=32
use of the TX-2 has been more restrictive,

tion were then routed back to the TX-2,

inasmuch as the smaller-scale APEX execative
system (on the TX~2) has dedicated much of its
resources to Jdisplay programs.

The specification written for the SDS 940

computer network considers the various "idesl"

connections between elements of a networke-uger,

file, process, wmemory, and system. The element
interconnections give rise to a basic system
configuration and determine the capabilities
required by the network. The proposed design
encompasses message flow, file and memory
handling and referencing, and network per~
formance measurement. It also delves into
detailed hurdware and software modifications
to the existing SDS 940/Berkeley timessharing

systen,

Consideration has beei given to building
object programs on both the TX-:z and the Q=32
that accept and reformat display data for
transmission, and route the displays for

o 3 e A6 B A S L Bl e M BB e v G

. T™-530/010/006

posting on the other wmachine's CRTs. Before
this is pussible, protocol conventions must
be adopted for display data transmission, and
various hardware and suftware mcdifications
must be made. Work on this link will probably
continue on the Q-32 until its deactivation,

and then will be transferred to the System/360,

Further progress on the Sps 940 cotiputer
network is pending, awaiting industry response
to the design specification currently being
circulated by ARPA,
activities are expected to continue to stimulate

In general, networking

the imagination of researchers and users alike,

Project Documentation

1. Lichteoberger, W. (Ed.) Tentative specifi-
cations for a network of time-shared
comgnuters. Advanced Research Projects
Agency Document No, 40.10.130, Washington,
D, C. Seprromber 9, 1966.

el L el

|
|
:
|
|

SIS LAY {

e T e T € b Rt o s it it 8 e et I A it e i e o S A 2L it S S At o St

3

o

Janvary 1967 4ol

DATA BASE SYSTEMS

A. H. Vorhaus, Head

Developing general -purpose data management
systemg for nonprogrammers is the primary goal

of the Data Base Systems staff. A data manage-

ment system in this context is one that defines,

stores, processes, and outputs data according to
user requirements. The generality of the system
allows the same program set to cperate on many
different kinds of data and different types of
data problems. Providing this szrvice for non-~
programmers gives the actual user of the data
immediate access to the information in his data
base without the traditional intermediaries

needed in the past.

The design of data management systems has taken
on new direction through the use of time-sharing
and advances in computer hardware. It is now
possible for the user to eccnomically communicate
directly with the computer program and to have
SDC has

applied the findings of its research to the

random access to large files of data.

development of new program systems that facili-
tate user interaction and take maximum advantage
of the new technology.

Two indications of the effectiveness of this
approach can be seen in the response of current
users of TSS-LUCID (Time-Shared Language Used to
Communicate Information System Design) and the
degree of interest shown in thisprogram by
visitors to SDC. TSS-LUCID was used by about 50
people each month during 1966. The system
combines the use of an English-like quezry
language with a data storage structure that
provides random access data retrieval anrd
operates under time-sharing. The results gained

M-530/0L0/00

from this method are rapid response to data
requests, ease in formulating data requests, and
economy of operation (since actual compute time
is small compared to total elapsed time). The
adaptabilicy of TSS-LUCID to variable-length
names, as well as numeric data, has led to wide
diversity in the types of users and data
structures employed. A data base describing a
patient 's record at a hospital --including
diseases, consultations, results, and personal
information--is av feasible as a data base con-
taining inventory information about different
products--including quaniity, location, cost,
This ability to adapt to
various kinds of data without the need for costly

condition, codes, etc.

reprogramming is one of the most powerful features
of TSS<LUCLD.,

Work was initiated to incorporate text handling
within TSS-LUCID.

were made and a small data sample was used as a

Some changes to the programs
test case. Test results were satisfactory, in-
dicating the general feasibility of adapting
TSS~-LUCID to the processing of textual materials.
However , an attempt to use largef data samples
pointed up some capacity limitations that could
not ve easily overcome. It appears that further
work on combining free text with structured data
must await development of the succissor to
TSS -LUCID,

The use of a list processing language fox dnta
A LIS?
1.5 program that models TSS-LUCID exists; various

management is also under investigation.

comparisons between the two are being made.
Results demonstrate that while LISP 1.5 allows

P TUUTITN

January 1967

greater easé¢ in program modification, it requires
Additional work

will continue using the more powerful LISP 2

more storage than TSS-LUCID,

language. K
Anothé% program system of considerable interest
is GPDS (General Purpose Display System) for use
in developing cathode-ray-tube data management:
Interfacing with TSS-LUCID, GPDPS

allows the user to operate a teletype for

displays.

factual data retrieval and summary information,
and then to use the CRT for visual displays.
However, because GPDS and TSS-LUCID have totally
different designs, ¢ach employs its own language
Whereas TSS-LUCID has
limited outputs, the powerful communication

and method of operation.

language of GPDS provides diverse and flexible
output display formats. GPDS, on the other hand,
operates interpretively and receives no special
priorities from the time-sharing system for

This causes GPDS

to operate very slowly except for the most

operating the CRT display.
trivial of applications. Also the complexity of
GPDS necessitates a long learning period for

potential users.

At the start of the year a major effort was
made to apply GPDS to the task of calculating
salary maturity curves. This proved a worthwhile
While it confirmed

the original evaluation of GPDS, it also

undertaking in several ways.

illuminated other prcblem areas such as sequence
control, capacity limitations, and overall

At the same time it
brought to iight the desirability of the
building-bleck concept, the acceptance of the

complexity of the language.

query wodifiers, and the excellence of the
array handling logic.

All work on TSS-LUCID and GPDS has stopped;
future efforts are veing directed to the Time-
TDMS wili be an
integrated data management system allowing

Shared Data Management System.

complex data structures, on-line queryving,
report generation, CRT displays, and update and

T~ 530/010/00

maintenance capabilities--a using a consistent
TDMS will operate on an IBH S/360

series of computers in a time-shared environment.

language.

It is oeing designed for broad user application
and will retain the simplicity of operation of
TSS~-LUCID. 1Its CRT display capabilities will be
restricted, but easy to use. It will benefit
from the GPDS experience, but will be neither an

extension of GPDS nor & reasonable facsimile.

The data base structure provided within TDMS
may be extensive and complex. This places
greater demands on the user to have detailed
knowledge of the data base components; it also
requires that the query language be powerful
enough to effect meaningful data retrieval. An
investigation is being directed toward easing
this task through the use of natural language
interrogatior . The approach inv.lves developing
a question preprocessor which translates a
user 's flexibly structuredtsentence into the

appropriate TDMS query requests.

Interest in TSS-LUCID and the}development‘of
TDMS has led Shell 0ii Company an¢ Atlantic-

Richfield 0i1 Company to place research associates

at SDC to participate in our data management
work. A tenure of 12 to 18 months is expected,
at which time they will return to their parent

companies.

The experience gained from using both TSS-LUCID
and CPDS--which are general -purpose, user -
oriented, and deal with structured data--has
The
research performed during the past year, as well

influenced the design of TDMS graatly.

as the previous years' experience, has led to

ceveral conclusions regarding the design require-
ments for TDMS: (1) It is necessary to keep

user interaction simple, even at a sacrifice in
capability. Users are willing to accept less
power as long as they can have quick and easy
(2) 1t is desirable to

keep flexibiiity and user choice to a minimum.

access to the system.

While some users may be impressed by the number

T e ga

I IR T AT e i

RS SRR L, &

Aw,

T T A

of buttons and options available, most users

will generally not be willing to pay the price
for a system loaded with accessories. (3) Pre-
spective users must b: involved early in the
system design. Designing a system without direct
user inte:r "ace leads to systems that soon

become discarded through disuse. (4) The system
must respond rapidly enough to satisfy typical

W Ab e e R G G s D et g M e s SN STE § e Jogg
A
H
January 1967 V 4-3 T™-530/010/00

users. Even though users know they are sharing
the time-sharing system with others, each
additional second of waiting frustrates them
and leads to disenchantment with the system. An
interpretive system must be capable of producing
a compiled machine code version for frequently
run jobs to provide the necessary speed of

operation.

BTt e S T N e

January 1967 4=4 TM-530/010/00

il

L

1

o i
FIGURE 4-1. GPDS CONSOLE
Inputs can be made on-line via the RAND Tablet, lightpen,
teletype, or special bank of switches on right ef console. i

-RIC

Aruitoxt provided by Eic:

—

k

Junuary 1967

GENERAL-PURPOSE DISPLAY SYSTEM*

5. Bowman, Project Leader
S. I. Ackley

5. H. Brown

M. H. Detambel

M. D. Draper

R. A, Lickhalter

R. H. Stermneck

Description

The General -Purpose Display System (GPDS)
combines a user -oriented prograuming language
with display equlpment input to achieve general -
purpose CRT display formats.
time-sharing on the Q-32, GPDS provides an
experienced user with the ability to experiment

Operating under

with various display formats, accessing data
generated by TSS-LUCID,

A building-block approach was chosen for GPDS
operation. The on-line user has at his disposal
a set of basic processes which are used to adapt
GPDS to the particular task being performed.
Queries are presented to the user, and his
responses are stored by the program. By calling
several of these basic processes in succession,
the user builds a specific display in which he
is interested. He can then save this selected
sequance as a new procese, thus linking together
a sequence of basic processes combined with the
user's responses and inputs. At a later time,
the user may run this saved process with a
different data rubset, or he may use the process

in the building of a more complex display format.

Progress

In this report period GPDS continued to be
dEmonstpgsgé‘to 2 large number of visitors and
interested persons within SDC. The demonstra-
tions given early in the year continued to
indicate that--for most users--GPDS was too slow

and complex.

The language in which the user communica*es

with the system is powerful, but highly complex.

§Supﬁbrted by the Advanced Research Projects
Agency.

45

TM-530/010/00

A significant time period is required for
learning the language, and even the wmost experi-
enced users have difficulty remembering all its
features. As a result, the use: has to plot the
solution to his problem in minute detail and
needs programming skill. User interaction is
also somewhat complicated by the wealth of input
equipment available, including a RAND Tablet,
light -ca and CRT, teletype, auxjliary keyboard,

and fo»-tion button box.

Another limiting factor is the slowness of
operation for runrning a saved process. Whereas
an iarcrpretive system may be quite adequate
while the user is initially constructing a
display, the system must provide rapid response
when the user generates successive displays with
the finished process. For a general -purpuse
program to be useful for any specific applica-
tion, it must provide some technique for response
equivalent to a special -purpose program. Such a
requirement may sometimes be met. by compiler
methods. Despite these shortcomtngq, GPDS has
been a valuable tool for gaining insight into
man-machine interaction and has been applied to

the production of meaningful work.

In February, a meeting was held at SDC with
leaders in the field of graphics* to discuss
GPDS and its future direction. It was suggested
at this meeting that GPDS project personnel
concentrate on solving a specific problem to
better learn the assets and drawbacks of GPDS,
The problem selected for solution was the auto-
matic generation of salary maturity curves, using
date collected from Scuthern California aerospace

firms (see Figure 4-2).

To facilitate this task, several new basic
processes were added to GPDS. These basic

Dr. John Egan, Headquarters, Electronic Systems
Division; Douglas Ross, Massachusetts Institute
of Technology; Professor Bert Herzog, University
of Michigan; Jerry Feldman, Lincoln Laboratory.

January 1967 b=t TM~530/010/00

» ' T Y
RENINL L SALARY ‘ SALART PLRLENT LT CURYL Y

¥

\ »

2200 « ConpANY

- orerrr 8y ‘
2100 ¢ 7 CCOMPANY ALl

2000 « ’ DLCREL DY

1900
1900
1700

1600

15§00
1400
1300
1200
1100
» 1000
900

L * L L 4 0_ L 4 ‘e 4
. N L)
2 th 1112 13 4 ™ 20 20¢
YERRS S INCT 83

e

cW3CCECT FUNCTIBN

' SAVE
FORCET
REVIIM
PROCESS L 18]

: FICURE 4-2. SALARY CURVES GENERATED BY GPDS

4

Januaxy 1967

processes were designed to eliminate an excess

of options and to present the user with a display
quickly. An example of this synthesis is the
new process REGRESS, which enables the user to
draw a curve or line of regression by answering
only two queries from the gsystem. While the
original design of GPDS provided the flexibility
and contained all the buiiding blocks necessary
to construct a process having the full capabili-
ties of REGRESS, it was only after REGRESS
became a standard process that meaningful use

of GPDS for graphics occurred. (This particular
process was used in the analysis of time-sharing

statistics by means of GPDS.)

Solving the specific problem of salary curves
proved extremely valuable in the research into
data management displays. It is expected that
the initial display capability within TDMS will
benefit from this work.

Another positive result achieved in the GPD3
research was the discovery of the power and
flexibility of the process-building concept.
Very successful demonstrations have been given
in which a process tailored especially to the
spectator 's interest was built on-line. The ease
of tailoring the interactive queries to the user's
particular needs proved valuable. The ability
of GPDS to be molded into a suitable vehicle for
salary curve generation demonstrates the versa-
tility provided within the original design.

Plans
Work on GPDS has ceased.
provided to maintain the program system for its

Support will be

present users. Currently, salary administration

personnicl are using GPDS for new salary curve

generation. All future display research will be
performed within the context of TDMS.

Project Documentation

1. Shaw, M. A. User's manual for GOR: A GDPS
program for structuring TSS-LUCID produced
data bases. SDC document TM-2302/000/01.
February 24, 1966. 6 pp-

™-530/010/00

Bowman, $. and Lickhalter, R. A, Plamning
guide for GPDS, SDC document TM-2889.
March 15, 1966. 5 pp.

. Guillebeaux, C. A. and Grant, E. E. The
general -purpose display system (GPDS) users’
manual--Part I. SDC document TM-2722/001/00.
March 22, 1966. 118 pp.

Grant, E. E. The general-purpose display
system (GPDS) users' manual--Part IIL,
Sections 1-3. SDC document TM-2722/002/00.
April 25, 1966. 19 pp.

Grant, E. E. General-purpose display system
(GPDS) users' manual--Part II, Section 4.
SDC document TM-2722/003/00. May 9, 1966.

7 pp.

Vorhaus, A. H. General purpose display system.
Datamation, 1966, 59-64.

TS$-LUCLD*

R. E. Bleier, Project Leader

W. A. Coziex J. D. Reynolds
W. C. Dennis R. A. Lickhalter
P. A. DeSimone M. A. Shaw

Description

TSS-LUCID (Time-Shared Language Used to
Communicate Information System Design) is a
time -shared data management system operating on
the Q-32.
capable of processing many types of data.

It is general -purpose in design and
Output
is available as fact retrieval on the teletype
and a minimal form of a line-printed report.

The system allows the user to describe the names
of the data base elements and the data base
structure in an easy-to-use nonprogramming
language. The data base is created when the user
submits his data input values to be loaded.

After the data are successfully loaded, they are
so organized that the user can easily query and

update them on-line.

The chief virtues of TSS-LUCID are its simplic-
ity of user operation, application to variable-
length names (as well as numerics), easy-to-
learn and logically structurcd query language,

*Supported by the Advanced Research Projects
Agency.

January 1967 4-8

and rapid retrieval. On the negative side, the
data base structure allowed within TSS-LUCID is
essentially a single level with provision for
multiple values for elements; the query language
does not provide arithmetic capability; teletype
outputs provide only minimal formatting capabili-

ties.

I%e experience gained from using TSS-LUCID has
been applied to the design of TDMS (see p.4-9).

Projress

TS5 -LUCID achieved checkout status in the early
part of the report period. The system then began
to be extensively demonstrated to visitors and
SDC personnel. User interest increased, and soon
users with differing data problems from within
SDC, government agencies, and private compenies
began using it, both at SDC and remotely, to
perform their data management functions. A
sample 1ist of organizational users of TSS-LUCID

includes:
. Lackland AFB for personnel research.

. USAF Headquarters at the Pentagon for USAF
Research Project Management .

. SDC Salary Administration for the Salary

Information Retrieval System.

. SDC Technology Directorate for TSS accounting

information .

. SDC administration for project information

on corporate planning .

In supporting these users and responding to
their needs, various improvements have been made
in the system. During this period, the staff

accomplished the following:

. Published user's manuais for all components

in the system.

. Developed a program that allows a user to
organize a TSS-LUCID data base on any series of
elements in the data base. It also alphabetizes

all name-type element values in the data base.

< P s T - S S - SO VST

T™-530/010/C0

. Developed a program that wiil merge identi-
cally described data bases.

. Developed a program that will output a
symbolic file in TSS-LUCID input format from a
T8S-LUCID data base that has been updated. In
addition, this program will provide printed
output on the line printer or teletype in blocked

format.

. Modified the fact retrieval program to
retrieve on entry numbers, to order the output
on either the ascending or descending order of
a numeric element's values, to retrieve on two
new conditional relatioans (EXISTS and FAILS),
and to' reduce the amount of user-required influts
through the commands REPEAT and SAME.

. Modified the load program to provide more
pertinent error detection support and to allow

for on-line input on data values.

Plans
The work on TSS-LUCID is complete.

the users of the system will continue.

Project Documentation

1. DeSimone, P, A. The TSS-LUCID reactive trans-
lator (LUTRAN) user's manwal. SDC document
TM-2844/000/00. January ¢6, 1966. 10 pp.

2. Dennis, W. C. ORNZ user's manual. SDC
document TM-2826/000'00. January 27, 1966.
4 pp.

3. Cozier, W. A. and Dennis, W. €. QUUP user's
manual. SDC document TM-2711/000/01.
February 28, 1966. 21 pp.

TSS -LUCID LOADER user's

Support of

manual. SDC document TM-2936/000/00.
May 13, 1966. 12 pp.

5. Dennis, W. C. User's manual for MERG. SDC
document TM-2880/000/02. June 6, 1966. 4 pp.

User 's manual for SYMOUT.
document TM-2920/000/01. October 4, 1966.
6 pp.

SDC

January 1967 4-9

TIME -SHARED DATA MANAGEMENT SYSTEM®

R. E. Bleier, Project Leader

P. R. Bartram

K. M. Brandon J. . Reynolds

S. H. Brown R. B. Reynolds

V. L. Cohen S. Snapiro

W. A. Cozier M. A. Chaw

W. C. Dennis v. Michel

P. A. DeSimone (Atlantic-Richfield)
C. A. Kribs W. D, Williams

R. A. Lickhalter «Ghell 0il Company)

Description

The Time-Shared Data Management System {TDMS)
is a general -purpose daté‘management system
providing nonprogrammer users the necessary tools
co handle large volumes of structured data.
Designed for operation on the IBYM S/360 series
of computers, TDMS represents a significant gain
in capability over TS5 -LUCID, particularly in
the areas of user-oriented language, improvements
in data structure (i.e., mested repeating groups
of data), and the inclusion of new functions
performing data base element manipulation and

report generation.

TDMS provides the user with a set of integrated
programs that he can use to solve a wide variety

of data management problems.

Use of TDMS is expected to reduce initial costs
of creating the software required for new data
processing applications, as well as reducing the
time requirved to implement new data handling

systems.

System flow within TDMS is shown in Figure 4-3.
The major components included in TDMS are listed

below.

. DEFINE permits the creation of new data base
descriptions and alteration of existing data base
descriptions. The descripticn includes, for each
component of the data base, the name, date or

numeric defimition, and legality specifications.

*Sﬁppoffed‘inipartwby‘uhe Advanced Research
Projects Agency.

T™M=-530/010/00

Capacity has been increased to 1023 components
over the 128 elements that TSS-LUCID cun handle.

. LOAD accepts values either from tape, disc or
interactive console. All types of numeric and
nonnumeric data -re accepted and legality -checked.
Errors can be corrected on-line. Inputs can be
segmented to permit loading subsets of the total

dJata base.

. QUERY interprets the interactive language
required to specify the data retrieval instruc-
tions. QUERY provides the ability to request
single values, multiple values, or entire entries,
printed either on-line or off-line, in a standard
tabular format. Full arithmetic capabilities,
plus operators such as sum, minimum, maximum,
count , average and standard deviation, are

provided.

. UPDATE permits changing of existing data
values and adding or deleting single data values
or entire entries. The updating w'll occur
dynamically and the user will have immediate

nse of the new information.

. COMPOSE allows the user to design a report
format and specify the data components to be
printed, employing a user -oriented language. This
program is highly interactive and includes
arithmetic, ordering, formatting, and tutorial
capabilities. It operates in an update mode so
that previous report descriptions can be easily
modified.

. PRODUCE produces reports on either the on-line
interactive console or line printer, as directed.
The primary inputs are the output of COMPOSE and
the designated data base.

. DISPLAY provides graphical presentation of
data on the CRT. A limited set of standard
display formats will be allowed including bar
charts (both vertical and horizontal), scatter
plots, regression curves, pie charts, and
connected line segmnents. The program will
automatically establish the relationships

o

January 1967

{ wUHP&AmE

I ;
DISPLAY J

-~ DATA }

\FORMATTER/

Ml d a— -

4-10

DEFINE

INPUT

{ MAINTAIN)

{ compose)

[[|
| query | | rrODUCE
L 1 T

FICURE 4-3. TDMS FLOW DIAGRAM

™-530/616/00

Gy

I O
SRR

]

TR T O, T e A E T WO EC S e SR M s T SR it o

I - ? pammh Sk A o amanieane AonsenmEA e Al o ol aa dehtetensiibinatediainghy | AN e ol SR

January 1967 Ge11 TH=530/010/00

)

£

between the valuwes to be plotted and the CRT
In all

cases, the user wili be able to overvide the

surface, axis labeling and graduation.

program's selection.

. MAINTALN provides for merging, subsetting,
extracting, ovdering, restructuring, and up-
dating data bases. The program accepts one or
two different data bases, an on-line description
of the desired output data base, ruies for
selection of data, and the transformations that
are required. Instructions can be saved, modi-

fied, and reused.

. TDMS INPUT FORMATTER provides a comprehensive
capability to convert existing data values to
the numbered-fields/data-set format required by
TDMS.
tion of the existing input symbolic tape and a

The inputs to this process are a descrip-

description of the transformations desired. The
input formatter then transforms the input data
to the new format as required by LOAD.

. ISS-LUCID TO TDMS DATA BASE CONVERTER is
being written for the Q-32 to previde conversion
of existing TSE-LUCID d..a bases to TDMS format.
The primary aims of this task are to facilitate
checkout as parts of the TDMS system become
available and to provide continuity for TSS-LUCID

users.

Progress

TDMS design, coding, and checkout are under way.
TDMS language development has progressed across
the entire system with very careful attention
being paid to consistency, simplicity, and power.
Additional language was developed to handle the
data retrieval scope designations created by the
inclusion of nested repeating groups. The intent
of the language is to maintain the attractive
simplicity of TSS-LUCID but to provide the
necessary increase in power required by the more
complex data structures allowed.

A central table design was created to effi-
ciently utilize the 350 computer and provide the

necessary items for program communication.

Coding work has progressed with substantial
portions of the centrai fnput/vutput, retrieval
package, and TSS-LUCID-Lo-TDMS converter
Currently, the 360/65 is providing

usable results for program checkout.

completed.

Plans

Implementaiion of the TDMS design will be
achieved for both the IBM 360/65 and IBM 360/50.
Research will continue to provide additional
capabilities within TDMS.

Project Documenctation

1. Franks, E. W. A data management system for
time-shared €£ile-processing using a cross-
index file and self -defining cntries. 5D0
document SP-2248. April 21, 1966. 17 pp.

2. Cohen, V. L. The time-shared data management
system (TDMS) for the IBM 360/65. SDC
document TM-2745/000/02. October 3, 1966.

4 pp- :

METHODS FOR iHANDLING ENGLISH
TEXT WITHIN TDMS*

J. Farell

E. W. Franks
Description

A joint project was initiated by the Advanced

Systems Division and the Research & Technology
Division to investigate the possibility of
incorporating text processing within TBMS. Such
a capability would be of value to those interested
in processing documents that contain both
structured and unstructured (free-text) data.
One document of this type is the Department of
Defense Form 1498, "Research and Technology
Resume." This form--which was used in the
present study--was designed for use by various
government agencies to record information con-
cerning research performed under government

contracts.

Entries on Form 1498 concerning the date,

number code, security classification, etc., are

*Supported in part by the Advanced Research
Projects Agency.

S A e RO G CEELLE R AN

Junuary 1967 412

considered to be structured text entries, since
their structure is predetermined and limited.

For example, the security classification entries
are limited to the following: Wnclassified, o
Confidential, Secrut, and Top Secret. Free-text
entries, on the other hand, may comnsist of any
sequence of words describing a project, agency,
results of research, etc. Four example, the
title of a project could be "Nuclear Magnetic
Resonance Studies of the Effect of Pressure on
Glass Structure." Such strings of words ave

viewed by a processing pirogram as free text.

Progress

Initial work was performed on the development
of a program that would derive simple statistical
techniques for analyzing textual information.
This work was discontinued, however, in favor of
Since TSS-LUCID has
some of the capabilities proposed for inclusion

a more promising approach.

in TDMS, it was chosen as the experimental
vehicle for this study.
the TSS-LUCID load program to eliminate the

Changes were made in

character -size restrictions; changes in the
query ond translation programs were also made to
handle text-defined elements.

Data from a sample of ten DD 1498 forms were
loaded.

data were successfully retrieved from this data

Using the query program within TSS-LUCID,
base. An attempt was then made to load a larger
data base (containing the information on 294
forms). With thie incrdase in the number of text
literals, however, the computation requirements
for the load program became too great, and the
data base could not be loaded.

Although the experiment demonstrated that there
are no basic incompatibilities between fixed-

length formats and‘textmprocessing‘techniques,

it showed that TSS-LUCID is unsuitable for useful
It did, in addition, provide
a valuable guide to the preparation of the text-
handling specifications for TDMS.
presently being documented; they are also based

text-handling work.

These are

B RSl e e

TM-530/010/00

in part on techniques that have evolved from
experience with SDC's Synthex I system
(see p. 5-7).

Provision has been made in the design of
TDMS to permit the later incorporation of a
text -handling capability. However, due to
present time and manpower limitations, this

project may be considerably delayed.

FACT RETRIEVAL FROM TDMS USING
NATURAL LANGUAGE*

€. H. Kellogg

Description

Since large-scale data base systems may contain
thousands of data elements, the typical user
should not be required to learn or remember the
precise element names for achieving data retrieval.
The principal goal of this project is to develop
a program that will assist the user in making
retrieval requests by accepting questions of
varying generality in a subset of English and by
translating these questions into a form acceptable
to TDMS.

The overall procedure being followed to achieve
this goal may be considered a multistage inter-

active decision process in which the computer

provides varying amounts of information at six

levels of processing. These six levels are:

1. Dictionary lookup. Each word in a question
is associated with appropriate grammar codes and
a series of lexical readings that represent the
several meanings of the word. Words not pre-
viously defined to the system are displayed to
the user who then must either define them or

rephrase his question.
2. Syntax analysis. A phrase st:ucture grammar

for the English subset is used to recognize and

*Supportedlin part by the Advanced Research
Projects Agency.

Fanssy i =

2

¢S

e Y
2

7.

Aemarlhs .3

e

oo

S Y R T T T Y e

Janucry 1967

parse the question into its constituents. The
user is apprised when and how the grammatical

patterns of the English subset have Leen exceeded;

when this happens, he must rephrase his question.

3. Semantic interpretation. Lexical readings
are selected and combined according to semantic

rules similar to the projection rules proposed

by Katz, Fodor, and Postal at MIT. An undefined

meaning association is indicative of a question
that is not relevant to the data base, or a

faulty dictionary entry, or both.

4. Query construction. T..formation from the
preceding three levels is used in conjunction
with a generative phrase structure grammar of
the TDMS query language in order to produce the

one or several queries implied in the question.

5. Query presentation. The queries are pre-
sented to the user for verification that they
represent the information request that he has
in mind. 1If so, he can ask the computer to find
the answerg to these queries; if not, he can
formulate a more general or specific question
within the English subset.

6. Answer presentation. Based on the answers

he receives, the user may decide to formulate

more questions.

Progress
A question-to-query translation program has

been constructed for the TSS-LUCID query language.
This program performs translation according to a

set of internally stored rules and a dictionary
that relates the various méanings of English

words to their equivalents in the query language.

The translatiop pregzram has been applied to
numerous questions posed in English. User feed-
back provided by Levels 1 through 4 (above) has
been invaluable in "debugging' the rules and
dictionary componencs of the translator. The
program currently accepts at least one English
question cquivalent for most query expression
types tant may be posed to the experimental data

o e i e B e e R e 5 M i o e et

4-13 TM-530/010/00

base. Some simple paraphrase-handling ability
is evident, e.g., the questions '"What is the
number of people in Arizona?', '"What is the
population of the state of Arizona?", and 'How
many people are there in Arizona?", all receive

equivalent query interpretations.

The translator has been programmed in the META/
LISP programming language developed at SPC. This
language is being used at present to implement a
data description program that will interface with
TSS -LUCID,

The project has already shed some interesting
light on tha relationships between subsets of a
natural language and artificial query languages.
This knowledge will be used in adapting the
translator to efficiently interface with TDMS.

To achieve a larger degree of data base inde-
pendence, the data description program must b«
completed so that dictionaries may be easily

created and updated on-line.

Project Documentation

1. Kellogg, C. H. An approach to t